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Abstract

Empathic accuracy (EA) is the ability to accurately understand another person’s thoughts and feelings,
which is crucial for social and psychological interactions. Traditionally, EA is assessed by comparing a
perceiver’s moment-to-moment ratings of a target’s emotional state with the target’s own self-reported
ratings at corresponding time points. However, misalignments between these two sequences are common
due to the complexity of emotional interpretation and individual differences in behavioral responses.
Conventional methods often ignore or oversimplify these misalignments, for instance by assuming a fixed
time lag, which can introduce bias into EA estimates. To address this, we propose a novel alignment
approach that captures a wide range of misalignment patterns. Our method leverages the square-root
velocity framework to decompose emotional rating trajectories into amplitude and phase components.
To ensure realistic alignment, we introduce a regularization constraint that limits temporal shifts to
ranges consistent with human perceptual capabilities. This alignment is efficiently implemented using a
constrained dynamic programming algorithm. We validate our method through simulations and real-world
applications involving video and music datasets, demonstrating its superior performance over traditional
techniques.

Keywords: cognitive study; functional data analysis; regularization; square root velocity function; warping function

1. Introduction

The ability to perceive and understand the emotions and thoughts of others, broadly referred to as
empathy, plays an important role in human society by facilitating cooperation and social cohesion
(De Waal, 2008). While empathy encompasses multiple components, including sharing in another’s
emotional experience and concern for others, empathic accuracy (EA) refers to the specific skill of
accurately inferring what another person is thinking and feeling in a given moment (Ickes, 1997). EA
is typically measured behaviorally by comparing a perceiver’s rating of a target’s emotional state to the
target’s own self-reported emotional experience. Given its importance to social interactions and quality
of life, EA has become a focal point of research across various fields. For example, in social science,
EA’s role was examined in developing and maintaining healthy social relationships (Sened et al., 2017).
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Figure 1. Example of real-time EA data collection procedure.

In clinical research, EA has been used as an index to differentiate individuals with certain psychiatric
disorders from healthy controls (Lee et al., 2011). However, the validity of these studies critically depends
on the quality and accuracy of EA measurement.

There are two types of studies commonly used to examine EA. One is the non-real-time EA study
design, where perceivers provide their response to stimuli after the stimuli have been conducted. The
outcome of their overall empathy can be the categories of emotion (e.g., happiness, anger, sadness, etc.)
or the extent of emotion on a Likert-type scale (Ekman, 1992; Schweinle et al., 2002). The other EA
study design is the real-time assessment of perceivers’ empathy on an audio or video stimuli without
pausing (i.e., the recorded affective states of targets) (Jospe et al., 2020; Zaki et al., 2008), where perceivers
provide continuous feedback on their perceptions of the target’s emotional state while the stimuli is
unfolding. Illustrated in Figure 1, social targets varying in trait emotional intensity were videotaped
while discussing emotional autobiographical events. Perceivers watch these videos and report the
perceived emotions every two seconds using, for example, a 9-point Likert scale (e.g., 1 = extremely
negative; 9 = extremely positive). Compared with the non-real-time EA studies, the real-time design
provides more granular information on the dynamic nature of empathy in everyday interactions and
detects subtle changes in emotional responses that might be missed in non-real-time assessments.

In this article, we focus on analyzing data from real-time EA study designs. For such designs, correla-
tional analysis (Mackes et al., 2018; Zaki et al., 2009, among others) is a predominant statistical method
for examining EA. This approach computes a monotonic transformation of the Pearson correlation
between the observed perceivers’ responses with targets’ self-reported emotion rating. Linear models
have also been introduced to investigate the influence of additional factors or unobserved variables
on EA. For example, Tabak et al. (2022) proposed a latent variable model that decomposes EA into
three separate dimensions: bias, discrimination, and variability. Bias measures the systematic difference
between perceiver’s ratings and target’s ratings; discrimination measures perceiver’ sensitivity in relation
to target’s ratings; and variability measures the variance of random error in perceiver’s perceptions.
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Figure 2. Illustration of different relations between a target’s rating, a perceiver’s latent rating, and the perceiver’s observed rating.

Discrepancy A denotes the difference between a target’s rating and a perceiver’s observed rating. Disagreement B captures the

inconsistency between target’s rating and perceiver’s latent rating, which is the true focus of EA. Misalignment C refers to the

divergence between perceiver’s observed rating and their latent rating, often due to distortions in expressing their internal judgment.

Discrepancy A can arise from both Disagreement B and Misalignment C. Most conventional EA methods mistakenly assess Discrepancy

A, thereby conflating measurement error with genuine empathic inaccuracy.

A key assumption in traditional correlational and linear model analyses of EA is that perceivers’ and
targets’ rating sequences are perfectly aligned—that is, a perceiver’s rating at a given time point is directly
compared to the target’s rating at that same moment. However, this assumption often fails in practice
due to the complex cognitive processes involved in interpreting another person’s emotional state and
the time required to produce a behavioral response. Scherer’s multi-stage model of emotion decoding
Scherer (2003) highlights how perceivers actively interpret dynamic cues such as facial expressions,
gestures, and vocalizations to infer emotions, a process that naturally introduces temporal delays.
Additionally, the act of recording a response, such as pressing a key or moving a joystick, can vary
in duration, further contributing to misalignment. To address these issues, we posit that each perceiver
has an underlying latent rating that reflects their true empathic understanding, independent of these
timing distortions.

Figure 2 illustrates the relations between a target’s rating, a perceiver’s latent rating, and the perceiver’s
observed rating. Discrepancy A, the difference between the target’s rating and the perceiver’s observed
rating, can arise from two sources: Disagreement B, which reflects the true empathic inaccuracy between
the target’s rating and the perceiver’s latent rating, and Misalignment C, which captures the temporal
mismatch between the perceiver’s latent and observed ratings. Crucially, EA is intended to measure a
perceiver’s ability to correctly infer another person’s emotional state—that is, to quantify Disagreement
B—not the speed or timing of their response. A perceiver who accurately identifies a target’s emotion,
even with a slight misalignment, should not be penalized as less empathically accurate. However,
traditional EA methods often ignore Misalignment C, relying solely on comparisons between the target’s
and perceiver’s observed ratings (i.e., measuring Discrepancy A). This could potentially lead to biased
estimates of EA and inflated variability due to even minor timing discrepancies. Our work addresses
this limitation by explicitly correcting for Misalignment C, thereby yielding more accurate estimates of
Disagreement B and preserving the psychological validity of EA assessments.

Note that common approaches to address misalignment in EA studies involve introducing a fixed
response delay, assuming consistent emotional expression patterns across individuals. This method
shifts perceivers’ response time series backward by a predetermined amount (Huang et al., 2015;
Khorram et al., 2019; Nicolle et al., 2012). However, Scherer (2003) countered this assumption, arguing
that emotional expressions are diverse and context-dependent. In addition, a review of event-related
potential (ERP) studies spanning 40 years found that emotional stimuli elicit differences in neural
processing speed based on valence and arousal level Olofsson et al. (2008). The findings suggest that
stimuli with higher motivational relevance receive priority in neural processing. Consequently, the
misalignment between perceivers’ and targets’ ratings is more complex than a simple, fixed time shift
applied to all participants. It would be inappropriate to apply a fixed time delay in EA studies, as it fails
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Figure 3. (a) An example of misaligned rating sequences between a perceiver and a target. The solid red line represents the target’s

ratings and the black dashed perceiver’s ratings. (b) Aligned ratings for the perceiver. The green dashed line shows the 6-second delay

adjustment, and the purple dashed line shows the aligned ratings using the penalized SRVF representation.

to account for the variability in emotional processing across different moments. Figure 3a illustrates
an example of misalignment between perceiver and target ratings in an EA study (Devlin et al., 2014).
While a delay in perceiver responses is evident, it is not the sole cause of misalignment. For instance,
the perceiver’s prolonged sustained response from 10 to 15 seconds, in contrast to the target’s brief dip
at 10 seconds, highlights the complex nature of these discrepancies.

To accommodate a wider range of misalignment patterns beyond simple time shifts, time series
alignment methods aim to preserve key structural features in the data, such as peaks and valleys,
ensuring more accurate analysis. One widely used technique is dynamic time warping (DTW), which
aligns time series by stretching or compressing the time axis to match similar patterns (Berndt &
Clifford, 1994; Sakoe & Chiba, 1978). However, DTW can sometimes introduce distortions by forcing
unnatural alignments between sequences (Marron et al., 2015; Srivastava et al., 2011; Zhao et al., 2020).
To mitigate this, smoothness penalties have been proposed (Ramsay & Silverman, 2005). However, it
may also lead to biased alignments (Guo et al., 2022). Alternatively, landmark-based methods align time
series by identifying and matching distinctive features like peaks and valleys (Kneip et al., 2000). While
potentially effective, these methods are highly sensitive to noise and may lose important information
due to the discretization of continuous functions into a limited set of landmarks (Marron et al., 2015;
Wang & Gasser, 1997). Moreover, such approaches are ill-suited for real-time emotion rating data in EA
studies, where there is no clear consensus on the number or the location of meaningful landmarks.

Due to the high-frequency nature of the observed EA rating data, we treat each observed curve as
a sample path of a continuous function in the time domain, i.e., functional data. Such an approach of
representing high-frequency data as functional is common in the literature (Kokoszka & Reimherr,
2017). From this perspective, misalignment between two observed ratings could be explained by a
smooth warping function that distorts the time domain of the perceiver relative to that of the target.
Hence, the target and the perceiver’s rating functions can be aligned by estimating this smooth warping
function from the observed data, for example, by minimizing an L

2 distance between the target and the
estimated aligned response function (Ramsay & Li, 1998). Recently, the square root velocity function
(SRVF) representation has been employed for aligning functions (Srivastava et al., 2011), and has been
increasingly applied across various fields, including biology, medicine, geology, and signal processing
(Bharath et al., 2018; Laga et al., 2014; Mitchell et al., 2025; Su et al., 2014; Zhao et al., 2020). As we will
review in Section 2, this SRVF representation leverages the Fisher–Rao metric’s invariance property, and
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enables a consistent separation of horizontal component (also known as phase) from vertical component
(also known as amplitude) of functions, making visualization and summarizing variability in functional
datasets more effective (Xie et al., 2017).

Building upon the SRVF-alignment framework, this article introduces a novel penalized SRVF-based
alignment method for unsynchronized rating sequences in EA studies. Our approach introduces both
practical and methodological innovations. Practically, it is the first method in EA research to accommo-
date a wide range of misalignment patterns (e.g., delays, compressions, and stretches), moving beyond
the limitations of fixed-delay adjustments. Methodologically, we incorporate a novel penalty term
that constrains temporal shifts within bounds consistent with human perceptual capabilities, thereby
preventing excessive or unrealistic alignments (Gunes & Pantic, 2010; Levenson, 1988; Mariooryad &
Busso, 2014; Ringeval et al., 2015). This is important because not all temporal discrepancies should be
corrected; some may reflect genuine empathic inaccuracy rather than misalignment. To address this,
our penalized alignment method selectively adjusts only short-term misalignments—those occurring
within a few seconds—treating them as Misalignment C (as shown in Figure 2). In contrast, larger
discrepancies, which may indicate a lack of empathic understanding (Disagreement B), are preserved.

To highlight the contribution of our method, Figure 3b compares the proposed penalized SRVF
method with a fixed 6-second delay adjustment. Although the 6-second delay adjustment aligns the
peaks between the two sequences, it, unfortunately, eliminates the brief 5-second sustain at the start of
the perceiver’s sequence, which originally matched up with the target’s self-rating sequence. In contrast,
the proposed penalized SRVF-based method has aligned the peaks while keeping the initial sustain
in the perceiver’s sequence in place, demonstrating its flexibility in handling complex misalignment
patterns. By enabling a more precise alignment, our method yields a more accurate estimation of EA,
avoiding the pitfalls of underestimation when misalignment is ignored and overestimation when no
penalty is applied.

The remainder of the article is structured as follows. Section 2 provides background information on
EA and existing alignment methods. The proposed methodology is detailed in Section 3. To evaluate
the proposed method, Section 4 presents a simulation study and comparisons to alternative approaches.
Real-world applications of assessing EA in social and music contexts are explored in Section 5. Finally,
Section 6 offers a discussion of the findings and concludes the article.

2. Background

2.1. Elastic functional data analysis
Functional data often exhibit both vertical and horizontal differences, where the latter is known as
phase variation and characterized by misaligned geometric features such as peaks and valleys in the
time domain (Tucker et al., 2014; Wallace et al., 2014; Wu & Srivastava, 2014). Let x,a,y ∶ [t0,tT] → R

be the function of the target rating, the function of the perceiver’s latent rating, and the function of the
perceiver’s observed rating, respectively. To account for both vertical and horizontal difference between
these two functions, we assume a data generation process that y(t) = f (x(t̃),ε(t̃)), where t̃ = ψ(t),
f ∶R2 →R is a link function, ψ ∶ [t0,tT]→ [t0,tT] is a time warping function, ○ denotes the composition
operator, and ε is a random noise function. Essentially, the process of generating the perceiver’s observed
rating y is decomposed into a transformation step and a warping step, as depicted in the following
expression (2.1).

x a = f (x,ε) y = a○ψ.Transform Warp (2.1)

Note that in this transformation step, the link f matches the target function x at a time point t to
the perceiver’s latent function a at the same time t. This correspondence is distorted by a warping
function ψ in the second warping step, so the target function x at time t now is matched to the perceiver’s
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observed function y at ψ(t). The warping function ψ is usually assumed to belong to the set of smoothing
functions ΓI , where

ΓI = {ψ ∣ ψ(t0) = t0,ψ(tT) = tT, ψ′(t) exists ,ψ′(t) ≥ 0, γ = ψ−1exists}.

Relating this process to Figure 2, the transformation step models the Disagreement B, while the
warping step models the Misalignment C, and the Discrepancy A accumulates both steps together. In
the context of measuring EA, the perceiver’s latent function a represents a rating from the perceiver that
is aligned with x, i.e., that can be compared with the target x point-to-point in time, and a measure of EA
is a similarity measure between x and a.

The data generation process (2.1) motivates the following workflow for quantifying EA. Because
y = a○ψ, we can write a = y○γ, where the inverse warping function γ = ψ−1 ∈ ΓI is assumed to exist since
ψ ∈ ΓI . Hence, we first conduct an alignment step to obtain an estimated inverse warping function γ̂ and
an estimated latent function ŷ = y ○ γ̂ from the observed target and perceiver functions x and y. Then,
we could estimate EA by a similarity measure between x and ŷ.

Since misalignment between two functions is inherently related to the difference in how fast they
move, a common way to conduct the alignment step is to compare how these functions change over
time, which is mathematically described by their corresponding first derivative. Therefore, the general
idea of the SRVF-based alignment methods is to minimize the distance between the first derivative of
the target x and the estimated function ŷ. We briefly review the formulation of the SRVF representation
here, where more details can be found in Srivastava & Klassen (2016).

For any absolute continuous function f ∶ [t0,tT] →R, the SRVF of f is the function qf ∶ [t0,tT] →R,
qf (t) = sign{f ′(t)}

√
∣f ′(t)∣, where f ′(t) = df /dt. As described in the previous paragraph qf , this

SRVF is defined based on the first derivative f ′; the specific form of qf (t) is motivated to keep its
norm unaffected by the warping, which is useful to separate a function into its amplitude and phase
component (Srivastava & Klassen, 2016). Specifically, if f is warped by γ, the corresponding SRVF of
f ○ γ becomes qf○γ = (qf ○ γ)

√
γ′, but the squared L

2 norm is preserved ∥(qf○γ)∥2
2 = ∥qf ∥2

2. Let qx and
qy be the SRVFs of the target and perceiver functions, respectively. Then, the SRVF-based alignment
method aims to find an optimal inverse warping function that minimizes this discrepancy, i.e.,

γ̂u = arg inf
γ∈ΓI

∥qx −(qy,γ)∥2
2, (2.2)

where we write qf○γ = (qf ,γ) to ease the notation. The optimal γ̂u is expected to align two functions
so that the transformed function ŷ = y○ γ̂u is aligned with x. The subscript u stands for “unpenalized,”
meaning the optimal γ̂u is not subject to any other constraint than being in the space ΓI . This unpenalized
alignment has been implemented in the fdasrvf packages (Tucker, 2025) in both R and Python. After
conducting the alignment step, in addition to the EA measure obtained by computing a similarity metric
between ŷ and x, we can also quantify the amount of warping made by each perceiver in relative to
the target by a Fisher–Rao phase distance between the estimated warping γ̂u and the identity warping
γid(t) = t as

dp(x,y) ≈ cos−1(∫
1

0

√
γ̂′u(t) dt), (2.3)

which is a proper metric distance on the set ΓI (Srivastava & Klassen, 2016).

2.2. Unpenalized SRVF leads to over-alignment
While the SRVF representation leads to several theoretical benefits, one main disadvantage of the
unpenalized SRVF for studying EA is that the estimated perceiver function y○ γ̂u(t)may be overaligned
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Figure 4. Example target and perceiver’s emotion ratings of Devlin et al. (2014). (Left): target x (solid), perceiver’s observed response

y (dash), and estimated perceiver’s response ŷ = y ○ γ̂ (dot dash). (Right): estimated warping function γ̂.

with the target x and thus could differ from the perceiver’s latent function a. In other words, the
unpenalized SRVF not only corrects for the Misalignment C in Figure 2, but also potentially removes
inherent temporal Disagreement B.

Figure 4a shows one example from the study in Devlin et al. (2014) demonstrating the result of
the previous SRVF alignment obtained from (2.2). In this study, the continuous ratings were recorded
for 108 seconds and averaged over 2-second epochs. The alignment is obtained by using their SRVF
representations qx, qy, and (qy,γ̂u). The estimated inverse warping function γ̂u is plotted in the right
panel of Figure 4a. When γ̂u appears above the 45-degree line, it implies that the perceiver’s response
is delayed compared to the target, whereas γ̂u below the 45 degree line indicates that the perceiver’s
response precedes the target. While it seems reasonable to expect that the perceiver’s perception of a
particular emotion would lag behind the target’s actual expression of that emotion, there is evidence
to suggest that people can make anticipatory perceptual judgements, especially when the stimuli are
continuous and dynamic. For example, Thornton and Tamir Thornton & Tamir (2017) found that
perceivers attend to emotion regularities and can predict up to two emotional transitions into the future.
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Koster–Hale and Saxe Koster-Hale & Saxe (2013) argued that the brain actively generates expectations
about others’ emotions, thoughts, and behaviors (so not just passively reacting to them). They refer to
this as “predictive coding.” In Figure 4a, the peak of the perceiver’s response around t = 45 seconds
is considered as a response preceding the target’s self-rating around t = 65 seconds, and it is aligned
accordingly by the unpenalized SVRF method.

Therefore, from the left plot of Figure 4a, the unpenalized SRVF method misaligns the peak of the
perceiver’s response, occurring at approximately t = 40 seconds, with the target’s small peak at around
t = 65 seconds, which is likely just noise. This alignment suggests an improbable scenario, where the
perceiver predicts the target’s emotional change 25 seconds in advance. Psychological research has
consistently shown that reaction time-delay is limited to a few seconds: 0.5 to 4 seconds (Levenson,
1988), 3 to 6 seconds (Nicolle et al., 2012), 2 to 11 seconds (Mariooryad & Busso, 2014), and 0.48
to 6.24 seconds (Ringeval et al., 2015). By disregarding this inherent limitation, unpenalized SRVF
alignment overestimates synchronization between rating sequences, potentially leading to an unrealistic
shape of the estimated warping function that exceeds the human exception bounds, and hence biased
estimations of perceiver EA levels.

3. Method

3.1. Penalized elastic functional alignment
Penalized alignment has been proposed to control the amount of alignment (Guo et al., 2022; Mitchell
et al., 2025; Wu & Srivastava, 2011) or to achieve smooth alignment (Srivastava & Klassen, 2016). To
address the over-alignment issue inherent in the unpenalized SRVF method, an existing solution is to
employ a penalized alignment approach by incorporating a penalty term into the unpenalized alignment
optimization function (2.2). This results in the following objective function:

∥qx −(qy,γ)∥2
2+λR(γ), (3.1)

where γ is the inverse warping function, λ > 0 is a penalty parameter, and R(γ) is a penalty function.
Several penalty functions have been suggested in the literature, such as R(γ) = ∥

√
γ′ − 1∥2

2 and
R(γ) = cos−1(⟨

√
γ′,1⟩), which are used to measure the differences between the SRVFs of γ and the

identity warping ψid(t) = γid(t) = t by the squared L
2 norm and the arc length, respectively, where 1 is

the constant function with value 1 and ⟨⋅,⋅⟩ denotes an inner product operator (Srivastava & Klassen,
2016).

The aforementioned penalty functions are inappropriate for current EA research. Primarily, it is
challenging to select an optimal data-driven tuning parameter λ. Common cross-validation procedures
that split the data into independent training and test sets do not preserve the geometric features of the
data. Second, as reviewed in Section 2.2, psychological research indicates that misalignment in perceiver
ratings occurs within a specific temporal window of a few seconds. Existing penalty functions, however,
focus on controlling the overall amount of warping, which does not directly translate to constraining
alignment at each individual time point as required for EA studies.

To address these limitations, we introduce a novel penalized alignment method that directly
incorporates the established temporal boundary for maximum perceiver misalignment as a penalty
term. Specifically, we construct the optimal inverse penalized warping function

γ̂p = arg inf
γ∈ΓI

∥qx −(qy,γ)∥2
2,

s.t. sup
t
∣γ(t)−γid(t)∣ ≤ ν, (3.2)

where ν is the predefined upper limit of warping functions, corresponding to the maximum delay or
advance observed in the perceivers’ responses. Although the supremum norm limit ν plays the role
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of a tuning parameter, in practice, we often have prior knowledge about its value based on the research
context, unlike the tuning parameter λ in the existing approach (3.1). Nevertheless, it is useful to perform
a sensitivity analysis of the proposed method over a reasonable range of ν. We denote γ̂p as the estimated
inverse warping function of penalized alignment, where the subscript p stands for “penalized.” As ν → 0,
γ̂p → γid, so that no warping is allowed. On the other hand, if ν ≥ sup ∣γ̂u − γid∣, the constraint in (3.2)
is inactive, then γ̂p = γ̂u. Consequently, any ν smaller than sup ∣γ̂u − γid∣ induces a shrinkage effect,
pulling the unpenalized warping towards the identity warping function, akin to penalized regression.
This interpretable penalty mechanism enables our proposed penalized alignment to mitigate the risk of
over-alignment, resulting in more plausible warping estimates and aligned responses.

We note that under the constraint (3.2), the Fisher–Rao phase distance dp defined by (2.3) is still valid
to measure the difference between the phase of two functions, with the exception that γ̂u is replaced
by γ̂p. The proof of Lemma 3.1 is given in Section S1 of the Supplementary Material.

Lemma 3.1. The Fisher–Rao phase distance between x and y is estimated by dp(x,y) =
cos−1 (∫ 1

0 (
√

γ̂′p(t)dt).

3.2. Computing the penalized SRVF alignment
A discrete approximation for the solution of the optimization problem specified in (3.2) can be found
by using the following dynamic programming algorithm (DPA) (Srivastava & Klassen, 2016). Assume
both the SRVF functions of the target and the perceiver qx and qy are observed at T + 1 time points,
t0 < t1 < t2 < ⋯ ≤ tT . Without loss of generality, we assume that t0 = 0 and tT = 1, and that these time
points are equally spaced, i.e., tm = m/T for m = 0, . . . ,T. The inverse warping function γ matches the
point (qy,γ) with the point qx, so γ can be viewed as a graph with a collection of points (tm,γ(tm)),
from (0,0) to (1,1) in R

2. We assume that within each interval [tm,tm+1], the function γ(t) can be
approximated by a straight line, so the final estimate for γ̂ is a piecewise linear path. Since γ is non-
decreasing, the slope of this graph is always strictly between 0 and 90 degrees. Furthermore, the cost
function in (3.2) can be approximated by

∫
1

0
{qx(t)−qy (γ(t))

√
γ′(t)}

2
dt ≈

T
∑
m=0

∫
tm+1

tm
{qx(t)−qy (γm(t))

√
γ′m(t)}

2
dt, (3.3)

where γm(t) is a straight line connecting (tm,γ(tm)) and (tm+1,γ(tm+1)). The function on the right-
hand side of (3.3) is additive over the graph, and hence enables the use of DPA. Our goal then is to find
an optimal linear piecewise path from (0,0) to (1,1) inR

2 that minimizes (3.3), subject to the constraint
that supt∈{t1,...,tT}

∣γ(t)− t∣ ≤ ν. Using DPA, we can construct this path recursively as follows.
Given a feasible point (tk,tl), i.e., ∣tl − tk∣ ≤ ν in the graph, let Nk,l = {(k′,l′) ∣ 0 ≤ k′ < k, 0 ≤ l′ < l,

∣k′ − l′∣ ≤ ν} denote the set of all nodes in the graph that are allowed to go to (tk,tl) by a straight line.
Starting from (0,0), if we have already determined and stored the cost of reaching nodes in Nk,l, then
the cost of reaching (tk,tl) is given by

Hk,l = min
(k′,l′)∈Nk,l

(Hk′,l′ +∫
tk′

tk
{qx(t)−qy (γ(t))

√
γ′(t)}

2
dt), (3.4)

where we initialize H0,0 = 0 and H0,l = Hk,0 = ∞ for any l ≠ 0 and k ≠ 0. Let (k̂, l̂) be the nodes that
minimize the right-hand side of (3.4) and repeat the process for every possible point (tk,tl) in the graph.
Then, the optimal curve γ̂p is obtained by connecting all such points using piecewise linear curves. Note
that compared to the standard DPA algorithm to align the two functions (Srivastava & Klassen, 2016),
we have modified the set of permitted nodes to account for the constraint imposed on the warping
function.
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The algorithm is summarized in Algorithm 1.

Algorithm 1 SRVF alignments with sup constraints.

Set Nk,� = {(k′,l′) ∣ 0 ≤ k′ < k, 0 ≤ l′ < l,∣k′− l′∣ ≤ ν}
Set H0,0 = 0, H0,l = Hk,0 =∞ for any l ≠ 0 and k ≠ 0.
for (0,0 < (tk,tl) < (1,1) do

Find (k′,l′) that minimizes the right-hand side of (3.4)
Compute Hk,l

end for
Initialize (tk,tl) = (1,1) ▷ Construction of γ̂p
while (tk,tl) ≠ (0,0) do

Draw a straight line between (tk,tl) and (tk′,tl′)
Set (tk,tl) = (tk′,tl′)

end while

Because the temporal window can vary according to the emotions and the modality (Gunes & Pantic,
2010; Gunes & Schuller, 2013), we used three thresholds of ν = 6,8, and 10 seconds for EA applications
in Section 5. Figure 4b shows penalized alignment of the same example presented in Figure 4a, using an
upper limit of warping function differences of six seconds (ν = 6). Since sup ∣γ̂u−γid∣ = 23.39 > ν = 6 for
unpenalized alignment, penalized alignment shrinks the estimated inverse warping function γ̂p toward
the identity warping function. Consequently, the resulting estimated perceiver latent function ŷ = y○ γ̂p
does not exhibit peaks or valleys that deviate from the observed perceiver sequence by more than six
seconds.

4. Simulation study

To demonstrate the performance of our functional alignment approach, we conducted a number of
simulation studies. It is challenging to use real EA data to evaluate functional alignment methods
because perceivers’ latent ratings are unknown. However, we generated perceivers’ latent responses from
the real target ratings and used them to compare different alignment methods.

4.1. Simulation 1
In this simulation, we evaluated the effectiveness of various alignment methods. To approximate the
settings in real–data applications, we used the four targets xj(t) directly derived from the real target data
of Devlin et al. (2014) corresponding to four videos: high intensity positive, low intensity positive, high
intensity negative, and low intensity negative, for j= 1, . . . ,4. We smoothed these raw data using the cubic
smoothing spline and recorded the functional values for 300 evenly-spaced time points (t = 0,1, . . . ,299).

Next, we generated n = 500 perceivers’ latent responses for each target function xj(t) using the
following model

aij(t) = εij(t)xj(t)+uij(t),
for i = 1, . . . ,n. Here, we set εij(t) = Kh(Wij(t)+1), where Wij(t) is a one-dimensional Wiener process
(i.e., Brownian motion) at time t (Mörters & Peres, 2010), uij(t) = Kh(Sij(t)) with Sij(t) being a
standardized random walk at time t that is obtained by cumulatively summing the standard normal
N(0,1) noise and applying a standardization transformation. We denote Kh as the Gaussian kernel
smoothing with bandwidth h, and in this simulation, we used h= 20 to ensure both εij and uij are smooth.
Then, we generated the perceiver’s observed response yij using the perceiver’s latent rating aij by

yij(t) = (aij ○ψij)(t), (4.1)
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where ψij ∈ {ψ ∣ ψ ∈ ΓI, sup ∣ψ(t) − t∣ = ηij for t ∈ [0,299]} is the warping function and ηij is the true
individual upper limit of the warping amount. We first generated the warping functions randomly
using the rgam function in the R package fdasrvf Tucker (2025), and then rescaled them such that
sup ∣ψij(t)− t∣ = ηij. With that simulation configuration, the true correlation between aij and the target
xj(t) has the mean around {0.65, 0.66, 0.67, 0.66} with standard deviation {0.24, 0.27, 0.23, 0.25} for
all j = 1, . . . ,4, respectively.

We considered five different methods to align the observed perceiver response to the target, including
(1) no alignment, (2) optimal fixed delay, (3) unpenalized SRVF alignment, (4) the squared L

2 norm
penalty SRVF alignment, and (5) our proposed penalized SRVF alignment. Let ŷij(t) = yij ○ γ̂ij(t) denote
the estimated perceiver’s response, where γ̂ij(t) denotes an estimated inverse warping function from
one of the above methods. The no alignment option assumes the identity inverse warping γ̂ij(t) = t.
For the optimal fixed delay method (2), we found the optimum amount of delay 0 ≤ δ ≤ ν that
achieves the smallest L2 distance between qxj and (qyij,γ̂ij), where γ̂ij(t) = 0 if t = 0, γ̂ij(t) = t + δ if
0 < t < 1−δ, and γ̂ij(t) = 1 otherwise. The inverse warping functions of the unpenalized and penalized
SRVF alignments were obtained by solving (2.2) and (3.2), respectively. The squared L

2 norm penalty
SRVF alignment implements the penalty γ̂ij = arg infγ∈ΓI

∥qxj −(qyij,γ)∥2
2+λ∥

√
γ′(t)−1∥2

2, where 1 is the
constant function with value one (Srivastava & Klassen, 2016). To the best of our knowledge, an optimal
method for selecting λ has not been established in the literature, so we implemented the method with
λ = 0.01. We leave the investigation of optimal selection strategies for λ to future research.

In the simulation, we set the alignment warping limit for the penalized SRVF to ν ∈ {6,8,10} seconds
regardless of the true warping limit ηi to reflect the real-world cases, where the true warping limit
is unknown. Also, to account for individual warping variations, we examined two different settings
of ηij, including a constant ηij = ν seconds for all i = 1, . . . ,n and j = 1, . . . ,4, and a varying ηij randomly
generated from a Gamma distribution Γ(k,θ) with k = ν being the shape and θ = 1 being the scale
parameter of the Gamma distribution.

We evaluated the performance of the alignment methods with two metrics. First, we computed
the average L

2 distance between the perceiver’s latent function aij and the estimated functions ŷij
by da = ∥ŷij − aij∥2

2. The closer da gets to zero, the more accurate estimation of the perceiver’s latent
response. Second, we computed the average bias between the true and the estimated correlations to
the target, n−1∑n

i=1{ρ(xj,ŷij)−ρ(xj,aij)}. Here, ρ(xj,ŷij) is a commonly used metric for measuring EA,
and ρ(xj,aij) can be considered as the true correlation that the alignment methods aim to achieve. We
reported the results for each target separately.

Table 1 shows the performance metrics for the case ηij = 8 and ηij ∼ Γ(8,1). Results from additional
settings, which lead to similar conclusions, are provided in Section S2 of the Supplementary Material.
Among the five alignment methods evaluated, the proposed penalized SRVF approach consistently
outperforms the others in producing the least biased estimation of EA in all the considered simulation
designs. In addition, the average amplitude distance da of the proposed penalized SRVF is the smallest
for the high negative and high positive targets. For the low negative and low positive targets, the L

2

penalized SRVF shows the lowest average da but yields much larger bias. Considering both metrics, the
results imply that the proposed method makes the most accurate estimation of the phase shift.

The unpenalized SRVF, optimal fixed, and no alignment methods all yield less accurate estimates of
aij compared to the proposed penalized SRVF. Among them, the unpenalized SRVF produces the largest
value of da, primarily because it tends to over-align the perceiver’s observed response yij to the target’s
rating xj, leading to distorted estimates ŷij. Additionally, the optimal fixed alignment method often
results in the highest standard errors and bias in da, indicating that it provides inconsistent estimates of
the perceiver’s latent ratings.

4.2. Simulation 2
In practical applications, the true warping limit η is typically unknown. As a result, the alignment
warping limit ν must be chosen based on approximate prior knowledge, which may not perfectly match
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Table 1. Performance of different alignment methods in the simulation studies under different warping limits η, da

between the estimated perceiver ŷ and the true latent perceiver a, and the (10×) bias of the estimated correlation

between the true latent perceiver and the target.

η Target Metric Pen. SRVF L
2 SRVF Unpen. SRVF Opt. fixed No alignment

8 High Neg da 4.81 (1.36) 6.74 (3.69) 11.76 (5.1) 6.71 (3.54) 5.62 (1.46)

Bias 0.02 (0.39) 0.67 (0.91) 1.37 (1.53) −0.36 (1.12) −0.17 (0.41)

Low Neg da 8.33 (5.12) 4.23 (2.44) 9.22 (4.04) 9.03 (5.23) 10.56 (6.1)

Bias −0.68 (1.79) 0.69 (1.17) 1.47 (1.75) −0.82 (2.14) −1.55 (2.05)

High Pos da 5.78 (1.62) 7.17 (3.88) 11.59 (5.24) 7.88 (3.35) 6.04 (1.72)

Bias −0.01 (0.87) 0.63 (1.44) 0.71 (2.25) −0.21 (1.74) −0.13 (0.88)

Low Pos da 5.92 (1.86) 4.84 (3.23) 8.3 (3.52) 7.82 (3.83) 6.59 (1.86)

Bias −0.13 (0.61) 0.55 (0.84) 0.67 (1.1) −0.76 (1.59) −0.31 (0.65)

Γ(8,1) High Neg da 4.75 (1.82) 6.64 (3.56) 11.30 (5.03) 6.57 (3.72) 5.52 (1.96)

Bias 0.05 (0.43) 0.72 (0.92) 1.27 (1.44) −0.28 (1.03) −0.14 (0.45)

Low Pos da 8.02 (4.98) 4.24 (2.60) 9.55 (4.24) 9.26 (5.51) 10.49 (5.95)

Bias −0.6 (1.73) 0.68 (1.27) 1.42 (1.78) −0.86 (2.27) −1.46 (1.98)

High Pos da 5.69 (1.93) 7.16 (3.91) 12.18 (5.81) 7.7 (3.41) 5.94 (2.00)

Bias −0.09 (0.83) 0.59 (1.26) 0.55 (2.52) −0.32 (1.62) −0.20 (0.84)

Low Pos da 5.98 (2.20) 4.98 (3.17) 8.40 (3.53) 7.96 (4.17) 6.57 (2.08)

Bias −0.11 (0.73) 0.68 (0.98) 0.77 (1.31) −0.66 (1.98) −0.29 (0.72)

Note: The lowest absolute bias and the lowest da are highlighted for each row. Standard errors are included in the parentheses.

the true value. To examine the impact of this mismatch, we conducted a simulation study using the same
data generation process described in Section 4.1. Specifically, we evaluated 21 different true warping
limits η ∈ {0,0.8, . . . ,8, . . . ,15.2,16} seconds, while fixing the alignment warping limit at ν = 8 seconds.

Figure 5 represents two performance metrics (da and bias) of the penalized SRVF method across 21
different true warping limits η. The results illustrate the method’s robustness to variation in the true
warping limit. Notably, when η falls within approximately two seconds of the alignment limit ν = 8
seconds, the penalized SRVF method achieves low da and minimal bias, indicating accurate alignment
and estimation. These findings suggest that even without precise knowledge of the true warping limit,
selecting ν within a reasonable range yields reliable performance, underscoring the method’s practical
utility in real-world applications.

4.3. Simulation 3
In this simulation, we evaluated the performance of the alignment methods under different levels (i.e.,
high/medium/low) of EA. Perceivers’ latent ratings (i = 1, . . . ,500) were generated following the idea
proposed by Matuk et al. (2022),

ai(t) = Q−1 (β0i(t)+β1i(t)qx(t))+ εa
i (t), (4.2)

where Q−1(qf ) denotes the inverse transformation from an SRVF qf to the original function f and
qx is the SRVF of the target rating for the low intensity positive video x. The parameters, β0i(t) =
α0i sin(πt/50) and β1(t) = α1i sin(πt/100), were chosen based on the setting in Ghosal et al. (2020),
with εa

i ∼ N(0,0.12).
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Figure 5. The penalized SRVF alignment results under 21 different true warping limits η ∈ {0,0.8, . . . ,8, . . . ,15.2,16} seconds when

the upper limit of alignment is ν = 8 seconds. The red dotted line in the mean bias plot marks the unbiased level.

Table 2. Comparison results based on da between the estimated perceiver ŷ and the true latent per-

ceiver a and the(10×)bias of the estimated correlation between the true latent perceiver and the target.

EA Metric Pen. SRVF L
2 SRVF Unpen. SRVF Opt. fixed No alignment

da 3.33 (0.72) 3.30 (0.69) 3.75 (0.58) 4.39 (1.47) 3.57 (0.63)

High Bias 0.04 (0.34) 0.50 (0.29) 0.83 (0.24) −0.50 (0.70) −0.08 (0.33)

da 5.10 (1.75) 5.77 (3.04) 8.13 (3.11) 6.72 (3.06) 5.33 (1.61)

Med Bias 0.01 (0.56) 0.58 (0.84) 1.43 (0.82) −2.17 (2.17) −0.22 (0.66)

da 7.80 (2.62) 12.08 (5.55) 14.25 (5.07) 11.35 (5.11) 7.82 (2.54)

Low Bias 0.18 (0.62) 2.06 (1.39) 2.01 (0.87) −0.11 (2.98) −0.03 (0.65)

Note: The best metrics are highlighted for each row.

We generated perceivers’ observed responses following the same data generation process as in (4.1),
setting the alignment warping limit to ν = 8 and drawing the true sup-norm limit from a Gamma
distribution, ηi ∼ Gamma(8,1). To simulate varying levels of EA, we defined three conditions: for high
EA, α0i,α1i ∼ N(0,0.052); for medium EA, α0i,α1i ∼ N(5,22); and for low EA, α0i ∼ N(0,0.52) and
α1i ∼N(0.1,0.12). The resulting average correlations between the target ratings and the perceivers’ latent
ratings, ρ(ai,x), are approximately 0.81, 0.62, and 0.25 for the high, medium, and low EA conditions,
respectively.

Table 2 summarizes two evaluation metrics for the five alignment methods across three levels of EA.
The proposed penalized SRVF method demonstrates strong performance regardless of the EA levels.
When EA is high, the L2 penalized SRVF achieves a slightly lower average da than the penalized SRVF,
but the latter yields the lowest average bias. The no alignment method also archives comparable low
average bias to the penalized SRVF method. At the medium EA level, the penalized SRVF outperforms
all other methods. In the low EA condition, the penalized SRVF’s da is comparable to the no alignment
approach but the no alignment method shows the lowest bias. The benefit of adjusting the observed
rating is expected to be limited given the weak association between the target rating and the perceiver’s
latent rating. In contrast, the other alignment methods perform significantly worse than the penalized
SRVF, particularly under low and medium EA conditions.
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5. Data application

5.1. Study on social empathy
In the first data application, we analyzed a dataset from Devlin et al. (2014), which consists of 121
perceivers’ empathy responses of four distinct videos in which the targets discuss emotional events in
their lives. The four videos vary in valence (positive or negative) and intensity (high or low), resulting
in four heterogeneous videos, including high-positive, low-positive, high-negative, and low-negative.
Participants provided continuous 9-point scale ratings of target emotions while watching each video.
These perceiver ratings were compared to the target’s self-ratings. Following standard functional data
analysis practices (Srivastava & Klassen, 2016), we preprocessed the data by smoothing target and
perceiver ratings using cubic smoothing splines with the default setting of the smooth.spline function in
R and interpolating the estimated functions on a 300-point equidistant grid within the observed time
interval. The goal of the subsequent analysis is to measure the level of EA for each perceiver, quantified
by the correlation between the perceiver’s latent ratings and the target’s ratings.

Figure 3 clearly illustrates the misalignment between perceiver and target ratings. Devlin et al.
(2014) did not account for this misalignment, measuring EA as a monotonic transformation of the
Pearson correlation between the two rating sequences. We applied both unpenalized and penalized
SRVF alignments, as these methods offer more flexible time warping than fixed delay alignment. Here,
we present results for the penalized alignment with a threshold of ν = 8 seconds. Results for thresholds
of 6 and 10 seconds are included in Section S3.1 of the Supplementary Material.

To quantify the degree of warping, we computed the phase distance (dp) between the estimated
inverse warping function under each alignment method and the identity warping function for each
video. The summary statistics for this measure can be found in Table S2 of the Supplementary Material.
Figure 6 reveals that the unpenalized SRVF alignment consistently produces warping functions farther
from the identity function than the penalized SRVF alignment, indicating the latter’s effectiveness in
reducing excessive warping, where the p-values (Table S3 in the Supplementary Material) corresponding
to the t-tests for the mean differences between penalized SRVF and other method are very close to zero.

We subsequently calculated the Pearson correlation between each perceiver’s aligned ratings and
the target’s ratings, which were used as the EA measure. Unlike the simulation studies, the correlation
coefficient ρ(a,x) between the target (x) and the perceiver’s latent response (a) is not observable because
the perceiver’s latent response is not known. Instead, we compared these EA measures to those obtained
without alignment (identity warping), referred to as identity correlations. Notably, about 2% of the cases
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Figure 6. Boxplots for the estimated amount of warping, as measured by the Fisher–Rao metric between the identity warping γid and

the estimated warping function using unpenalized SRVF and penalized SRVF method, with ν = 8 seconds for each video.
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Figure 7. Results for EA estimates in the social EA study.

exhibited negative correlations between perceiver and target ratings under identity warping. As a data
pre-processing step, we removed those cases based on the concern that they may exhibit fundamentally
different empathy patterns from the general population of perceivers.

Figure 7a presents scatterplots comparing these EA measures between target and perceiver ratings
for pre- and post-aligned data across the four video conditions. The majority of points reside above the
45-degree line, indicating that accounting for misalignment generally increases EA measures compared
to unaligned analyses. However, the unpenalized SRVF alignment often inflates EA considerably, as
observed in the simulation results This is most pronounced in the low intensity positive video group
(bottom right panel of Figure 7a), where many unpenalized EA approach one, implying near-perfect
empathy for most perceivers, an unrealistic outcome given the video’s low expressiveness. Conversely,
for the high intensity positive video group (top right panel), some unpenalized EA fell substantially
below identity EA because excessive warping distorted overall function trends.
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Table 3. Estimated coefficients for Trait Positive Affect as a predictor of EA as measured by different

alignment methods.

High negative Low negative High positive Low positive

No alignment −0.013 (0.005)* −0.003 (0.002) −0.011 (0.006) 0.012 (0.005)*

Fixed delay −0.017 (0.006)* −0.004 (0.003) −0.017 (0.007)* 0.005 (0.004)

Unpenalized SRVF −0.009 (0.005)* −0.002 (0.003) −0.024 (0.011)* 0.019 (0.009)*

Penalized SRVF (8s) −0.014 (0.005)* −0.004 (0.003) −0.016 (0.008)* 0.013 (0.005)*

Note: Standard errors are included in parentheses and * indicates significance at the significance level 5%.

The proposed penalized SRVF alignment provides a reasonable compromise between the identity
EA and the unpenalized SRVF EA. For low-expressivity videos (bottom row, Figure 7a), penalized
alignment EA measures generally exceed those from no alignment, likely due to increased misalignment
challenges under reduced emotional cues. It is also interesting to find that for videos under positive
emotion (second column, Figure 7a), the EA with the penalized SRVF alignment has a trivial difference
compared with the EA with no alignment, while for videos under negative emotion (first column,
Figure 7a), the difference is much bigger. This suggests a stronger time-warping effect for negative
emotions, which is consistent with psychological research indicating better recognition of positive
emotions (Bandyopadhyay et al., 2021). Figure 7b shows that the penalized SRVF methods lead
to estimated EA with a significantly smaller mean than those obtained from unpenalized SRVF in
all four videos. In three out of four videos, the mean EA obtained from the penalized SRVF is also
significantly larger than those from no alignment, and generally differs significantly from those obtained
under the optimal fixed delay method. In addition, Figure S1 in the Supplementary Material shows
the correlations among the EA measures obtained by different alignment methods. Although they are
positively correlated with others, they are not equivalent and our proposed alignment method can lead
to improved inference in a downstream analysis.

We also examined the associations between perceiver-specific trait positive emotion and their EA.
Trait positive emotion reflects a perceiver’s stable tendency to experience positive emotions across
diverse situations and over time, and it is typically associated with greater sociability, prosocial behavior,
and openness (Devlin et al., 2014). To make this analysis consistent with the approach adopted by Devlin
et al. (2014), we fitted a simple linear regression model with the Fisher transformed EA measure as the
outcome and trait positive emotion as the predictor. Table 3 summarizes the estimated slope of each
regression. It reveals that the penalized SRVF method consistently yields larger absolute coefficient
estimates than the no-alignment approach across all four videos. This pattern is not consistently
observed with the unpenalized SRVF or the fixed delay methods. These findings suggest that failing
to properly address misalignment may obscure important relationships between EA and perceiver
characteristics.

5.2. Study on music empathy
Tabak et al. (2022) conducted an EA study investigating three primary emotions: joy/happiness, sadness,
and anger (I = 3). For each emotion, three original solo piano pieces (J = 3) were composed and
performed by experienced musicians. These pieces were designed to evoke the target emotions within
familiar musical styles (classical, popular, and jazz). Both musicians (as targets) and 123 participants
(as perceivers) rated the emotional content of each piece on a 9-point scale. As with the previous dataset,
we preprocessed the data by smoothing and interpolating rating functions.

Unlike the correlation-based approach, Tabak et al. (2022) employed a linear mixed-effect model for
a more nuanced analysis of EA. This model decomposed perceiver responses into three latent factors:
bias, discrimination, and variance. Bias represented the systematic deviation between perceiver and
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target ratings, while discrimination captured a perceiver’s sensitivity to changes in the target’s expressed
emotion. Finally, variance accounted for random noise in perceiver ratings.

Within each group of emotion (i = 1, . . . ,I), let xj(⋅) and yj(⋅) be the target and a perceiver’s ratings,
respectively, for the jth stimulus. Tabak et al. (2022) proposed the following linear mixed-effect model
to describe the relation between xj(⋅) and yj(⋅):

yjk = β0+β1xjk+b0j+b1jxjk+ εjk, j = 1, . . . ,J, k = 1, . . . ,Tj, (5.1)

where yjk = yj(tk) and xjk = xj(tk) are the perceiver and target’s respective ratings at the kth time point,
and Tj is the number of points for the jth stimuli. The (fixed) intercept β0 and slope β1 represent
a perceiver’s mean bias and discrimination ability across all the J stimuli, respectively. The random
intercept b0j, random slope b1j, and the random noise εjk are assumed to follow a normal distribution
with zero mean and respective variance component σ2

b0
,σ2

b1
, and σ2, which represents the variability of

bias, discrimination, and random noise across different stimuli. This model treats ratings as discrete
points and does not account for potential misalignments between perceiver and target responses.

To address this limitation, we integrated an alignment step into the model framework. Treating the
observed ratings as sampled points from corresponding functions, we applied and compared penalized
and unpenalized time-warping SRVF alignments to account for potential misalignments. Let ỹj(t) =
yj ○ γ̂j(t) be the estimated aligned function with γ̂j(t) being an estimated inverse warping function from
aligning yj(⋅) with xj(⋅), we then modeled

ỹj(t) = β0+β1xj(t)+b0j+b1jxj(t)+ εj(t), b0j ∼ N(0,σ2
b0), b1j ∼ N(0,σ2

b1), (5.2)

where β0,β1, σ2
b0

, σ2
b1

, and σ2 in Model (5.2) maintain the same interpretations as in Model (5.1).
We fitted Model (5.2) for each perceiver and primary emotion. Using the lme4 package in R (Bates

et al., 2015), we employed restricted maximum likelihood estimation to obtain parameter estimates
Ψ̂ = (α̂,β̂,σ̂2

b0
,σ̂2

b1
,σ̂2) and best linear unbiased predictions (BLUPs) of random effects b̂0j and b̂1j for

j = 1, . . . ,J. To assess the impact of time warping, we compared parameter estimates Ψ̂ under no
alignment (i.e., γid), the unpenalized SRVF (γ̂u), and the penalized SRVF alignment (γ̂p), setting the
penalty threshold at ν = 8 seconds for the penalized alignment. Results for 6- and 10-second thresholds
are provided in Section S3.2 of the Supplementary Material.

To assess model fit, we computed two metrics: average warping and average goodness of fit across all
J tasks. The first metric, average Fisher–Rao distance, quantifies the mean warping magnitude relative
to the identity warping: d̄p = J−1∑J

j=1 cos−1(∫ 1
0

√
γ̂′j(t)dt). A higher d̄p indicates greater warping. The

second metric measures the vertical distance between the estimated aligned response function and
the fitted value function. Specifically, letting ŷj(⋅) = β̂0 + β̂1xj(⋅)+ b̂0j + b̂1jxj(⋅), this vertical distance is
calculated to be the L2 distance between the estimated aligned response ỹj and the fitted value function
ŷj, i.e., ∑J

j=1 ∥ỹj− ŷj∥2
2, where a lower value signifies a better model fit.

Figure 8 reveals that the no alignment model exhibits significantly inferior fit compared to the other
two approaches (all the p-values for comparing pairwise mean differences are close to zero, see Table S4
in the Supplementary Material). This underscores the importance of addressing misalignment between
perceiver and target ratings to prevent model underfitting. Similar to our simulation findings, the
unpenalized SRVF alignment demonstrates overfitting, sacrificing model fit for excessive warping. In
contrast, the penalized alignment method provides a reasonable compromise between these extremes,
enhancing model fit while mitigating overfitting through judicious penalty application.

Figure 9a compares parameter estimates (aligned versus unaligned) for the fixed effect discrimi-
nation (β̂1) and random noise standard deviation (σ̂) across the three emotion groups, and Figure 9b
shows the pairwise confidence intervals in the mean estimates of the penalized SRVF method against
other alignment methods. In the top row of both figures, while both unpenalized SRVF and penalized
SRVF alignment methods tend to increase the discrimination estimates β̂1, the optimal fixed delay
tends to decrease it compared to the no alignment. However, similar to the social empathy study in
Section 5.1, the unpenalized SRVF alignment increases this discrimination estimate much more than
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Figure 8. Boxplots of the metrics for the average amount of warping (top row) and goodness of fit (bottom row) of the estimated

models for the three sets of music recordings. The penalized SRVF alignment was conducted using the threshold ν = 8s.

the penalized SRVF, making the unpenalized SRVF more prone to overfit. This conclusion is further
evidenced in the bottom row, where the estimated standard deviation σ̂ from the unpenalized SRVF
method is substantially smaller than that from the other two alignment methods.

6. Discussion

In emotional perception research, misalignment caused by complex cognitive decoding processes and
the time needed to enact a behavioral response is a well-established phenomenon. In EA studies, the
discrepancy between the perceiver’s observed rating and the target’s rating is influenced by both the
misalignment not due to lack of EA and the psychologically meaningful disagreement resulting from
lack of EA. Yet, most of the conventional EA studies either ignore this kind of misalignment or apply
an oversimplified fixed delay for adjustment, where both options can lead to biased results. This study
introduces a novel, flexible approach using a new constrained optimization problem based on the
SRVF representation of the functions to reduce the misalignment, which varies from individual to
individual. Considering realistic conditions of the warping process, our simulation studies demonstrate
that the proposed penalized SRVF alignment method provides improved estimates of the true EA
measure compared to existing approaches. In two case studies on social and music empathy, this method
yields plausible EA measures, which subsequently reveals more potential associations between EA and
perceivers’ characteristics.

The proposed penalized alignment approach offers several advantages. 1) Individualized adjust-
ments: It tailors alignment to unique patterns of misalignment for each perceiver. 2) Prevention of
over-alignment: It incorporates a natural constraint on the extent of allowable warping. 3) Simplicity
and interpretability: The penalty term can be easily set up by using the maximum delay in perceivers’
responses, where it is straightforward to use empirical evidence and expert opinion. Moreover, EA
studies often vary in context and focus. In situations, where reaction time is less critical, such as listening
to a friend’s long story, a broader penalization window may be appropriate. Conversely, in high-stakes
scenarios like heated arguments, a narrower window can better reflect the urgency of responses. This
flexibility enables researchers to tailor penalization parameters to the specific demands of each study. By
integrating these features, our approach enhances the accuracy of downstream EA analyses, including
correlational studies and complex linear mixed models.

The core component in our proposed method, the warping functions, has been widely employed
to correct misalignment in fields like physics and biology, where objective benchmarks exist. To the
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Figure 9. Results for parameter estimates in the music EA study.
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best of our knowledge, the application of warping functions to the abstract and subjective domain of
human perception is unexplored. In this study, we have demonstrated their effectiveness and flexibility
in adjusting individually varying misalignment across different types of emotional stimuli (visual and
audio). It further expands the potential for using warping functions in new research areas.

Future research could focus on several key areas. One potential direction is to model the similarity
of warping functions of the same individual across different stimuli by introducing random effects.
Another area of interest could be to develop a new EA alignment method by incorporating addi-
tional data, such as the functional magnetic resonance imaging (fMRI) blood-oxygen-level-dependent
(BOLD) signals of targets and perceivers during rating assessments, which could help detect true
emotional changes. Although our method accurately identified simulated noise and showed favorable
psychometric characteristics, we caution against interpreting the corrected scores from our method as
definitive indicators of EA devoid of all measurement error. Future work is needed to explicitly test the
extent to which the penalized alignment approach can distinguish measurement noise from meaningful
differences in EA, for example, by experimentally manipulating whether participants can pause the
video to make ratings or by varying the cognitive load placed on participants. Finally, we note that
these analyses were exploratory in nature. Given the methodological flexibility of the proposed method
and the number of analytic decisions involved (e.g., the upper limit of warping functions), future work
can aim to replicate these findings using pre-registered designs to increase confidence in the robustness
of the results provided by the penalized SRVF alignment method.

Supplementary material. The supplementary material for this article can be found at https://doi.org/10.1017/psy.2025.10040.
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