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The classical theory by Jeffery predicts that, in the absence of Brownian fluctuations, a thin
rigid platelet rotates continuously in a shear flow, performing periodic orbits. However,
a stable orientation is possible if the surface of the platelet displays a hydrodynamic slip
length λ comparable to or larger than the thickness of the platelet. In this article, by solving
the Fokker–Plank equation for the orientation distribution function and corroborating
the analysis with boundary integral simulations, we quantify a threshold Péclet number,
Pec, above which such alignment occurs. We found that for Pe smaller than Pec, but
larger than a second threshold, a regime emerges where Brownian fluctuations are strong
enough to break the platelet’s alignment and induce rotations, but with a period of
rotation that depends on the value of λ. For Pe below this second threshold, slip has a
negligible effect on the orientational dynamics. We use these thresholds to classify the
dynamics of graphene-like nanoplatelets for realistic values of λ and apply our results
to the quantification of the orientational contribution to the effective viscosity of a dilute
suspension of nanoplatelets with slip. We find a non-monotonic variation of this term, with
a minimum occurring when the slip length is comparable to the thickness of the particle.

Key words: suspensions, particle/fluid flow

1. Introduction

The flow behaviour of thin plate-like particles is of interest in many industrial and
environmental applications, ranging from the processing of composite materials (Kumar,
Sharma & Dixit 2019) to the transport of clay in natural waters (Tawari, Koch &
Cohen 2001). Recently, the emergence of graphene and other two-dimensional (2-D)
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Figure 1. Sketch illustrating the rotational dynamics of a platelet having (a) zero slip length, as described by
Jeffery’s theory and (b) slip length λ significantly greater than the platelet’s half-thickness b. The behaviours
described in panels (a,b) are characteristic of the infinite Péclet number limit. In this paper we enquire about
the effect of Brownian fluctuations on the rotational dynamics.

nanomaterials and their use in a variety of liquid-based processes (White et al. 2015;
Del Giudice & Shen 2017; Koltonow et al. 2017; Karagiannidis et al. 2017) has spurred
renewed interest in the dynamics of these extremely thin plate-like colloids when
suspended in sheared liquids (Xu & Green 2014; Poulin et al. 2016; Reddy et al. 2018;
Gravelle, Kamal & Botto 2021; Silmore, Strano & Swan 2021). In applications such as
graphene inks or polymer nanocomposites, colloidal 2-D nanomaterials take the form of
platelets of nanometric thickness and lateral size spanning from a few nanometres to a few
microns (Wick et al. 2014). There is a great interest in understanding how the application of
an external flow affects the orientation of these highly anisotropic particles in the presence
of Brownian fluctuations. The surface of graphene and other 2-D nanomaterials can be
characterised by a hydrodynamic slip length λ of several nanometres for many common
solvents (Maali, Cohen-Bouhacina & Kellay 2008; Ortiz-Young et al. 2013; Tocci, Joly &
Michaelides 2014), where λ is the distance within the solid at which the relative solid–fluid
velocity extrapolates to zero (Bocquet & Barrat 2007); the mathematical definition of λ is
given in § 4.3. For comparison, the typical thickness of 2-D material is < 1 nm. The aim of
the current study is to understand the interplay between hydrodynamic slip and Brownian
fluctuations in determining the rotational dynamics of a thin plate in an unbounded, simple
shear flow under creeping flow conditions.

According to Jeffery’s (1922) classical theory, derived for the high-Péclet number
limit in which Brownian fluctuations are negligible, an oblate ellipsoid with its normal
in the flow plane rotates continuously, performing a characteristic tumbling dynamics
(figure 1a). Bretherton (1962) generalised the high-Péclet, low-Reynolds-numbers theory
of Jeffery to axisymmetric particles of general shape. Bretherton’s analysis showed that
for axisymmetric shapes the rotational dynamics is governed by a scalar parameter that
depends, for a no-slip particle, only on the shape of the particle. For instance, for an
oblate ellipsoidal particle of major semiaxis a and minor semiaxis b, the scalar parameter
identified by Bretherton corresponds simply to the geometric aspect ratio b/a. However,
when hydrodynamic slip is present, Bretherton’s scalar parameter (which we shall name ke
in the current article) is not only a function of b/a but must also depend on the slip length λ
(Zhang, Xu & Qian 2015; Kamal, Gravelle & Botto 2020). This brings about the question
of how slip affects Jeffery’s predictions, and how Brownian fluctuations alter the rotational
dynamics when the slip length is large in comparison with the particle thickness. This
question is particularly relevant considering the nanometric thickness of 2-D nanomaterial
particles.
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Slip effects on the dynamics of sheared Brownian platelet

Hydrodynamic slip at solid boundaries is known to affect the motion of small rigid
particles in fluids. Slip reduces the tangential hydrodynamic stress on the particle surface
(Sellier 2013), resulting in a reduction in the translational and rotational drag coefficient
of spherical or anisotropic particles (Youngren & Acrivos 1975; Loyalka & Griffin 1994;
Allison 1999; Keh & Huang 2004; Keh & Chang 2008; Sellier 2012; Chang & Keh 2012;
Sherwood 2012). Slip also results in a slowdown of the rotational dynamics of spherical
particles freely suspended in a simple shear flow (Luo & Pozrikidis 2008). A similar
slip-dependent slowdown in a shear flow was predicted by Zhang et al. (2015) for a particle
with an elliptic cross-section (b/a ∼ 0.5) and infinite extent in the vorticity direction, in
the limit of a slip length smaller than the particle thickness (λ ∼ b/5).

Recently, we studied the motion of a thin (b/a � 1) rigid graphene-like nanoparticle
with hydrodynamic slip (Kamal et al. 2020), via a combination of molecular dynamics
(MD) and continuum simulations. In contrast to previous studies (Zhang et al. 2015), we
considered values of the slip length either larger or smaller than the particle thickness.
By using numerical and asymptotic solutions of the low-Reynolds-number boundary
integral equations governing the hydrodynamic surface stress distribution, we showed that
provided that the half-thickness of the platelet b is smaller than λ, in the limit of infinite
Péclet (Pe) numbers the platelet aligns at a small angle φc with respect to the flow direction,
instead of performing full rotational cycles as predicted by Jeffery’s theory for Pe → ∞
(figure 1b). Our asymptotic analysis revealed that this behaviour is due to a perturbed
balance between two hydrodynamic torque contributions. One contribution is due to
tangential hydrodynamic stresses acting on a lever arm proportional to b. The second
contribution is due to normal hydrodynamic stresses acting on a lever arm proportional
to a. For λ/b � 1 the torque due to tangential stresses is larger than that due to normal
stresses, resulting in an expected rotation in the same direction of the vorticity vector
(Singh et al. 2014). However, we demonstrated that to leading order in b/a slip induces
a reduction in the tangential stresses, without affecting the normal stresses significantly.
As a consequence, for λ/b � 1 the torque due to normal stresses dominates, resulting in
a rotation in the direction opposite to the vorticity vector (for a particle initially aligned
in the flow direction, as illustrated in figure 1b) and the attainment of an equilibrium
angle φc in correspondence to which the two torque contributions balance exactly (an
illustration of such arrested dynamics is given in § 4). This surprising result was confirmed
with MD simulations. While the theory we developed was for infinite values of Pe for
which the effect of Brownian fluctuations is negligible, we observed a stable orientation
in MD simulations of relatively short graphene nanoplatelets for Pe of approximately 100
(Kamal et al. 2020). This raises the question of what is the minimum Pe for which a stable
orientation can be observed.

In this paper we first recall the essential elements of the high-Pe number theory we
developed previously. Then we analyse the rotational dynamics for finite Pe numbers,
by considering solutions of the Fokker–Plank equation governing the single-particle
orientational distribution function. To simplify the problem, following Leahy, Koch &
Cohen (2015) we assume that the motion of the particle is in the flow plane, hence
the orientational distribution is a function only of the angle with respect to the flow
direction and time. Earliest work on the use of the Fokker–Plank equation for predicting
the orientational distribution of elongated particles in a shear flow is due to Burgers (1938)
and Peterlin (1938), who examined the effects of Brownian fluctuations on the dynamics
of ellipsoids and rods for Pe � 1. Other authors have examined the range Pe � 1 (Leal
& Hinch 1971; Hinch & Leal 1973; Leahy et al. 2015) and the range of intermediate
Pe (Sadron 1953; Scheraga 1955; Hinch & Leal 1972; Férec et al. 2008), considering
ellipsoids (both oblate and prolate) and more general rod-like particles. An important
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result of these theoretical and numerical analyses is that for elongated particles almost
aligned with the flow, Brownian fluctuations increase the average particle’s rate of rotation
with respect to the high-Pe value, essentially by allowing the particle to escape from the
region of small streamwise velocity. Theories for the rotational dynamics of elongated
particles based on the seminal work of Jeffery have been confirmed experimentally for a
range of Pe numbers by standard rheological measurements (Ivanov, Van de Ven & Mason
1982; Mueller, Llewellin & Mader 2009), rheo-optics (Frattini & Fuller 1986; Fuller 1995;
Vermant, Yang & Fuller 2001; Reddy et al. 2011) and by direct observation of the dynamics
of single particles (Anczurowski & Mason 1967b; Stover, Koch & Cohen 1992; Herzhaft
& Guazzelli 1999; Leahy et al. 2013). We are not aware of experimental work on the
rotational dynamics of plate-like particles specifically focusing on the effect of slip.

The structure of the paper is as follows. In § 2 we analyse Bretheton’s equation of
motion. We show that this equation can be used to describe the rotational dynamics of
plate-like particles with slip, provided that when λ/b is larger than a threshold value the
effective aspect ratio of the particle is taken to be a complex number. In § 3, we consider
numerical solutions of the Fokker–Plank equations for the orientational distribution
function. The objective of this section is to illustrate the qualitative features of the
particle dynamics and quantify the range of Pe above which the effect of slip-dependent
hydrodynamics becomes important. Such analysis enabled us to estimate the threshold Pe
giving a stable orientation. In § 4, we apply our theory to the dynamics of nanoplatelets
whose geometry mimics that of single and multilayer graphene, for practically relevant
values of λ. In this section, we quantify the threshold shear stress needed to prevent the
platelet from completing full rotations. Finally, we analyse how the indefinite alignment
of the particles affects the orientational contribution to the effective viscosity of a diluted
suspension of platelets with slip.

2. Formulation of the problem

We consider the rotational dynamics of a rigid plate-like particle (henceforth referred to
as ‘platelet’) in a simple shear flow. The platelet has length 2a and thickness 2b. We work
under conditions of Stokes flow and neglect particle inertia and gravity (i.e., the particle
is force and torque free). In our theoretical derivations, we assume that the geometric
aspect ratio k = b/a is much smaller than one. A consequence of this is that the rotational
dynamics of a three-dimensional (3-D) platelet can be well approximated by the rotational
dynamics of a 2-D platelet of infinite extent in the vorticity direction, provided that the
motion of the particle occurs in the plane of the flow and the depth of the platelet’s extent
in the vorticity direction is not small in comparison with its length (Kamal et al. 2020). We
assume that the particle is symmetric about two planes (lines in two dimensions) passing
through the particle centre. The particle motion is induced by an undisturbed shear flow
field u∞ = γ̇ yêx, where êx is the unit normal in the flow direction and γ̇ is the shear rate.

The probability p of finding the platelet at a certain angle with respect to the flow, in
response to both hydrodynamic and Brownian stresses, is governed by a Fokker–Planck
(Smoluchowski) equation (Gardiner 2004). With just one degree of freedom, the
Fokker–Planck equation for the orientational probability distribution function simplifies
to a second-order partial differential equation,

ṗ = [
Drpφ − γ̇Ωp

]
φ

, (2.1)

where φ is the anticlockwise orientation angle with respect to êx, t is time, ṗ = ∂p/∂t,
[ ]φ = ∂[ ]/∂φ, Ω(φ) is the hydrodynamic angular velocity non-dimensionalised by γ̇ −1
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Slip effects on the dynamics of sheared Brownian platelet

and Dr is the rotational diffusion coefficient. The ratio of convective and diffusive fluxes
in (2.1) is the Péclet number Pe = γ̇ /Dr.

2.1. Hydrodynamic angular velocity
The hydrodynamic angular velocity γ̇Ω is required to close (2.1). In the dilute limit, Ω

can be evaluated by examining the motion of an isolated freely suspended platelet in the
absence of Brownian fluctuations. For a symmetric platelet, Ω can be calculated exactly
by using Bretherton’s (1962) equation of motion (Kim & Karrila 2013). This equation
describes the relationship between the time derivatives of the particle orientation vector
d, and the rate of strain and vorticity tensors associated with the undisturbed flow field,
Ω∞ = (∇u∞ + ∇uT∞) and E∞ = (∇u∞ − ∇uT∞), respectively, as follows:

ḋ = γ̇Ω × d = Ω∞ × d +
(

k2
e − 1

k2
e + 1

)
(E∞ · d − E∞ dd d) . (2.2)

Using spherical polar coordinates, the orientation vector can be expressed as d =
sin θ cos φêx + sin θ sin φêy + cos θ êz, resulting in the following coupled ordinary
differential equations (Kim & Karrila 2013):

θ̇ =
(

1 − k2
e

1 + k2
e

)
γ̇

4
sin 2θ sin 2φ, φ̇ ≡ γ̇Ω = − γ̇

k2
e + 1

(
k2

e cos2 φ + sin2 φ
)

. (2.3)

Note that φ̇ does not depend on θ , hence an analysis of the particular 2-D case considered
here corresponding to θ = π/2 is representative of the φ-dependence for all values of θ .
The derivation of Bretherton’s equation of motion does not make assumptions regarding
the boundary condition at the solid surface and therefore applies to platelets with slip. This
equation depends on the value of ke, which in turn depends on the slip length as well as on
the platelet’s shape (Luo & Pozrikidis 2008; Kamal et al. 2020). The parameter ke can be
calculated for θ = π/2 as the ratio between the hydrodynamic torques acting on a particle
held fixed with its long axis held parallel to the flow, T(0), or perpendicular to the flow,
T(π/2), according to the following expression (Cox 1971):

ke =
√

T(0)

T(π/2)
. (2.4)

For a platelet satisfying the no-slip boundary condition, T(0)/T(π/2) is positive and
therefore ke is a real number (Willis 1977). In this case, when the geometric aspect ratio
k = b/a � 1, the parameter ke follows a power-law relationship ke ∝ kn where n is an
exponent that depends on the specific geometry of the platelet. For this reason, ke is often
called the ‘effective aspect ratio’. For example, an ellipsoid with a no-slip surface has
ke = k (Jeffery 1922), and a disk with blunt edges has ke ∝ k3/4 (Singh et al. 2014). For
real ke the solution to (2.3) is

tan θ = Cke√
k2

e cos2 φ + sin2 φ

, tan φ = −ke tan
(

γ̇ t

ke + k−1
e

)
, (2.5a,b)

where C is a positive integration constant. These equations describe periodic rotations of
the particle called ‘Jeffery orbits’; the time period of such rotations is

P = 2πγ̇ −1(ke + k−1
e ). (2.6)
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Figure 2. (a) Rotation angle φ for a particle with real effective aspect ratio ke = 0.16 and Pe = ∞.
(b) Associated angular velocity γ̇Ω; notice that Ω < 0 ∀φ. (c) Rotation angle φ for a particle with
imaginary effective aspect ratio ke = 0.28i and Pe = ∞, showing stabilisation at φc ≈ 0.27. (d) Corresponding
non-dimensional angular velocity, with the two equilibrium points at φ = ±φc. The ‘

⊙
’ symbol marks the

stable angle φc; the angle denoted by ‘
⊗

’ is unstable.

The value of C depends on θ(0); for θ(0) = π/2, C → ∞ and θ(t) = π/2 for all values
of t. Thus, a particle initially rotating in the plane of the flow will continue rotating in the
plane of the flow. This is the situation we are aiming to model in the current paper. For
finite Pe numbers, trajectories out of the θ = π/2 plane are of course possible. The case
θ = π/2 for finite Pe is tractable analytically and has been shown, in the no-slip case, to be
relevant to the full 3-D dynamics (Leahy et al. 2015). In § 3 we shall consider the general
slip case at finite Pe.

An example of an orbit for θ = π/2 and real ke and the corresponding Ω(φ) are given
in figures 2(a) and 2(b), respectively. Since ke � 1, the time scale for the particle to flip
is much smaller than the time spent by the particle near φ = 0 (Singh et al. 2014). For a
no-slip platelet of vanishing thickness, ke → 0 as k → 0 and thus the particle will remain
in a fixed position in the ad hoc case k = 0 (Bretherton 1962). Otherwise the platelet will
rotate (unless the platelet has a specially designed, slightly non-axisymmetric shape, see
Borker, Stroock & Koch (2018)).

For platelets presenting a surface with slip, however, such alignment is possible (Kamal
et al. 2020). The effect of surface slip is to reduce the value of k2

e , such that the Ω(φ)
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Slip effects on the dynamics of sheared Brownian platelet

curve shifts upwards, reducing the frequency of rotation with respect to the no-slip case
(Luo & Pozrikidis 2008; Zhang et al. 2015; Kamal et al. 2020). At or above a critical slip
length that scales with the thickness of the platelet, k2

e becomes negative, and so Ω(φ)

will be shifted onto or above the zero line (figure 2d). Such a solution corresponds to a
negative value of T(0)/T(π/2) and a purely imaginary complex value of ke (Kamal et al.
2020). It is instructive to compare the structure of the φ − θ equations (describing full 3-D
trajectories) for pure and imaginary values of ke. For a purely imaginary ke, the solution
of (2.3) is

tan θ = C|ke|
|ke|2 cos2 φ + sin2 φ

, tan φ = |ke| tanh
(

γ̇ t
|ke|−1 − |ke|

)
. (2.7a,b)

Comparing with (2.5a,b), whilst the equation for θ remains unchanged with respect to
the case of a real ke, the equation for φ now admits a stable non-periodic solution for
t → ∞. The particle relaxes to the stable orientation angle φc = arctan(|ke|), as shown
in figure 2(c). For this angle, Ω has a positive zero root, indicated by the open circle in
figure 2(d). The relaxation to equilibrium occurs on a time scale

PR = γ̇ −1(|ke|−1 − |ke|), (2.8)

to be compared with the rotational time period of (2.6). For |ke| � 1, P and PR are
proportional to each other. We note that a stable orientation has been predicted for blood
cells in shear flow in the case of small internal-to-external viscosity ratios (due to the
so-called ‘tank-treading’ motion, see e.g. Keller & Skalak (1982)). The analogy with our
case is, however, only qualitative, because there is no single slip parameter that can model
the dynamic coupling between inner and outer fluids seen in blood cells.

Surface slip at infinite Péclet number thus has significant effects on the rotational
dynamics of a platelet. When the slip length is smaller than the platelet’s thickness,
slip reduces the frequency of the rotational orbits through a decrease in the value of ke.
However, when the slip length is greater than a threshold value comparable to the platelet’s
thickness, the platelet aligns indefinitely at an angle φc with the flow.

3. Rotational dynamics at finite Péclet numbers

At finite Pe, both the rotational diffusion coefficient Dr and the effective aspect ratio ke
change due to slip. However, in the limit k → 0, Dr becomes approximately independent of
λ (Sherwood & Meeten 1991; Sherwood 2012). Therefore, for thin platelets, the rotational
dynamics at finite Pe changes primarily due to slip through the dependence of ke on the
hydrodynamic angular velocity.

3.1. Random walk trajectories
To illustrate the effects of Brownian fluctuations on the platelet’s rotational trajectories,
we solve numerically the Langevin representation of (2.1) for different Pe and ke. In finite
difference form, such Langevin representation describes simply connected paths in the
particle orientational space. Using a first-order approximation of the time derivative, the
resulting stochastic finite difference equation is (Doi & Edwards 1988)

�φ = γ̇Ω(φ)�t + X. (3.1)

Here, we take X as a Gaussian random variable with zero mean and variance
〈
X2〉 =

2Dr�t. Solving numerically this equation for several sequences of random numbers
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Figure 3. Time evolution of the rotation angle for different Pe, as calculated from (3.1), comparing (a–c) real
ke (ke = 0.11) to (d–f ) purely imaginary ke (ke = 0.21i). The red dashed line is the value of φc obtained for
Pe → ∞.

provides a set of trajectories distributed according to (2.1). Examples of trajectories
calculated from (3.1) for different Pe are shown in figure 3, comparing the cases of real and
purely imaginary ke. Full rotational cycles, corresponding to a platelet travelling through
the full range φ ∈ [−π/2, π/2], can always be observed if ke is real. When ke is real,
the average time period (in units of Pe t) for the platelet to perform a full rotational
cycle decreases as Pe decreases (figure 3a–c). This behaviour has been predicted in
previous theoretical studies on the steady-state rotatory dynamics of plate-like particles
(Leal & Hinch 1971; Hinch & Leal 1972), and is in agreement with experiments where
the instantaneous rotations of elongated particles have been visualised directly (Stover
et al. 1992; Herzhaft & Guazzelli 1999; Leahy et al. 2013), or through rheo-optical or
neutron diffraction techniques (Frattini & Fuller 1986; Jogun & Zukoski 1999; Brown et al.
2000). In contrast, if ke is purely imaginary, for large Pe (Pe = 640), the platelet fluctuates
around a stable orientation angle (figure 3d–f ). This angle is approximately the same as the
equilibrium angle for Pe → ∞ (φc = arctan |ke|). When Pe decreases below a threshold
value, Brownian fluctuations cause the platelet to perform full rotational cycles. However,
the average frequency of these full rotational cycles is significantly reduced in comparison
with the no slip case, as seen by the reduction of the number of peaks in figure 3(d–f ) as
compared with figure 3(a–c) for Pe = 64. For Pe ∼ O(1), Brownian fluctuations induce
a chaotic behaviour whereby the platelet rotates frequently and randomly. In this range,
the trajectories for a purely imaginary and a real ke are practically indistinguishable (see
Pe = 6.4 in figure 3).

Figure 3 suggests that for large Pe, the rotational dynamics depends strongly on
whether ke is real or purely imaginary, while for smaller Pe such dependency disappears.
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Figure 4. Spectral coefficients an and bn for ke = 0.05i and Pe = 106 and t → ∞. The spectral coefficients
are truncated at n = 1000, since an, bn → 0 above this threshold.

Quantifying the values of Pe needed for the rotational dynamics to depend on the value of
ke requires solving the Fokker–Planck (2.1).

3.1.1. Time evolution of the orientation distribution function’s moments
Taking advantage of the periodicity of p(φ, t), any solution of (2.1) can be expressed as a
spectral series,

p(φ, t) = a0(t) +
∞∑

n=1

[an(t) cos (2nφ) + bn(t) sin (2nφ)] . (3.2)

Normalisation of p requires a0 = 1/π, and assuming φ to be uniformly distributed at time
t = 0 gives an initial uniform distribution p(φ, 0) = 1/π. In spectral coordinates, this is
equivalent to having only one non-zero coefficient a0 = 1/π. Numerically, we solve (2.1)
by truncating the series at a large value N, yielding 2N first-order differential equations for
the spectral coefficients (Leahy et al. 2015). A truncated value N = 1000 has been chosen
from the analysis of the spectral coefficients an and bn. For n > N, an, bn → 0 for all
values of time t (see figure 4 for t → ∞). The 2N-coupled equations are solved in time by
a Runge–Kutta method (Press et al. 2007). The mean angle, standard deviation and higher
moments can be evaluated directly in terms of the spectral distribution. For example, the
mean and variance are

μ = 〈φ〉 =
∞∑

i=1

π

2n
(−1)1+nbn, σ 2 =

〈
(φ − μ)2

〉
= π3

12
+

∞∑
i=1

π

2n2 (−1)nan − μ2,

(3.3a,b)
respectively. Here, the close brackets 〈 〉 represent an average over the orientation
distribution function p(φ, t) for fixed t.

Many studies discuss solutions to (2.1) for elongated particles with real ke (Burgers
1938; Peterlin 1938; Sadron 1953; Scheraga 1955; Leal & Hinch 1971; Hinch & Leal 1972,
1973; Férec et al. 2008; Leahy et al. 2015; Leahy, Koch & Cohen 2017). However, the case
of purely imaginary ke, to our knowledge, has not yet been analysed. The time evolution of
the mean, variance and third-order moment

〈
(φ − μ)3〉 of the orientation distribution for
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Figure 5. Mean (a), variance (b) and skewness (c) of the angular probability distribution versus time, for a
nanoplatelet with ke = 0.1i and different values of Pe.

ke = 0.1i and different Pe is shown in figure 5. Similarly to when ke is real (Leahy et al.
2015), the moments relax in time to a steady value, with a relaxation time that decreases
as Pe decreases. Therefore, we can assume that the statistical steady state is reached over
a time greater than the relaxation time PR = γ̇ −1(|ke|−1 − |ke|) of a platelet in absence of
Brownian motion.

3.2. Steady-state probability distribution
We solve (2.1) with ṗ = 0 to find the steady-state orientation distribution function p(φ)

using the method described in § 3.1.1. The effect of Pe on p(φ) comparing real and purely
imaginary values of ke is shown in figure 6. For Pe = 1000, there is a noticeable difference
in the shape of the orientation distribution function depending on whether ke is real or
purely imaginary. In particular, p(φ) has a much sharper peak if ke is purely imaginary.
This difference can be analysed by considering the limit Pe → ∞. For Pe → ∞, (2.1)
reduces at steady state to

pΩ = c, (3.4)

for some integration constant c. For real ke, normalisation of p gives p = (Pγ̇ |Ω|)−1,
where P is the time period (see (2.6)) (Anczurowski & Mason 1967a). Such a probability
distribution shown by the (red) dotted line in figure 6 has mean orientation angle μ = 0 and
finite variance σ 2 by the symmetry of p about φ = 0. If ke is purely imaginary, however,
1/Ω diverges as φ → ±φc, and thus the integrand of c/Ω will not be finite unless ke = 0
or c = 0, as required by the normalisation constraint for p. Thus, the equation pΩ = c is
only satisfied for c = 0 and p(φ) = δ(φ − φc), as expected. As seen in figure 6 for the
imaginary ke, as Pe increases the probability distribution function indeed converges to a
Dirac delta, confirming that for sufficiently large Pe the platelet spends most of the time
fluctuating about φc (as observed in figure 3d–f ).

For Pe = 10 the orientation distribution functions for ke = 0.1 and ke = 0.1i are almost
identical, and slightly skewed towards positive values of φ (the value of μ, σ 2 and〈
(φ − μ)3〉 for ke = 0.1 and ke = 0.1i, given in the caption of figure 6, are within 10 %

of each other). Since Pe is not small in this example, hydrodynamic stresses must play a
role in creating such skewness. However, the effect of changes to the value of ke due to
surface slip on the probability distribution is evidently minor.

Balancing the orders of magnitude of the convective and diffusive fluxes appearing in
(2.1) yields a characteristic angle Φ. From this, we can define a ‘local’ Pe number, Peloc =
γ̇Ω(φ)Φ/Dr (Leal & Hinch 1971). The effects of Brownian fluctuations on the orientation
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φ
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φ
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Pe = 10

Pe = 100
Pe = 1000

1–1

(a) (b)

Figure 6. Steady-state orientation distribution function p(φ) for a real (ke = 0.1) or a purely imaginary
(ke = 0.1i) value of ke for different Pe numbers. The red dotted line marks the orientation distribution function
for Pe → ∞ and ke = 0.1 (a) and the location of φc for ke = 0.1i (b). The values [μ, σ 2,

〈
(φ − μ)3〉] in

increasing order of Pe are [0.17, 0.39, −0.36], [0.069, 0.21, −0.40] and [0.019, 0.14, −0.30], respectively, for
ke = 0.1; and [0.19, 0.38, −0.37], [0.094, 0.16, −0.53] and [0.075, 0.033, −1.1], respectively, for ke = 0.1i.

of the platelets are considered to be ‘weak’ compared with the hydrodynamic angular
velocity if, for φ near zero, Peloc � 1 (Leal & Hinch 1971). This condition translates to
the Brownian angular velocity being smaller than, using (2.3), |Ω| ∼ k2

e . For |Ω| ∼ k2
e we

have that φ can be at most Φ ∼ |ke|, and so |Peloc| can be at most of the order of |k3
ePe|.

Thus, for Pe � |ke|−3 Brownian diffusion is subdominant, and the rotation of the
platelet can be approximated by the orientation distribution obtained for negligible
Brownian fluctuations.

To quantify the value of Pe for which the orientation distribution does not depend on ke
to leading order, one can proceed as follows. For a geometric aspect ratio k → 0, we will
verify in § 4 that |ke| � 1 whatever the value of λ. Expanding the right-hand side of the
equation for φ̇ in (2.3) to leading order in |ke|, the hydrodynamic velocity is seen to become
independent of ke if sin2 φm � |k2

e | cos2 φm. Thus, because we are interested in a critical
Pe valid for both λ = 0 and finite λ, the condition for φm is tan φm ≈ φm � max(|ke(λ =
0)|, |ke(λ)|). For the rotational dynamics to be independent of ke to leading order, the
local Péclet number must be O(1) over the characteristic angle Φ ∼ φm. This regime is
associated with a rotational velocity Ω(φm) ≈ γ̇ φ2

m, so the local Péclet number Peφ3
m ∼ 1.

It follows from the condition φm � max(|ke(λ = 0)|, |ke(λ)|) that Pe � min(|k−3
e (λ =

0)|, |k−3
e (λ)|). Thus, Brownian diffusion will control the orientation of the platelet when

Pe � min(|k−3
e (λ = 0)|, |k−3

e (λ)|).
The value Pem = min(|k−3

e (λ = 0)|, |k−3
e (λ)|) is an important threshold. For Pe � Pem

the value of ke does not affect to leading order the orientation distribution p(φ, t). When
Pe � Pem significant changes to the orientation distribution for either a real or purely
imaginary value of ke are expected. Figure 7 demonstrates the importance of this threshold
on the statistical moments μ, σ 2 and

〈
(φ − μ)3〉. The black line corresponds to Pem =

|ke|−3. For Pe above this line, the statistical moments approach the values predicted by
using the probability distribution functions corresponding to Pe → ∞. In this case the
moments depend strongly on the value of ke. For example, if ke is purely imaginary, then
the variance σ 2 → 0 and the mean μ → ke for Pe above the Pem = |k−3

e | line. If instead ke
is real then σ 2 is instead finite and μ → 0. Likewise, if Pe is much smaller than |k−3

e | the

919 A1-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

32
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.327


C. Kamal, S. Gravelle and L. Botto

S
k

ew
n

es
s

Imaginary ke

log10Pe

lo
g

1
0
|k e|

Real ke

Imaginary ke Real ke

Imaginary ke Real ke

log10Pe

log10Pe

lo
g

1
0
|k e|

lo
g

1
0
|k e|

lo
g

1
0
|k e|

lo
g

1
0
|k e|

log10Pe

log10Pe log10Pe

lo
g

1
0
|μ

|

lo
g

1
0
|μ

|

lo
g

1
0
|σ

2
|

lo
g

1
0
|σ

2
|

lo
g

1
0

|〈(
φ

−
μ

)3
〉|

lo
g

1
0

|〈(
φ

−
μ

)3
〉|

M
ea

n
V

ar
ia

n
ce

0
–2.0

–1.5

–1.0 –1

–2

–3

–4

0

1 2 3 4 5 6

0
–2.0

–1.5

–1.0
–1

–2

–3

–4

0

1 2 3 4 5 6 0
–2.0

–1.5

–1.0
–1

–2

–3

–4

0

1 2 3 4 5 6

0
–2.0

–1.5

–1.0
–1

–2

–3

–4

0

1

1 2 3 4 5 60
–2.0

–1.5

–1.0
–1

–2

–3

–4

0

1

1 2 3 4 5 6

lo
g

1
0
|k e|

0
–2.0

–1.5

–1.0
–1

–2

–3

–4

0

1 2 3 4 5 6

(e)

(b)(a)

(c) (d )

( f )

Figure 7. Colour maps of the mean μ, variance σ 2 and skewness
〈
(φ − μ)3〉 of the steady-state orientation

distribution in the (Pe, ke) space. The black straight line is Pe = |ke|−3. For Pe above this line, the difference
in the moments between real and purely imaginary values of ke becomes noticeable.

statistical moments depend only on Pe and become essentially independent of ke (compare,
for example, the colour maps for |ke| ≤ 0.1 and Pe ≤ 100 in figure 7).

Finally, for Pe � 1, the platelet’s rotation is almost entirely due to Brownian diffusion.
As Pe → 0, the leading-order orientation distribution can be described at all times by
a uniform distribution (Burgers 1938; Peterlin 1938; Scheraga 1955). Such distribution
describes randomly rotating platelets that complete an average rotational cycle with a
variance much larger than in the pure hydrodynamic flow limit, as also shown in figure 3.

3.3. Threshold Péclet number for full rotations
When the effective aspect ratio ke is purely imaginary, we can define a critical Péclet
number Pec separating the stable region, in which the platelet fluctuates about φc, from the
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Pec ∼ 0.45|ke|
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10–1

Figure 8. Threshold value of the Péclet number Pec beyond which no platelet rotation is expected, as a function
of |ke| (with ke purely imaginary). Black disks are numerical values, lines are fits for |ke| � 0.1 (dot–dashed
blue line) and |ke| � 0.1 (dashed red line), respectively.

unstable region in which the platelet performs full rotations. Because the hydrodynamic
angular velocity is zero for φ = φc and small in the neighbourhood of this critical angle, in
the stable region weak Brownian fluctuations always affect the orientation of the platelet
for any finite value of Pe. When the platelet is in the unstable region, full rotation cycles
can occur because the variance σ 2 is large enough for the fluctuating platelet to ‘jump
out’ of the region where Ω(φ) is positive. The width of this ‘hydrodynamic potential
well’ is given by the range of values of φ for which Ω(φ) is positive. This width can
be approximated as 2 arctan(θc) ≈ 2|ke| for |ke| � 1. Therefore, we estimate that the
probability for a given particle to perform full rotary cycles becomes significant for σ

larger than a threshold σ ∼ 2|ke|.
Using our numerical procedure for calculating σ 2, as given in (3.3a,b), we calculate Pec

by first computing σ(Pe, ke) and then calculating the value of Pe that gives σ = 2|ke|. We
emphasise that full rotations of a given platelet can still occur for Pe significantly larger
than Pec, but these events, associated with the tails of the probability distribution, are rare
and should not affect the occurrence of a stable orientation on account of the approximate
symmetry of p(φ) about its mean value. Our results for Pec are shown in figure 8 for a
range of purely imaginary ke. As |ke| decreases, the width of the ‘hydrodynamic potential
well’ decreases, so Pec increases. The data appear to be well fitted by Pec ∝ |ke|−3.4 for
small values of |ke|. The exponent −3.4 is quite close to the exponent −3 obtained by
balancing the order of magnitude of the convection and diffusive terms in (2.1). The data
are expected to approach this theoretical value for values of |ke| smaller than we could
simulate. For |ke| � 0.1 the local power-law exponent is definitely not close to −3. In this
region, the line Pec ∝ |ke|−4.8 appears to be a better fit to the data.

Figure 8 does not enable us by itself to draw a conclusion about whether a stable
orientation occurs for given values of λ and a, as both ke and Pe depend on these variables.
To draw such conclusion we need to map ke and Pe to specific values of λ and a. This
will be done in the next section, by considering particles of a specific geometry and slip
properties.
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4. Rotational dynamics of model graphene-like nanoplatelets

Our work is motivated by understanding the dynamics of graphene colloids or similar
2-D nanomaterials. Applying our theory to realistic graphene-like nanoplatelets requires
evaluating ke for geometric and slip characteristics typical of this specific type of
anisotropic colloid. The calculation of ke for platelets of atomic thickness (in the following
we will use the word ‘nanoplatelets’ for brevity) must be done with care, because the
classical framework developed for mesoscale colloidal particles may break down when
one of the particle dimensions is comparable with the size of the liquid molecules. In
previous studies (Gravelle, Kamal & Botto 2020; Gravelle, Kamal & Botto 2021; Kamal
et al. 2020), we have performed MD of a rigid graphene nanoplatelet suspended in a
shear flow of water and other solvents. We showed that ke can still be predicted using a
continuum description, provided that the hydrodynamic stress is computed on a suitable
reference surface surrounding the platelet and a slip boundary condition is enforced at
this surface. Interestingly, we found that using a single slip parameter λ is sufficient to
capture the effects of the hydrodynamic slip on the particle rotation and hydrodynamic
torque, despite the heterogeneous surface of graphene (which has different slip properties
at the edges as compared with the planar region). This feature, which we have proved to be
related to the weak sensitivity of the hydrodynamic torque on the tangential components
of the traction at the edges, is useful as it simplifies the analysis of the problem by reducing
the number of parameters.

4.1. Effective nanoplatelet’s geometry
Nanoplatelets of 2D materials, made for example of carbon (C), boron nitride (BN), or
molybdenum disulfide (MoS2), are essentially stacks of atomic crystal layers. To achieve
a continuum description of the nanoplatelets in flow, one must define the reference
surface that best approximates such platelets from a hydrodynamic standpoint. Molecular
dynamics calculations reveal that, because of the smoothing of the molecular flow field
by the finite-interaction potential near the edges, the reference surface is a cuboid with
rounded edges, as sketched in figure 9. The cuboid has a half-thickness b = ξ + dgg(n −
1)/2, where ξ is the effective radius of a single atom of the nanoplatelet, dgg is the
interlayer spacing and n is the number of stacks. For multilayer graphene, dgg ≈ 3.35 Å
(Chung 2002). The effective radius ξ depends on the equilibrium distance between
the atoms of the solid and the liquid molecules. For graphene in water, ξ ∼ 1.8–2.5 Å
(Gravelle et al. 2014), and comparable values can be expected for BN and MoS2 due to
their similar atomic structure (Radisavljevic et al. 2011; Tocci et al. 2014; Luan & Zhou
2016). The edges form a semicircle shape for n = 1 (figure 9a) and a flat face with blunt
edges as n increases (figure 9b–d). The shape of the edge slightly affects the value of ke:
the blunter the edge, the larger the value of ke for a fixed aspect ratio a/b (cf. Singh et al.
(2014) for λ = 0).

4.2. Range of slip lengths
For atomically smooth surfaces of 2-D nanomaterials such as graphene, the
hydrodynamics slip length measured at the planar surface of the particle ranges from a few
nanometres to tens of nanometres. As summarised in table 1, experiments performed on
graphite (Maali et al. 2008; Ortiz-Young et al. 2013), and ab initio calculations (Tocci et al.
2014), suggest λ ≈ 10 nm for water and graphene. In the case of NMP or ethanol, the slip
length of graphene is also relatively large (>10 nm) (Gravelle et al. 2020). Ionic liquid (IL)
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(a)

(b)

(c)

(d)

dgg

ξ

λ

Figure 9. (a–c) Water density profiles as extracted from MD simulations for a number of layer n = 1 (a), 2
(b) and 3 (c), respectively. The centres of the carbon atoms are located along the grey lines. Details of the
molecules dynamics simulations are given in Kamal et al. (2020). The colour field is the water density, from
white (low density) to blue (high density), and the red dashed lines show the reference surfaces. (d) Sketch of
the reference surface for n = 3, showing the slip length λ, the effective radius ξ of the carbon atoms and the
interlayer spacing dgg.

can also give large slip lengths, but in this case λ has been found to depend strongly on the
shear rate (Voeltzel et al. 2018).

The slip length λ can also be significant for atomically smooth and chemically
homogeneous materials other than graphene. The interaction of BN and water gives
λ ∼ 3 nm (Tocci et al. 2014). While this value may seem small, it is still larger than
the thickness of single-layer BN. Despite the large scatter in the literature data for λ,
consequence of the dependence of MD simulation results on empirical force fields, table 1
suggests that relatively large slip lengths are not uncommon in 2-D nanomaterials, which is
essentially a consequence of the fact than many 2-D nanomaterials have atomically smooth
surfaces. To provide theoretical guidelines on a range of realistic values, characteristic of
those in table 1, we will evaluate the rotational dynamics of nanoplatelets for λ = 0, 2, 20
and 200 nm.

4.3. Calculation of ke and Dr

Using a boundary integral method which will be described shortly, we have calculated the
effective aspect ratio ke and the rotational diffusion coefficient Dr for typical nanoplatelets
by solving the incompressible Stokes equations

∇ · σ = 0, ∇ · u = 0, (4.1a,b)

where σij = −δijp + η(∂ui/∂xj + ∂uj/∂xi) is the hydrodynamic stress with p the pressure
and η the viscosity; u is the velocity field. For the reference surface, we use a cuboid with
rounded edges (§ 4.1). At the reference surface of the platelet we prescribed the Navier slip
boundary condition

usl = λ
η

n × f × n, (4.2)
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Material Liquid (η (mPa s)) λ (nm) Method Reference

graphene water (1.0) 10.4 ± 2.2 ab initio MD Tocci et al. (2014)
graphene water (1.0) 60 ± 5 MD Kamal et al. (2020)
graphene water (1.0) [1 − 80] MD Kannam et al. (2013)
graphene water (1.0) 83 MD Falk et al. (2012)
graphene decane (0.85) 103 MD Falk et al. (2012)
graphene OMCTS (1.0) 18 MD Falk et al. (2012)
graphene ethanol (1.1) 250 MD Falk et al. (2012)
graphene ethanol (1.1) 30 ± 3 MD Falk et al. (2012)
graphene NMP (1.6) 14 ± 2 MD Kamal et al. (2020)
graphene CPO (1.3) 45 ± 2 MD Kamal et al. (2020)
graphite IL ([1 − 200]) [300 − 10 000] MD Voeltzel et al. (2018)
graphite water (1.0) 8 experiment Maali et al. (2008)
graphite water (1.0) 12 ± 3.3 experiment Ortiz-Young et al. (2013)

DlC water (1.0) 0.55 ± 1.37 experiment Ortiz-Young et al. (2013)
DlC IL ([1 − 200]) [1 − 100] MD Voeltzel et al. (2018)

MoS2 water (1.0) 5.6 MD Luan & Zhou (2016)
mica water (1.0) < 2 experiment Maali et al. (2008)
mica water (1.0) ∼ 0 experiment Ortiz-Young et al. (2013)
BN water (1.0) 3.3 ± 0.6 ab initio MD Tocci et al. (2014)
GO water (1.0) 0.34 ± 0.38 experiment Ortiz-Young et al. (2013)

silicon water (1.0) 1 ± 1.7 experiment Ortiz-Young et al. (2013)

Table 1. Literature values of the slip length for different solid material/solvent combinations. The materials
and liquids are: diamond-like carbon (DIC); graphene oxide (GO); boron nitride (BN); molybdenum
disulfide (MoS2); ionic liquid (IL); n-methyl-2-pyrrolidone (NMP); octamethylcyclotetrasiloxane (OMCTS);
cyclopentanone (CPO). Ab initio MD refers to a method allowing for the calculation of electronic behaviour
from first principles by using a quantum mechanical method.

where f = σ · n is the hydrodynamic surface traction and n is the unit normal vector
(Lauga, Brenner & Stone 2008). In the present case, the macroscopic time scale is
given by the rotational time period PR = γ̇ −1(|ke|−1 + |ke|), which is controlled by the
particle aspect ratio and by the shear rate. For realistic parameters, PR is always much
larger than the time scale of the microscopic motion of the fluid molecules, which is
typically of the order of picoseconds. A boundary integral equation is used to calculate
the distribution of f corresponding to each given inclination angle φ (Pozrikidis 1992).
Denoting the reference surface by S, the boundary integral equation for a point x ∈ S is
(Luo & Pozrikidis 2008)∫

S
n · K(x′, y′) · usl dS − 1

η

∫
S

G(x′, y′) · f dS = usl(x)

2
− u∞(x), (4.3)

where the integral is over the surface parameterised by the coordinate point x1 = (x1, y1).
In (4.3), x′ = x1 − x, y′ = y1 − y; G and K are Green’s functions corresponding to the 2-D
‘Stokeslet’ and ‘Stresslet’, respectively; u∞ is the undisturbed simple shear flow field. The
traction is used to calculate the hydrodynamic torque T(φ) = êz · ∫ [x × f ] dS acting on
the fixed platelet. In order to achieve high accuracy with the boundary integral algorithm, a
non-uniform grid has been implemented with the surface of the particle being divided into
two regions, see figure 10(a). Namely, the edge region, made of the edges of arclength SE
plus the neighbouring regions of lengths SE/4, and the planar region. The total number of
grid points, N, is distributed between the two regions, with the number of points of the edge
region being N/2 up to a maximum of 32 points for each end. Following a convergence
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Figure 10. (a) Example of the discretisation of a n = 1 surface with N = 96. (b,c) Effective aspect ratio |ke|
versus the number of discretisation points N for platelets with λ = 20 nm, a/b = 10 or a/b = 100, and either
n = 1 (b) or n = 10 (c).

analysis (figure 10b,c), we set N = 288 for platelets with a/b ≤ 100 and N = 384 for
platelets with a/b > 100; the value of ke is then calculated from (2.4).

The (4.3) is evaluated numerically by using the following method. First, the traction
and slip velocity are discretised as N piecewise constant functions {f [1] . . . f [N]} and
{usl[1] · · · usl[N]}, respectively, each associated with a surface element Si = ∫ si+1

si
dS.

With this discretisation, for each point sj for j = {1 · · · N}, the discretised form of (4.3)
becomes (Kamal et al. 2020)

N∑
i=1

[
usl[i] ·

∫ si+1

si

K(s, sj) · n(s) dS(s) − f [i]
η

·
∫ si+1

si

G(s, sj) dS(s)
]

= usl(sj)

2
− u∞(sj).

(4.4)

For i /= j, each subintegral is evaluated using a Gauss–Legendre quadrature method. If
i = j, the integrands are singular. The singular integrand containing the G tensor is
evaluated by using a specific quadrature method for logarithmic singularities (Pozrikidis
2002), and the singular integrand containing the K tensor is evaluated analytically by
Taylor expansion about the singular point (Kamal et al. 2020). Equation (4.2) provides a
closed relation between usl and f , and thus (4.4) can be arranged into a closed system of
N linear equations for each component of the traction fi[j]. This system is solved for fi[j]
by using Gaussian elimination. To test the accuracy of our implementation, we compared
the predicted value of ke with the corresponding exact solution for circular cylinder in
shear flow (Kamal et al. 2020). This test confirms the expected second-order spatial
convergence.

The rotational diffusion coefficient of a particle is given by Dr = kBT/Fr, where kB
is the Boltzmann’s constant, T is the absolute temperature and Fr is the rotational drag
coefficient. The rotational drag coefficient is also calculated via the boundary integral
method, by calculating the hydrodynamic torque exerted on the fluid by a platelet rotating
with velocity u = êz × x in a fluid otherwise at rest. In agreement with the result of
Sherwood (2012) for a disk, we find for our model platelet that Fr is independent of slip
as k → 0. In this limit we found Fr ≈ c1ηa3, where c1 = 6.29 ± 0.02 (to be compared
with c1 = 32/3 for a 3-D disk of zero thickness (Leal & Hinch 1971; Sherwood 2012),
and to c1 = 2π for an infinite plate of zero thickness (Sherwood & Meeten 1991)). The
second-order accuracy in the computation of Dr was assessed by comparing against the
exact solution for Dr for a cylinder with a Navier slip boundary condition, as done by Luo
& Pozrikidis (2008) for a sphere.
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Figure 11. Absolute value of the effective aspect ratio ke versus the platelet length 2a for ξ = 0.25 nm and for
n = 1 (a) and n = 10 (b). The black lines correspond to the purely imaginary values of ke and the red lines to
real values of ke.

Values of ke for our model platelet with ξ = 0.25 nm, slip length λ = 0, 2, 20 and
200 nm, and n = 1 or 10 are shown in figure 11. We limit our calculations to aspect
ratios k ≥ 0.001, because using k < 0.001 leads to large numerical error owing to severe
resolution requirements. For λ = 0, the effective ratio of the platelet follows the power
law relationship ke ∼ gnk3/4, with gn a prefactor that depends on n. This power law
relationship is the same as for disks with ‘blunt edges’ (Singh, Koch & Stroock 2013). We
find g1 ≈ 0.91 for n = 1 and g10 ≈ 1.0 for n = 10. As λ increases, however, the relation
between ke and k is not necessary a power law, as shown for λ = 2, 20 and 200 nm for
n = 1, and λ = 20 and 200 nm for n = 10. In the limit λ/a � 1, the value of ke can be
analytically approximated as ke ∝ i

√
k (Kamal et al. 2020), as confirmed in figure 11 for

platelet length 2a � 20 nm, n = 1 and λ = 20 nm and 200 nm (we remark, however, that
most applications of nanoplatelets typically involve λ < a).

As the slip length increases, the value of k2
e decreases and changes sign at some critical

value λc (figure 12). An explanation for this is the following. Calculating ke requires the
evaluation of the total hydrodynamic torque on a fixed platelet for two angles: φ = 0
and φ = π/2. The total torque for φ = 0 is more sensitive to λ than the torque for
φ = π/2, because slip affects primarily the flow moving in the direction tangential to
the surface of the particle. Thus, predicting λc essentially requires predicting the angle for
which T(0) changes sign. When λ = 0, in an asymptotic expansion in powers of b, the
O(b) contribution to T(0) turns out to be zero, because of an exact cancellation between
torque contributions due to normal and tangential stresses. This cancellation results in
a ‘clockwise’ torque that is second-order in the thickness, T ∝ b2; the second-order
tangential traction determining this torque is f (2)

x ∝ b (Singh et al. 2014). The effect of
slip over the flat surface of the platelet is to reduce the tangential traction fx, without
changing significantly the normal traction fy (figure 13). An analysis for λ/a � 1 shows
that the effect of slip is to reduce fx by an amount of O(λ), resulting in a second-order
traction f (2,sl)

x ∝ λ (Kamal et al. 2020), where ‘sl’ indicates that this traction is due to slip.
The total torque T(0) changes sign when f (2,sl)

x > f (2)
x . This condition occurs at a threshold

value λc ≈ hnb, where hn is a numerical prefactor that depends on the number of layers n
(Kamal et al. 2020). For n = 1, our numerical procedure gives h1 ≈ 0.8, and b ≈ 0.25 nm
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Figure 12. Effective aspect ratio k2
e versus the slip length λ for different platelet lengths 2a. The half-thickness

of the platelet is b ≈ 0.25 nm and b ≈ 1.75 nm for n = 1 and n = 10, respectively. Red dashed lines mark the
positions where k2

e changes sign.
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Figure 13. The streamwise (a) and normal (b) hydrodynamic traction distribution along the surface of a
platelet fixed at an orientation φ = 0 for n = 1 and a/b = 10. The vertical dotted line marks the position
of the edge of the platelet.

so λc ≈ 0.2 nm. For n = 10, h10 ≈ 2.2 and b ≈ 1.75 nm so λc ≈ 3.85 nm (figure 12).
For moderate-to-large values of λ/b, slip can have a marked effect on the traction at and
near the edges of the platelet (the position of the edge is marked by the dotted vertical
line in figure 13). This traction can significantly affect ke for larger values of λ so that ke
is in general a non-trivial function of λ. Comparison of the traction and T(0) with MD
simulations reveals that the approximation of a uniform surface slip over the surface of the
platelet still gives accurate predictions of ke even when λ/b is large (Kamal et al. 2020).
In the following, since ke is a non-trivial function of λ, b and a (figure 12), we will use the
numerically computed values of ke.

4.4. Regimes of rotation
Here we analyse the effect of the Péclet number, comparing the rotational dynamics of
nanoplatelets with and without surface slip. We first compare the cases λ = 0 (no-slip) and
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Figure 14. Comparison of mean and variance of the fluctuating rotation angle for a nanoplatelet with slip
(ke = 0.063i) and without slip (ke = 0.028). The red dashed line marks the asymptotic solution for σ 2 for
purely imaginary values of ke. The nanoplatelet has half-width b = 0.25 nm (i.e. n = 1) and half-length a =
25 nm. Region I: Pe < PeI , negligible slip effects for both λ = 0 and λ = 2 nm. Region II: PeI ≤ Pe < Pec,
moderate slip effects region characterised by changes in the frequency of rotation due to slip. Region III:
Pe ≥ Pec, large slip effects region where slip completely suppresses the rotation of the nanoplatelet.

λ = 2 nm (slip) for fixed a/b = 100 and n = 1. The corresponding effective aspect ratios
are ke = 0.028 and ke = 0.063i for λ = 0 and λ = 2 nm, respectively. In figure 14, we plot
the mean μ and variance σ 2 of the rotation angle for these two cases as a function of Pe. In
agreement with figure 7, the results show that slip has no effect on particle orientation at
low Pe, but has a strong influence on both μ and σ 2 at large Pe. To describe the qualitative
differences in the trends of μ and σ 2 between the slip and no-slip cases, we subdivide
the data into three different regions (I, II and III, see figure 14). Region III corresponds to
Pe > Pec, where Pec is the critical value introduced in § 3.3 above which no full rotational
cycles occur for λ = 2 nm. Region III is a ‘large slip effects’ regime. In this regime the
platelet with slip performs small fluctuations around φc. In this region the curves approach
smoothly the values expected for Pe → ∞ (§ 3.2): for λ = 2 nm, μ is approximately
constant (μ ≈ |ke|), and σ 2 → 1/(2Pe|ke|) as Pe → ∞. This latter asymptotic solution for
σ 2 can be obtained by inserting into (2.1) the linearisation of the angular velocity for angles
close to φc, Ω = 2ke(φ − φc) and assuming that p is Gaussian. For λ = 0, μ vanishes as
Pe → ∞ and σ 2 is finite, as predicted by Jeffery’s theory. Regions I and II correspond to
Pe < Pec. In region I, slip and no-slip curves for μ or σ 2 are practically indistinguishable,
as apparently in this region the effect of the hydrodynamic stresses is subdominant with
respect to Brownian stresses in setting the orientational dynamics. In region II, differences
in the curves due to slip exists, but are not as marked as in region III. Region II corresponds
to a ‘moderate slip effects’ regime, in which full rotational cycles occur even for platelets
with an imaginary ke, but with a significantly reduced frequency as compared with region
I. This reduction in frequency indicates that in this region hydrodynamics mitigates the
randomising effect of Brownian motion.

In regions II and III the effect of slip is to increase the mean and reduce the variance of
the orientation distribution. The effect of slip on the variance is particularly evident: for
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Pe = 10 000, a small slip of λ = 2 nm leads to a reduction by approximately one order of
magnitude of the variance.

As explained in § 3.2, the value PeI separating the ‘negligible slip effects’ regime and
the ‘moderate slip effects’ regime must satisfy the condition PeI � Pem = min(|k−3

e (λ =
0)|, k−3

e (λ)|). Our numerical simulations (shown in both figures 7 and 14) indicate that the
correlation PeI � 0.1Pem provides a good approximation to the data for practical purposes.

In figure 15, we extend the analyses of figure 14 to assess the extent of the regions of
large slip effects, moderate slip effects and negligible slip effects by evaluating Pec and PeI
in the (Pe, 2a) space. For our comparison, we use the same platelets and corresponding
values of ke used in figure 11. The difference to the analysis presented in § 3 is that now
Pec and Pem can be evaluated as a function of the known variables λ and 2a, rather than
ke.

We add to figure 15 red dash–dot lines corresponding to the Pe number for three shear
stress values: γ̇ η = 107 Pa, γ̇ η = 2 × 104 Pa, γ̇ η = 10 Pa (the Péclet number scales
proportionally to the stress according to Pe ≈ c1γ̇ ηa3/(kBT), where ‘c1 = 6.29 ± 0.02’
was calculated from a boundary integral simulation of the hydrodynamic torque on a
particle rotating with assigned velocity in a still fluid, see § 4.3). These characteristic shear
stresses are, respectively, typical of: exfoliation processes in a low viscosity fluid (Paton
et al. 2014); mixing in very viscous fluids (Huang & Terentjev 2012) and dispersion by
microfluidisation (Karagiannidis et al. 2017; Paton et al. 2017); fast lubrication processes
(Jonsson & Bhushan 1995), high-speed blade coating (Willenbacher, Hanciogullari &
Wagner 1997) and MD simulations (Voeltzel et al. 2018; Gravelle et al. 2020; Gravelle,
Kamal & Botto 2021). The effects of slip for each of these characteristic shear stresses can
be assessed by identifying, for a given value of a, the region where the corresponding Pe
lies. For example, the lowest shear stress (red dashed line in figure 15) is within the region
where slip effects are negligible for all the values of λ, a and n we considered. For the
intermediate shear stress (dotted–dashed line in figure 15) slip has a noticeable impact on
the rotational dynamics: thicker platelets (n = 10) are likely to align if the slip length is
sufficiently large so that ke is purely imaginary. Otherwise for the thinner platelets, such as
for n = 1, then there is a range of a and λ for which the average frequency for the platelets
to complete a full rotational cycle is smaller than for a no-slip platelet. Finally, the highest
shear stress (double-dotted–dashed line in figure 15) produces a value of Pe well within
the ‘large slip effects’ region where the platelet fluctuates around φc if λ > λc.

The length of the platelet also affects the rotational dynamics. The local power law
exponent characterising the dependence of Pec and PeI on a is smaller than 3 for
comparatively small values of a (a � 100 nm approximately in figure 15), and approaches
3 as a increases. A consequence of the fact that the ‘moderate slip effects region’ is not
bounded by parallel lines in a log–log plot is that for given particle thickness and shear
stress value longer platelets are more likely to be affected by slip. Taking the case n = 1,
λ = 200 nm, and ηγ̇ = 2 × 104 Pa as an example, the rotation of the platelet is not affected
by slip for 2a < 40 nm, whereas platelets with 2a > 40 nm enter the ‘moderate slip effects
region’ where slip effects start becoming significant.

4.5. Effective viscosity of a dilute suspension of nanoplatelets with slip
As an illustration of a macroscopic effect due to slip, in the current section we analyse the
effects of stable alignment on the orientational contribution to the effective viscosity ηeff
of a dilute suspension of nanoplatelets for finite values of λ. The effective shear viscosity
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Figure 15. Effect of slip on the rotational dynamics of a nanoplatelet with length = depth = 2a and width =
2b in the (Pe, 2a) space. Upper black curve marks the threshold Péclet number Pec for which σ 2 = 2ke; above
this threshold the hydrodynamic slip has a dramatic effect on the particle dynamics. Lower black curve marks
the threshold Péclet number PeI ; above this threshold, slip effects become important. The dashed, dashed–dot
and dash–double-dot lines correspond to γ̇ η = 107 Pa, γ̇ η = 2 × 104 Pa, γ̇ η = 10 Pa, respectively.

of a dilute suspension of particles can be calculated as

ηeff = η + σ ′
xy

γ̇
, (4.5)

where σ ′
xy is the particle stress (Jeffery 1922; Giesekus 1962; Brenner 1974; Leal & Hinch

1971). For a suspension in which the motion of the particles is restricted to the flow plane,
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Figure 16. Colour maps of 〈1 − cos (4φ)〉 and 〈sin (2φ)〉 in the (Pe, ke) space for (a,c) an imaginary value of
ke and (b,d) a real value of ke. The black line marks the equation Pe = |ke|−3.

to first order in the particle concentration, the particle stress can be written as

σ ′
xy = cηγ̇

(
A
2

〈1 − cos 4φ〉 + B + C
2Pe

〈sin 2φ〉
)

, (4.6)

where A, B and C are dimensionless coefficients (Rallison 1978) and c is the solid fraction.
The first two terms on the right-hand side of (4.6) are due to the hydrodynamic stress acting
on each platelet. The third term is the contribution of Brownian fluctuations to the particle
stress.

As seen in § 3.2, slip has a strong influence on the time-averaged orientation of the
particle, with consequences on the statistical quantities 〈1 − cos 4φ〉 and 〈sin 2φ〉 in (4.6).
A map quantifying how 〈1 − cos 4φ〉 and 〈sin 2φ〉 vary in the (Pe, ke) space is shown
in figure 16. For Pe � |ke|−3, the quantities 〈1 − cos 4φ〉 and 〈sin 2φ〉 are practically
independent of whether ke is real or purely imaginary. The term 〈1 − cos 4φ〉 becomes
significantly larger than 〈sin 2φ〉 for small Pe. Thus, the effective viscosity depends
increasingly on 〈1 − cos 4φ〉 as Pe decreases, in agreement with the theoretical results
of Hinch & Leal (1972) and Leahy et al. (2015) (for elongated particles with λ = 0) and
the experimental results of Del Giudice & Shen (2017) for graphene oxide.

For Pe � |ke|−3, hydrodynamic stresses become dominant. Figure 16 indeed reveals a
strong dependency of 〈1 − cos 4φ〉 and 〈sin 2φ〉 on ke in this region. Since the prefactor of
〈sin 2φ〉 tends to zero for large Pe, here we focus on analysing the term 〈1 − cos 4φ〉. The
leading-order values of 〈1 − cos 4φ〉 in this region can be estimated directly by using the

919 A1-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

32
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.327


C. Kamal, S. Gravelle and L. Botto

probability distributions calculated for Pe → ∞ in § 3.2:

〈1 − cos 4φ〉 =
{

4ke/(ke + 1)2 if ke ∈ R,

1 − cos 4φc if ke ∈ iR.
(4.7)

For |ke| → 0, 〈1 − cos 4φ〉 tends to 4ke and 8|ke|2 for real or purely imaginary ke,
respectively. For λ/a = 0 and λ/a → ∞, 〈1 − cos 4φ〉 can be estimated in terms of the
geometric aspect ratio k. For λ = 0, ke ∝ k, and so 〈1 − cos 4φ〉 ∝ k. For λ/a → ∞
we have ke ∝ i

√
k, giving again 〈1 − cos 4φ〉 ∝ k. Thus, quite interestingly, the limits

λ/a → 0 and λ/a → ∞ yield a similar scaling relationship of 〈1 − cos 4φ〉 with k.
For λ = λc, we have ke = 0 and therefore 〈1 − cos 4φ〉 = 0. When 〈1 − cos 4φ〉

vanishes, the particle stress reduces to σ ′
xy = cηγ̇ B. If the variation of B on λ is sufficiently

small in the neighbourhood of λc (compared with A 〈1 − cos 4φ〉), then the value λ = λc
will correspond to a local minimum in the σ ′

xy versus λ curve, because A 〈1 − cos 4φ〉 ≥ 0
for all values of λ. Thus, the decrease in the value of σ ′

xy with λ may not be always
monotonic for large Pe.

5. Discussion

We have shown that the classical Bretherton’s equation of motion can describe the
rotational dynamics of thin rigid particles with surface slip, as long as an effective aspect
ratio ke is introduced to account for the hydrodynamic slip length λ in addition to the
particle’s shape. For a fixed geometric aspect ratio b/a and a small slip length λ < b (with
b the platelet’s half-thickness), ke is real, and an increase of λ simply leads to a decrease
of ke. However, when λ is sufficiently large in comparison with b, ke becomes a purely
imaginary number. In the limit of infinite Péclet numbers, a platelet with an imaginary ke
does not perform the periodic orbits predicted by the classical theory of Jeffery. Instead,
the platelet’s orientation fluctuates in time around a small angle φc with respect to the flow
direction. We have identified a critical Péclet number Pec above which such stabilisation
occurs, and below which rotations due to Brownian fluctuations appear. The numerical
results suggest Pec ∼ 0.45|ke|−3.4 for |ke| � 0.1, and Pec ∼ 0.02|ke|−4.8 for |ke| > 0.1,
with a smooth transition between the two scalings. An alternative critical Péclet number
Pem, based on balancing the orders of magnitude of the convective and diffusive terms in
(2.1), predicts the hydrodynamic stresses acting on the platelet to be dominant with respect
to the Brownian stresses when Pem = min(|k−3

e (λ = 0)|, k−3
e (λ)|).

We find a negligible difference between the rotational behaviour of slip and no-slip
platelets if Pe is smaller than PeI ≈ 0.1Pem. In this regime, Brownian stresses dominate
over hydrodynamic stresses in the regime where slip effects are important. For Pe smaller
than Pec, Brownian fluctuations force the platelet with slip to complete full rotations,
but with a period larger than the one expected in the no-slip case. Finally, we examined
the effect of stable alignment on the orientational contribution to the effective viscosity
by analysing how the term 〈1 − cos 4φ〉 changes due to slip. At large Pe, we found that
this term does not decrease monotonically with λ but instead attains a minimum value at
λ = λc.

Some assumptions in our mathematical model require a discussion in view of the
results. One aspect regards the rigidity of the particle, as thin particles are intuitively
expected to be flexible. Assuming that the bending rigidity follows B ∼ Eb3 with E the
Young’s modulus (Poot & van der Zant 2008), where E ∼ 1011 Pa for pure graphene
(Lindahl et al. 2012), for platelets aligned almost parallel to the direction of the shear
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flow, buckling should occur when ηγ̇ (a/b)2/E ≥ 1 (Lingard & Whitmore 1974; Kamal
et al. 2020). Using the typical shear stress γ̇ η ∼ 104 Pa for which slip effects become
important (§ 4.4), one finds that the platelet behaves as rigid as long as the geometric aspect
ratio k ≥ 10−7/2 � 0.0003. Therefore, the assumption of rigidity in our work may not be
very restrictive for particles whose aspect ratio is not too extreme. Our results have been
obtained for a 2-D geometry, which strictly speaking corresponds to a nanoplatelet with an
infinite extent in the direction of the vorticity vector. Real nanoplatelets have, of course,
a finite lateral size, with a shape that can vary considerably, from irregular ‘pentagon’
plate-shape (Del Giudice et al. 2018) to 2-D ‘ribbon’-like (Hao et al. 2008)). However, it
can be shown by comparing the hydrodynamic torque exerted on a 2-D plate-like particle
with that on a 3-D disk that these different geometries lead to values of the effective aspect
ratio ke that are very similar to each other (Kamal et al. 2020). Therefore, the rotational
dynamics is expected to be qualitatively similar for different plate-like objects, as long as
the platelet’s extent in the vorticity direction is not too small. Finally, a 3-D object also
possesses extra degrees of freedom, i.e. its rotation is not confined to a plane. However,
as discussed by Leahy et al. (2015) and Hinch & Leal (1972), the qualitative features of
the rotational dynamics of a particle whose motion is confined to a plane are expected
to be similar to those of a particle whose motion is in the full 3-D space. Therefore, we
expect our model to have relevance to realistic systems. Additional insights would require
the solution of full 3-D trajectories. MD results we have carried out with plate-like slip
molecules rotating in the full 3-D space reveal that the 2-D approximation used here give
rotational statistics that are comparable in trend and magnitude – with reasonably good
approximation – to the ones computed from MD, giving us confidence in the value of the
2-D approximation employed here (Gravelle, Kamal & Botto 2021).

To illustrate how our theoretical results could be applied in practice, in § 4 we
have considered geometric and slip parameters relevant to graphene and other 2-D
nanomaterials. By calculating the values of Pem and Pec for typical values of k, b and
λ, we have found that stresses γ̇ η of the order of 104 Pa are required for hydrodynamic slip
to affect quantitatively the rotational dynamics.

The use of fluid more viscous than water would allow for such large shear stress values.
For instance, some ionic liquids have a viscosity approximately three orders of magnitude
larger than that of water, while also showing slip length as large as 100 nm on graphene
(Voeltzel et al. 2018). The use of very viscous fluids would have the further benefit
of reducing the possibility of hydrodynamic instabilities and turbulences. Large viscous
stresses may be accompanied by heating, but one could account for this effect by evaluating
the viscosity and the slip length at the corresponding temperature.

An experimental verification of our results is not without challenges. For example,
surface chemical modification of graphene nanoparticles is generally needed to obtain
good dispersion of graphene in water, and when functionalisation is applied to the planar
region of the platelet, the slip length is expected to be reduced (Wei, Peng & Xu 2014).
Particles for which the functionalisation is limited to the particle edges may not have this
problem (Park et al. 2017; Aliyeva et al. 2019), and could be more suitable to confirm the
theory. Detecting rotation may not be trivial. For example, techniques that measure the
average orientation of the particles may not enable one to clearly distinguish between a
suspension in which very slender particles rotate but are oriented in a time-average sense,
from a suspension in which the particle orientation angle is constant, since in both cases
φ is expected to be small. Because the occurrence of a stable orientation depends only on
the ratio λ/b, and not on the particle length, a solution could be to use plate-like particles
that are thin (b ∼ 1 nm) but not too long. For a given shear stress the ideal particle to
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Figure 17. Comparison of our theory (for θ = π/2) with experimental results of Reddy et al. (2018) for χ and
�n′′/�n′′

max (symbols), as defined in (5.1a,b). The different lines correspond to the following model parameters:
functionalised graphene plateletes (FGS) with ke ≈ 0.016 (no-slip) and ke = 0.035i (slip with λ = 20 nm);
slightly oblate nanospheroids (NP) with b/a = 0.55, for ke ≈ 0.55 (no-slip) and ke ≈ 0.46 (slip with λ/b =
0.21).

evidence slip effects would be the shortest particle whose value of a is in the ‘moderate
slip effects’ region, since this choice would give the largest variation in ke due to slip, and
thus the largest variation in φ. With this choice of particle length, the different rotational
behaviours of slip and no-slip particles should be particularly evident.

In experiments, different statistical measures of particle orientation could be adopted,
and some of them may be more sensitive to slip than others. To illustrate this dependence
and the impact slip might have on orientational statistics that are evaluated in practice, we
discuss two quantities that are usually measured in rheo-optical studies (Frattini & Fuller
1986; Fuller 1995; Vermant et al. 2001; Reddy et al. 2011): the average orientation angle
χ and the degree of alignment �n′′/(�n′′

max), defined as

χ = 1
2

arctan

( 〈
sin2 θ sin 2φ

〉
〈
sin2 θ cos 2φ

〉
)

,
�n′′

�n′′
max

=
√〈

sin2 θ sin 2φ
〉2 + 〈

sin2 θ cos 2φ
〉2

.

(5.1a,b)
Figure 17 compares our theoretical prediction for χ and �n′′/(�n′′

max) (in the
case θ = π/2) to the experimental data of Reddy et al. (2018). The experiments are
for dilute polydisperse suspensions of functionalised graphene platelets, with average
half-length a = 250 nm and half-thickness b(n = 5) = 0.86 nm, and slightly oblate
gold nanospheroids, with b/a = 0.55 and lengths of either 170 nm or 290 nm. The
functionalised graphene sheets were dispersed in mineral oil (viscosity η = 100 mPa s)
and the oblate gold spheroids were dispersed in a glycerol/water mixture at 99.5 % glycerol
(η = 1.2 Pa s). The theoretical values (lines) are for particles having the same average
aspect ratio as in the experiments, and considering the limiting cases of λ = 0 and
λ = 20 nm (figure 17). For large Pe, the functionalised graphene platelets where found
experimentally to converge to a finite angle χ = 5◦, instead of approaching 0 (as one
would expect for a platelet with a no-slip boundary in the limit Pe → ∞). The plot shows
that our theory raises the χ − Pe curve closer to χ = 5◦ at large Pe, although probably a
value λ = 20 nm is larger than the one occurring in the experiment. Importantly, the plots
show that for the slightly oblate spheroids, slight changes in ke due to slip makes only a
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slight change to χ (figure 17), but a more marked change in �n′′/(�n′′
max), suggesting that

the second quantity is a more sensitive measure of slip effects.
We suggest that experiments similar to those of Reddy et al. (2018) could be done in

which both χ and �n′′/(�n′′
max) are compared for a range of slip lengths and values

of particle thickness. Rather than plotting χ or �n′′/(�n′′
max), one could also plot〈

sin2 θ sin 2φ
〉
/2 and (2 − 2

〈
sin2 θ cos 2φ

〉− 〈
sin2 θ sin 2φ

〉2
)/4. For small angles these

quantities approximate the mean 〈φ〉 and variance
〈
φ2〉, and should therefore have a marked

variation in the neighbourhood of λ/b = 1 when plotted against λ/b. Another approach to
evidence the effect of slip would be to conduct steady-state viscosity measurements (White
et al. 2015; Del Giudice & Shen 2017), by focusing on the high-Pe regime where the effect
of slip is maximum.

Our theory is not limited to nanometrically thin particles. Slip lengths of order 1 μm
could be achieved for example, through the creation of a wetted/gas layer over the particle’s
surface (Lee, Charrault & Neto 2014), depletion layers (Tuinier & Taniguchi 2004; Fan,
Dhont & Tuinier 2007) or surface nanobubbles (Neto et al. 2005; Yang et al. 2008). This
raises the possibility of conducting experiments with relatively large plate-like particles
whose dynamics can be accessed optically.

Applications of the theory developed in the current paper may include: (i) the
development of rheological models for 2-D nanomaterials in suspension (e.g. graphene
liquid crystals); (ii) the design of experimental methods to measure the slip properties
of plate-like particles or macromolecules, which could yield insights into molecular
interactions at the solid–liquid interface; (iii) the use of hydrodynamic slip to favour
the flow of 2-D nanomaterials in narrow channel (e.g. to avoid clogging). Regarding (i),
because we have shown that slip plate-like particles have a smaller propensity to rotate in
shear flow than no-slip particles, and thus interactions with other particles are more limited
than in the no-slip case, theories developed for the dilute case could also apply to more
concentrated systems, as pointed out previously for ring-shaped particles (Singh et al.
2013; Borker et al. 2018). Finally, alignment is an essential ingredient to impart superior
properties to nanocomposite materials. Surface modifications producing substantial slip
could be used to align particles produced from the exfoliation of 2-D layered materials,
which can be easily produced on mass scales by liquid-phase exfoliation (Botto 2019;
Gravelle et al. 2020; Salussolia et al. 2020) and have therefore potential for applications.
Because the ideal infinite Péclet number regime may not be achievable in practice, our
results provide theoretical guidelines for deciding in which cases slip will have a dominant
effect on the alignment of plate-like nanoparticles in the presence of Brownian motion.
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