Proceedings of the Edinburgh Mathematical Society (2010) 53, 271–291 (c) DOI:10.1017/S001309150800103X Printed in the United Kingdom

STURM-LIOUVILLE PROBLEMS FOR THE *p*-LAPLACIAN ON A HALF-LINE

PAUL BINDING¹, PATRICK J. BROWNE² AND ILLYA M. KARABASH¹

¹Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta T2N 1N4, Canada ²Department of Mathematics and Statistics, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E6, Canada

(Received 13 October 2008)

AbstractThe nonlinear eigenvalue problem

 $-\left(\left|\frac{y'(x)}{s(x)}\right|^{p-1}\operatorname{sgn} y'(x)\right)' = (p-1)(\lambda - q(x))|y(x)|^{p-1}\operatorname{sgn} y(x)$ for $0 \leq x < \infty$, fixed $p \in (1, \infty)$, and with y'(0)/y(0) specified is studied under various conditions on

the coefficients s and q, leading to either oscillatory or non-oscillatory situations

Keywords: Prüfer angle; p-Laplacian; eigenvalue; oscillatory solution

2010 Mathematics subject classification: Primary 34B15; 34B40

1. Introduction

Suppose that q is a continuous real-valued function on $[0,\infty)$ and that q(x) tends to $+\infty$ with x. Then it is well known that the Sturm–Liouville equation

$$-y'' + qy = \lambda y \quad \text{on } [0, \infty) \tag{1.1}$$

is of limit point type at $+\infty$, and, given an initial condition of the form

$$y'(0)\sin\alpha = y(0)\cos\alpha \tag{1.2}$$

with $0 \leq \alpha < \pi$, the resulting spectrum σ is discrete. Indeed, σ consists of simple eigenvalues $\lambda_0, \lambda_1, \ldots$ accumulating at $+\infty$; moreover, well-known oscillation theory guarantees that, for each $k \ge 0$, any eigenfunction y_k corresponding to λ_k vanishes precisely k times in $(0,\infty)$. For such results we refer the reader to [10, Chapter XIII], for example. From this it follows that the Prüfer angle $\theta(\lambda, x)$ (which may be defined as the continuous branch of $\cot^{-1}(y'(x)/y(x))$ for any solution y of (1.1), (1.2), given the initial condition $\theta(\lambda, 0) = \alpha$) has certain asymptotic properties in x. Indeed, since it is well known that $\theta(\lambda, x)$ must increase through values which are multiples of π , it follows that

$$k\pi < \theta(\lambda, x) < (k+1)\pi$$
 for sufficiently large x (1.3)

whenever $\lambda_{k-1} < \lambda < \lambda_k$, for any $k \ge 0$ (if we define $\lambda_{-1} = -\infty$).

P. Binding, P. J. Browne and I. M. Karabash

In [8], under additional conditions on q, Crandall and Reno improved (1.3) to

 $\theta(\lambda, x) \to k\pi + \text{(respectively, } k\pi - \text{) if } \lambda_{k-1} < \lambda < \lambda_k \text{ (respectively, } \lambda = \lambda_{k-1} \text{) for } k > 0$ (1.4)

as $x \to \infty$, and we shall call this the ' $k\pi$ property'. (More precisely, [8] contains a combination of statements, proofs and computer results equivalent to (1.4) for a related angle, but it follows from the results cited below that (1.4) also holds for θ as defined above.) Apparently unaware of [8], Brown and Reichel [7] established (1.4) under different additional conditions on q, which were removed in [6]. We remark that computational aspects are stressed in [7,8] and it is clear that (1.4) is much better suited to eigenvalue computation than (1.3), particularly if regions of attraction to multiples of π (as $x \to \infty$) can be found for $\theta(\lambda, x)$. More general situations with locally integrable q were studied in [2] (under Molčanov's conditions [12] for discrete spectrum, allowing $-\infty < \liminf q < \limsup q = +\infty$) and in [3] (under modifications of Brinck's [5] and Molčanov's conditions allowing $\liminf q = -\infty$ as well; see § 2 for details).

Some of the above works (notably, [3, 6, 7]) dealt with equations involving the *p*-Laplacian for fixed $p \in (1, \infty)$, and we shall now briefly discuss this extension. Eigenvalue problems for such equations (actually with q = 0 on a compact interval) were to our knowledge first studied by Elbert [11] via a generalized Prüfer angle depending on a certain function \sin_p , which generalizes the usual sine function and has first positive zero at

$$\pi_p = \frac{2\pi}{p\sin(\pi/p)}.$$

With $\cot_p = \sin'_p / \sin_p$, one can define the (Elbert–)Prüfer angle as above but with cot replaced by \cot_p (see § 3). This generalized angle has (perhaps in equivalent form) been used to study numerous problems (see [4, 9] and the references therein) and allows us to reverse some of the ideas of the previous paragraph as follows. If (1.3) is satisfied, then we are in the so-called 'discrete' case, and we can then define the ' $k\pi_p$ property' via (1.4) with π replaced by π_p ; this extends the previous definition since $\pi_2 = \pi$. We remark that [3,6,7] also discussed related issues like variational principles, the radial *p*-Laplacian and analogues of limit-circle behaviour, but these will not be considered here.

We shall instead consider 'non-discrete' cases where (at least for p = 2) there is an essential spectrum, with a finite minimum λ_e , say. Then any eigenvalues $\lambda_k < \lambda_e$ again have eigenfunctions which vanish precisely k times in $(0, \infty)$, so we can apply the philosophy of the previous paragraph to approach the problem for $p \in (1, \infty)$. Specifically, we can define λ_e so that the Elbert–Prüfer angle $\theta(\lambda, x)$ remains bounded for all x and $\lambda < \lambda_e$, but is unbounded in x for each $\lambda > \lambda_e$. It is clear that (1.3) holds for $\lambda_k < \lambda_e$ but simple examples (even with p = 2 and q piecewise constant and periodic) show that $\theta(\lambda, x)$ may have no limit as $x \to \infty$, and, in particular, (1.4) may fail. Nevertheless, we shall show for a wide class of q that the $k\pi_p$ property does hold for a modified angle φ satisfying $\cot_p \varphi = f \cot_p \theta$ for a suitable function f.

To be specific, in §2 we discuss a differential inequality satisfied by functions like the φ we seek, and this leads, at least in principle, to regions of attraction for $\varphi(\lambda, x)$ near multiples of π_p , for large x and $\lambda < \lambda_e$. Section 3 is devoted to sets defined via

limiting properties of φ , forming a partition of the real line, and with eigenvalues at their endpoints. In § 4 we show how to construct a suitable function f so that φ satisfies (1.4). It may be noted that, in the case when $\liminf q > -\infty$, the simple construction f(x) = x + 1 suffices. Finally, in § 5 we consider situations where instead $\theta(\lambda, x)$ (or equivalently $\varphi(\lambda, x)$) is unbounded as $x \to \infty$. In this way we obtain (with the work of the previous sections) conditions allowing the precise location of λ_e , and also conditions guaranteeing an infinite sequence of eigenvalues converging to λ_e from below.

2. A differential inequality

In this section we give a number of preparatory results, which extend $[3, \S 2]$ to the differential inequality

$$u'(x) \leq D + b(x) - g(x)h(u(x)), \quad 0 \leq x < \infty.$$

$$(2.1)$$

Here D > 0; the function $b(x) \in L^1_{loc}[0, +\infty)$ is non-negative and satisfies

$$\int_{x}^{x+1} b \to 0 \quad \text{as } x \to \infty; \tag{2.2}$$

h is continuous and less than or equal to 1 on $[0, \Omega]$, h(u) > 0 for $0 < u < \Omega$ and

$$h(\varepsilon) = o(\varepsilon), \quad h(\Omega - \varepsilon) = o(\varepsilon) \quad \text{as } \varepsilon \to 0,$$
 (2.3)

from which it follows that

$$h(0) = h(\Omega) = 0.$$

We write

$$g(x) = g^+(x) - g^-(x), \text{ where } g^+(x) := \max(g(x), 0)$$

and we assume that g satisfies the conditions:

$$\exists C > 0: \int_J g^- < C \quad \text{for all intervals } J \text{ of length } |J| \leqslant 1 \tag{B}^-)$$

and

$$\begin{aligned} \forall \varepsilon > 0, \quad \lim_{x \to \infty} \int_{x}^{x+\varepsilon} g^{+} &= \infty, \\ \text{i.e. } \forall \varepsilon > 0, \ \forall A > 0, \ \exists X_{\varepsilon,A} : x > X_{\varepsilon,A} \quad \Longrightarrow \quad \int_{x}^{x+\varepsilon} g^{+} > A. \quad (\mathbf{M}^{+}) \end{aligned}$$

Note that (B⁻) and (M⁺) were employed by Brinck [5] and Molčanov [12], respectively, but with g instead of g^{\pm} , in their studies of conditions for discreteness of spectra when p = 2.

Lemma 2.1. Let u be a solution of (2.1). Given $0 < \gamma < \delta < \Omega$ and $\eta > 0$, there exists $X_{\gamma,\delta,\eta}$ so that

$$x > X_{\gamma,\delta,\eta}, \quad u(x) \in (\gamma,\delta], \quad u(y) \leqslant \delta \quad \text{for all } y \in [x, x+\eta]$$

$$(2.4)$$

implies that

there exists
$$\varepsilon \in (0, \eta)$$
 such that $u(x + \varepsilon) = \gamma$. (2.5)

Proof. Let $B = \min\{h(u) : u \in [\gamma, \delta]\}$. Then $0 < B \leq 1$. By virtue of (M^+) and (2.2) we select $X_{\gamma,\delta,\eta}$ so that

$$x > X_{\gamma,\delta,\eta} \quad \Longrightarrow \quad \int_x^{x+\eta} g^+ > \left(\delta - \gamma + D\eta + \int_x^{x+\eta} b(t) \,\mathrm{d}t + ([\eta] + 1)C\right) \middle/ B.$$

Suppose that $x > X_{\gamma,\delta,\eta}$ satisfies (2.4) but that no $\varepsilon \in (0,\eta)$ can be found to satisfy (2.5). Then $u(y) \in (\gamma, \delta)$ for all $y \in [x, x + \eta]$ and we have

$$u(x+\eta) \leqslant u(x) + D\eta + \int_{x}^{x+\eta} b(t) \, \mathrm{d}t - \int_{x}^{x+\eta} g^{+}(t)h(u(t)) \, \mathrm{d}t + \int_{x}^{x+\eta} g^{-}(t)h(u(t)) \, \mathrm{d}t$$
$$\leqslant \delta + D\eta + \int_{x}^{x+\eta} b(t) \, \mathrm{d}t - B \int_{x}^{x+\eta} g^{+}(t) \, \mathrm{d}t + ([\eta]+1)C < \gamma$$

by choice of $X_{\gamma,\delta,\eta}$. This contradiction establishes the result.

Lemma 2.2. Given $0 < \gamma < \delta < \Omega$ such that

$$\delta - \gamma - Cm > 0, \tag{2.6}$$

where $m = \max\{h(u) : \gamma \leq u \leq \delta\}$, there is $Y_{\gamma,\delta}$ such that for any solution of (2.1)

$$x > Y_{\gamma,\delta}, \quad u(x) \leqslant \gamma \quad \Longrightarrow \quad u(x+t) < \delta \quad \text{for all } t > 0$$

Proof. Put

$$M_X := \max_{x \ge X} \int_x^{x+1} b(t) \, \mathrm{d}t.$$
 (2.7)

By (2.2), we can choose $Z_{\gamma,\delta}$ such that $M := M_{Z_{\gamma,\delta}} < \delta - \gamma - Cm$. Set

$$\eta = \frac{\delta - \gamma - Cm - M}{D + M + Cm}.$$

Then $\eta > 0$. We can take $Y_{\gamma,\delta} = \max\{Z_{\gamma,\delta}, X_{\gamma,\delta,\eta}\}$, where $X_{\gamma,\delta,\eta}$ is defined as in Lemma 2.1. Suppose that $x > Y_{\gamma,\delta}$ has $u(x) \leq \gamma$ and that z > x has $u(z) = \delta$. Without loss of generality we take z to be the minimum of all points r > x with $u(r) = \delta$. Now

https://doi.org/10.1017/S001309150800103X Published online by Cambridge University Press

take $y \in [x, z]$ so that $u(y) = \gamma$ and $u(w) \in (\gamma, \delta)$ for all $w \in (y, z)$. Then

 δ

$$\begin{aligned} &-\gamma = u(z) - u(y) \\ &= \int_y^z u'(t) \, \mathrm{d}t \\ &\leqslant D(z-y) + \int_y^z b(t) \, \mathrm{d}t + m \int_y^z g^-(t) \, \mathrm{d}t \\ &< D(z-y) + ([z-y]+1)(M+Cm) \\ &\leqslant (z-y)(D+M+Cm) + M + Cm. \end{aligned}$$

Thus, $z - y > \eta$ and so we may apply Lemma 2.1 over $(z - \eta, z)$ to obtain a point $w \in (z - \eta, z)$ with $u(w) = \gamma$. This contradiction establishes the result.

We now extend the definition of h to all of \mathbb{R} by requiring that it be periodic of period Ω and we shall continue to write h for this extended function. This now raises the possibility that a solution to (2.1) (with this periodic h) need not be bounded, but we can demonstrate the following.

Lemma 2.3. Let u be a solution of (2.1) with h extended by Ω -periodicity to \mathbb{R} . Then u is bounded above on \mathbb{R}^+ .

Proof. Let γ and δ satisfy $0 < \gamma < \delta < \Omega$ and (2.6), which by (2.3) can be achieved by taking $\gamma = \frac{1}{2}\delta$ sufficiently close to 0. If the conclusion of the lemma fails, then there exist finite

$$x_n = \min\{x : u(x) = n\Omega + \gamma\}, \quad n \ge 1.$$

Recalling M_X from (2.7), we have

$$n\Omega + \gamma = u(0) + \int_0^{x_n} u'(t) dt$$

$$\leq u(0) + Dx_n + \int_0^{x_n} b(t) dt + \int_0^{x_n} g^-(t)h(u(t)) dt$$

$$\leq u(0) + Dx_n + ([x_n] + 1)(M_0 + C)$$

so $x_n \to \infty$. Now we use Lemma 2.2 to find $Y_{\gamma,\delta}$ and fix N so that $x_N > Y_{\gamma,\delta}$. Note that $v(x) = u(x) - N\Omega$ satisfies the differential inequality (2.1) and, further, that $v(x_N) = \gamma$. Lemma 2.2 then shows that $v(x) < \delta$ for all $x > x_N$, a contradiction.

Lemma 2.4. Let u be a solution of (2.1). If $\liminf_{x\to\infty} u(x) < \Omega$, then

$$\limsup_{x \to \infty} u(x) \leqslant 0.$$

Proof. By assumption there exist $\delta \in (\Omega/2, \Omega)$ and a sequence $x_n \to \infty$ such that $u(x_n) < 2\delta - \Omega$ for each $n = 1, 2, \ldots$ Suppose $\limsup_{x\to\infty} u(x) > 0$, so there exist $\gamma \in (0, \delta - \frac{1}{2}\Omega)$, and $y_n \to \infty$ such that

$$u(y_n) > 2\gamma. \tag{2.8}$$

https://doi.org/10.1017/S001309150800103X Published online by Cambridge University Press

Now $2\delta - \Omega < \delta$ and $\delta - (2\delta - \Omega) - C \max\{h(u) : 2\delta - \Omega \leq u \leq \delta\}$ with $\delta = \Omega - \varepsilon$ becomes

$$\varepsilon - \max\{h(u) : \Omega - 2\varepsilon \leqslant u \leqslant \Omega - \varepsilon\},\$$

which is positive for small $\varepsilon > 0$ by (2.3). Note that we can take δ as close to Ω as we wish. Thus, we can apply Lemma 2.2 with $(2\gamma - \Omega)$ playing the role of γ to claim the existence of N_1 so that $u(x) < \delta$ for all $x > x_{N_1}$. Furthermore, $2\gamma < \delta$ and so, by Lemma 2.1 with $\eta = 1$, say, there are N_2 and $z_n > y_n$ so that $u(z_n) = \gamma$ for all $n > N_2$. Note that γ can be chosen as close to 0 as we wish so that the conditions of Lemma 2.2 with 2γ playing the role of δ are satisfied. Again (2.3) is used here. Then Lemma 2.2 shows that $u(x) < 2\gamma$ for x large enough, contradicting (2.8).

Lemma 2.5. With D, b, g and h as above, suppose that $u(x,\mu)$ satisfies $u'(x,\mu) \leq D + b(x) - (g(x) - \mu)h(u(x,\mu))$ on $[0,\infty)$ for $\mu \in [0,\mu_0)$, where $\mu_0 > 0$ is a constant. Assume also that $u(x,\mu)$ is continuous in $\mu \in [0,\mu_0]$ for any $x \ge 0$. If $u(x,0) \to 0$ as $x \to \infty$, then there is $\nu \in (0,\mu_0)$ so that

$$0 < \mu < \nu \quad \Longrightarrow \quad \lim \sup_{x \to \infty} u(x, \mu) < \Omega.$$

Proof. Note that (B⁻) holds for all $\mu \in [0, \mu_0)$ with g replaced by $g - \mu$ and C replaced by $C + \mu_0$. Note also that the number $X_{\varepsilon,A}$ can be chosen such that (M⁺) holds for all $g - \mu, \mu \in [0, \mu_0)$, instead of g. In like manner, Lemmas 2.1 and 2.2 also hold with the quantities $X_{\gamma,\delta,\eta}, Y_{\gamma,\delta}$ chosen independent of μ .

Now choose $\gamma \in (0, \frac{1}{2}\pi)$ and x_0 so that

$$u(x,0) < \gamma \quad \text{for all } x \ge x_0.$$
 (2.9)

Since under our hypotheses $u(x, \mu)$ is continuous in μ , we see that

 $u(x_0, \mu) < \gamma$ for all small enough $\mu > 0$.

Suppose that for each $n \in \mathbb{N}$ there is $\mu_n < \mu_0/n$ for which

$$\limsup_{x \to \infty} u(x, \mu_n) \ge \pi. \tag{2.10}$$

Then there is $z_n > x_0$ so that $u(z_n, \mu_n) = \gamma$, $n \in \mathbb{N}$.

Assume that z_n accumulate at a finite number z_0 as $n \to \infty$. Then, for arbitrary $\varepsilon > 0$,

$$\begin{aligned} -u(z_0,0) &= (u(z_n,\mu_n) - u(z_0,\mu_n)) + (u(z_0,\mu_n) - u(z_0,0)) \\ &\leqslant D|z_n - z_0| + \left| \int_{z_0}^{z_n} b(x) \, \mathrm{d}x \right| + \Omega \left| \int_{z_0}^{z_n} |g(x)| \, \mathrm{d}x \right| + \varepsilon \end{aligned}$$

holds for n large enough. This implies $u(z_0, 0) \ge \gamma$, contradicting (2.9).

Thus, $z_n \to \infty$ as $n \to \infty$. Let γ be such that $\gamma - C \max\{h(u) : \gamma < u < 2\gamma\} > 0$. Take $Y_{\gamma,2\gamma}$ from Lemma 2.2 and n such that $z_n > Y_{\gamma,2\gamma}$. Since $u(z_n, \mu_n) = \gamma$, Lemma 2.2 yields that $u(x, \mu_n) < 2\gamma$ for all $x > z_n$, contradicting (2.10).

276

 γ

3. Modified Prüfer angles

From now on, for p > 1, we shall adopt the notation

$$|t|^{p-1} = |t|^{p-1} \operatorname{sgn} t$$

for the odd extension of the (p-1)th power, and we shall consider the differential equation

$$-({}^{\mathrm{o}}|y'/s|^{p-1})' = (p-1)(\lambda - q){}^{\mathrm{o}}|y|^{p-1}, \qquad (3.1)$$

where $q, s \in L_1^{\text{loc}}(0, \infty)$ with s > 0 a.e. Additional properties on the coefficients will be assumed subsequently.

Definition 3.1. If $y \in L_p(0, \infty)$ satisfies (3.1) and the initial condition

$$\left(\frac{y'}{sy}\right)(0) = \cot_p \alpha \quad \text{for } \alpha \in (0, \pi_p), \qquad y(0) = 0 \quad \text{for } \alpha = 0, \tag{3.2}$$

then y and λ will be called an eigenfunction and eigenvalue, respectively.

Here \cot_p is defined via Elbert's modified trigonometric functions (see §1 and [3] for further details). Note that the initial condition (3.2) makes sense since ${}^{\circ}|y'/s|^{p-1} \in AC$ (cf. [3]).

For a solution y of initial-value problem (IVP) (3.1), (3.2) the f-modified Elbert–Prüfer angle φ was introduced in [4] via

$$y(x,\lambda) = \rho(x,\lambda) \sin_p \varphi(x,\lambda), \qquad f(x)y'(x,\lambda) = s(x)f(x)\rho(x,\lambda) \sin'_p \varphi(x,\lambda).$$

This leads to

$$\left(\frac{fy'}{sy}\right)(x,\lambda) = \cot_p \varphi(x,\lambda),$$

where we require f to be positive and locally absolutely continuous on $[0, \infty)$. In terms of the usual (unmodified, i.e. $f \equiv 1$) Elbert–Prüfer angle $\theta(x, \lambda)$ we have

$$\cot_p \varphi = f \cot_p \theta,$$

where

$$\theta' = s |\sin_p' \theta|^p - (q - \lambda) |\sin_p \theta|^p, \quad \theta(0) = \alpha.$$
(3.3)

We shall specify $\varphi(0)$ to lie in the range $[0, \pi_p)$. The positivity of f and well-known properties of θ immediately show the following (see, for example, [4]).

Lemma 3.2.

(i) The angle φ increases through multiples of π_p .

(ii)
$$\varphi \in \left[\frac{1}{2}N\pi_p, \frac{1}{2}(N+1)\pi_p\right] \iff \theta \in \left[\frac{1}{2}N\pi_p, \frac{1}{2}(N+1)\pi_p\right]$$
 for any integer $N \ge 0$.

P. Binding, P. J. Browne and I. M. Karabash

Lemma 3.3. The modified angle φ satisfies the first-order IVP

$$\varphi' = -\frac{f'}{f} (\sin'_p \varphi)^{p-1} \sin_p \varphi + \frac{s}{f} |\sin'_p \varphi|^p - f^{p-1} (q-\lambda) |\sin_p \varphi|^p, \qquad (3.4)$$

$$\varphi(0) = \cot_p^{-1}(f(0)\cot_p \alpha) \in [0, \pi_p), \tag{3.5}$$

whence

$$\lambda \geqslant \mu \quad \Longrightarrow \quad \varphi(x,\lambda) \geqslant \varphi(x,\mu). \tag{3.6}$$

Definition 3.4. For any $\lambda \in \mathbb{R}$, $n(\lambda)$ is the smallest integer (or $+\infty$ if there is none) such that $\varphi(x, \lambda) < (n+1)\pi_p$ for all $x \in \mathbb{R}_+$.

Remark 3.5. From Lemma 3.2 and (3.6), $n(\lambda)$ is the number of zeros in \mathbb{R}_+ of any solution of (3.1), (3.2), and, moreover, θ may be used instead of φ in the above definition.

Our next result appeared as [4, Lemma 2.4], but since part of the proof there may be misleading, we shall provide another argument for completeness.

Lemma 3.6. For any $x_0 \in (0, \infty)$, $\varphi(x_0, \lambda) \to 0$ as $\lambda \to -\infty$.

Proof. Choose $\delta \in (0, \pi_p - \alpha)$. Since $\alpha \ge 0$, Lemma 3.2 (i) shows that $\varphi(x, \lambda) > 0$ for all $\lambda \in \mathbb{R}$ and x > 0.

We claim that there exist $\xi_0 \in (0, x_0)$ and $\lambda_0 < 0$ such that $\varphi(\xi_0, \lambda_0) < \delta$. Indeed, assume the converse, i.e. that $\varphi(x, \lambda) \ge \delta$ for all $\lambda < 0$ and $x \in (0, x_0)$. Since $\alpha < \pi_p$, there exists ξ_0 such that $\varphi(x, \lambda) < \pi_p - \delta$ for all $x \in (0, \xi_0]$ and $\lambda < 0$. Then, making λ in (3.4) more negative, we can ensure that $\varphi(x, \lambda) < \delta$ for some $x \in (0, \xi_0]$, a contradiction.

Since the function $G := |f'/f| + |s/f| + |f^{p-1}q|$ is integrable on any finite interval, there exists $\varepsilon = (x_0 - \xi_0)/N$ for some N > 2, such that

$$\int_{x}^{x+\varepsilon} G(x) \, \mathrm{d}x < \delta \quad \text{for any } x \in [0, x_0].$$

Then (3.4) yields

$$|\varphi(x,\lambda) - \varphi(x + \varepsilon_1,\lambda)| < \delta \quad \text{for } \varepsilon_1 \in (0,\varepsilon] \text{ and } x \in [0,x_0].$$
(3.7)

In particular, $\varphi(\xi_0 + \varepsilon, \lambda_0) < 2\delta$.

For sufficiently negative λ , say $\lambda \leq \lambda_1 \leq \lambda_0$, we can argue as for our claim above to ensure that $\varphi(\xi_0 + 2\varepsilon, \lambda) < 2\delta$. Continuing this process for N such steps, we reach $\varphi(x_0, \lambda) < 2\delta$ for λ sufficiently negative. Since δ can be chosen arbitrarily small, this completes the proof.

We shall now assume the following:

there exists a constant
$$D > 0$$
 such that $\frac{|f'|}{f} < D$, (3.8)

(2.2) is satisfied by
$$b = \frac{s}{f}$$
, (3.9)

$$f^{p-1}(q-\lambda)$$
 satisfies (B⁻) and (M⁺) for each $\lambda \in \mathbb{R}_{-} = (-\infty, 0).$ (3.10)

279

Of course, \mathbb{R}_{-} can be replaced by the interval $(-\infty, \lambda_{e})$ after a shift of the eigenparameter provided λ_{e} is finite. (In the discrete case discussed in §1, $\lambda_{e} = \infty$, so \mathbb{R}_{-} could be replaced by $(-\infty, \lambda_{*})$ for arbitrarily large λ_{*} , but this case has already been analysed in the references cited earlier.) The above assumptions lead to the fact that, for $\lambda \in \mathbb{R}_{-}$, $\varphi(x, \lambda)$ satisfies a first-order differential inequality of the type considered in §2, where we take $\Omega = \pi_{p}$ and $h(u) = |\sin_{p} u|^{p}$. By Lemma 2.3, Definition 3.4 and Remark 3.5, we come to the following.

Lemma 3.7. For each $\lambda \in \mathbb{R}_{-}$, $n = n(\lambda) \ge 0$ is finite, so, for all sufficiently large x,

 $n\pi_p < \varphi(x,\lambda) < (n+1)\pi_p$

and any solution $y(x, \lambda)$ of (3.1), (3.2) has n zeros in $(0, \infty)$.

Definition 3.8. For each $n \ge 0$, we define

$$\begin{split} \Lambda_n &= \{\lambda \in \mathbb{R}_- : n\pi < \varphi(x,\lambda) < (n+1)\pi \text{ for all } x \text{ sufficiently large} \} \\ \Lambda_n^+ &= \{\lambda \in \Lambda_n : \varphi(x,\lambda) \to (n+1)\pi \text{ as } x \to \infty \}, \\ \Lambda_n^- &= \{\lambda \in \Lambda_n : \varphi(x,\lambda) \to n\pi \text{ as } x \to \infty \}. \end{split}$$

Lemma 3.9. $\Lambda_n = \Lambda_n^+ \cup \Lambda_n^-$.

Proof. Suppose that $\lambda \in \Lambda_n \setminus \Lambda_n^+$ and apply Lemma 2.4 to $\varphi(x,\lambda) - n\pi_p$. Since $\liminf(\varphi(x,\lambda) - n\pi_p) < \pi_p$ we see that $\limsup(\varphi(x,\lambda) - n\pi_p) \leq 0$. On the other hand, $\varphi(x,\lambda) - n\pi_p > 0$ for x sufficiently large and the result follows readily. \Box

Note that, since φ is monotonic in λ , each of the sets Λ_n , Λ_n^{\pm} is convex and is therefore an interval or empty.

Lemma 3.10. If $\lambda \in \Lambda_n^-$, then λ is not an eigenvalue of (3.1), (3.2).

Proof. Suppose that y is a solution of (3.1), (3.2) with $\lambda \in \Lambda_n^-$. Then, for x sufficiently large, fy'/sy > 1. Thus, y and y' have the same sign, which without loss of generality we take to be positive. It follows that y is positive and increasing and hence bounded away from 0 as $x \to \infty$. Hence, $y \notin L_p(0, \infty)$ and so λ is not an eigenvalue of (3.1), (3.2). \Box

Lemma 3.11. $\Lambda_0^- \neq \emptyset$.

Proof. For $\lambda < 0$, $\varphi(x, \lambda)$ satisfies the inequality

$$\varphi'(x,\lambda) \leqslant D + b(x) - f(x)q(x)|\sin_p \varphi(x,\lambda)|^p \tag{3.11}$$

with fq satisfying the conditions of §2. We take $\gamma = \frac{1}{2}\delta$ with δ chosen small enough to ensure $\frac{1}{2}\delta - \sin^2 \delta > 0$ and we apply Lemma 2.2 to find $Y_{\gamma,\delta}$ so that if $\varphi(x,\lambda)$ is a solution of (3.11), then

$$x > Y_{\gamma,\delta} \implies \varphi(x,\lambda) < \frac{1}{2}\delta \implies \varphi(x+t,\lambda) < \delta \quad \text{for all } t \ge 0.$$
 (3.12)

Note that $Y_{\gamma,\delta}$ does not depend on the choice of $\lambda < 0$.

Now, by Lemma 3.6, there exists $\lambda < 0$ such that $\varphi(Y_{\gamma,\delta},\lambda) < \frac{1}{2}\delta$ and so the conclusion of (3.12) holds. Lemma 2.4 completes the proof.

From Definition 3.4 and monotonicity of φ in λ ,

$$N_{\mu} := \lim_{\lambda \nearrow \mu} n(\lambda) \tag{3.13}$$

exists (finite or infinite) for each $\mu \in \mathbb{R}$. The main result of this section is the following.

Theorem 3.12. Assume that (3.8)-(3.10) are satisfied, and that

each set Λ_n^+ consists of at most one point. (3.14)

Then $\mathbb{R}_{-} = \bigcup_{n=0}^{N_0} \Lambda_n$ and, in the case $N_0 > 0$, there exists a sequence $\{\lambda_n\}_{n=-1}^{N_0-1} \subset \mathbb{R}_{-}$ such that $\lambda_{-1} = -\infty$ and

$$\Lambda_n^- = (\lambda_{n-1}, \lambda_n), \quad \Lambda_n^+ = \{\lambda_n\}, \quad \Lambda_n = (\lambda_{n-1}, \lambda_n] \quad \text{whenever } 0 \leq n < N_0.$$

Moreover, if $N_0 < \infty$, then $\Lambda_{N_0} = \Lambda_{N_0}^- = (\lambda_{N_0-1}, 0)$.

Proof. First, note that $\varphi(x, \lambda)$ increases monotonically in λ for any x and thus the sets Λ_n^-, Λ_n^+ and Λ_n are intervals. Now Lemmas 2.5 and 3.2 (i) and Equation (3.6) can be used to prove that Λ_n^- is open for each n.

Consider the case $N_0 < \infty$. Let us show that $\Lambda_{N_0}^+ = \emptyset$. Indeed, if $\lambda_* \in \Lambda_{N_0}^+$, then (3.14) implies $\sup_{x \in \mathbb{R}_+} \varphi(x, \lambda) > (N_0 + 1)\pi_p$ for $\lambda \in (\lambda_*, 0)$ and this contradicts the definition of N_0 .

By Lemma 3.11, $\Lambda_0^- = \mathbb{R}_-$ if $N_0 = 0$ and $\Lambda_0^- = (-\infty, \lambda_0)$ if $N_0 > 0$, where $\lambda_0 < 0$. In the latter case, Lemmas 2.4 and 2.2 imply that $\lim_{x\to\infty} \varphi(x,\lambda_0) = \pi_p$. Since Λ_1^- is open, we see that $\lambda_0 \in \Lambda_0^+$. Now (3.14) shows that $\Lambda_0^+ = \{\lambda_0\}$.

Applying Lemmas 2.4 and 2.2 again, we see that $\Lambda_1^- \neq \emptyset$. Finally, the proof may be completed by induction on n (cf. [2, Theorem 4.2]).

The case $N_0 = \infty$ is similar, but simpler.

$$\square$$

In what follows, f will be chosen in accordance with various assumed properties of s and q in order to show that the eigenvalues of (3.1), (3.2) are exactly the points in the sets Λ_n^+ .

4. Non-oscillatory cases

We return to the IVP (3.1), (3.2) and consider the following conditions

there exists
$$\bar{c} > 0$$
 so that $\int_{x}^{x+1} s(t) \, \mathrm{d}t < \bar{c}$ for every $x > 0$ (4.1)

and

$$\lim_{x \to \infty} \int_{x}^{x+1} q^{-}(t) \,\mathrm{d}t = 0.$$
(4.2)

Similar conditions were used in [14, Theorem 15.1 (a)] to prove $\lambda_{\rm e} \ge 0$ for p = 2.

4.1. We start by defining

$$I(x) = \int_x^{x+1} q^-(t) \,\mathrm{d}t,$$

which is absolutely continuous in x, and we write

$$\tilde{I}(x) = \max\{I(t) : t \ge x\} \text{ for } x \ge 1.$$

Next we define

$$\tilde{I}(x) = a2^{-x}$$
 for $0 \le x < 1$

where a > 0 is chosen so that

$$I(x) \leqslant a2^{-x} \quad \text{for } 0 \leqslant x \leqslant 1$$

and

$$\tilde{I}(1) \leqslant a2^{-1}$$

Then $\tilde{I}(x)$ is defined for all x, is non-increasing, and $\tilde{I}(x) \to 0$ as $x \to \infty$. Now we set

$$\hat{I}(x) = \begin{cases} \tilde{I}(x), & 0 \le x < 1, \\ \max\{\frac{1}{2}\hat{I}(x-1), \tilde{I}(x)\}, & x \ge 1, \end{cases}$$

thereby defining $\hat{I}(x)$ inductively for all x. It is easy to see (again, for example, inductively) that \hat{I} is positive and non-increasing and thus has a limit $L \ge 0$ as $x \to \infty$. Moreover, note that, for $x \ge 1$,

$$\hat{I}(x) \leqslant \frac{1}{2}\hat{I}(x-1) + \tilde{I}(x)$$

from which it follows that $L \leq \frac{1}{2}L$ and so L = 0. We further note that, for $x \ge 1$,

$$\frac{\hat{I}(x)}{\hat{I}(x-1)} \ge \frac{1}{2}.$$

Now, defining

$$J(x) = \begin{cases} \int_0^1 \hat{I}(t) \, \mathrm{d}t, & 0 \leqslant x \leqslant 1, \\ \int_{x-1}^x \hat{I}(t) \, \mathrm{d}t, & x \ge 1, \end{cases}$$

we immediately see that $J'(x) \leq 0$ for $x \geq 1$, so J is non-increasing. Moreover, $\hat{I}(x-1) \leq J(x) \leq \hat{I}(x)$ so $J \to 0$ as $x \to \infty$.

Finally, we put

$$f(x) = \left(\frac{1}{J(x)}\right)^{1/(p-1)}$$
(4.3)

 \mathbf{SO}

f is non-decreasing and tends to ∞ as $x \to \infty$. (4.4)

Theorem 4.1. As defined above, f satisfies (3.8)–(3.10).

Proof. We first note that

$$\begin{aligned} \frac{f'(x)}{f(x)} &= -\frac{J'(x)}{(p-1)J(x)} = \frac{\hat{I}(x-1) - \hat{I}(x)}{(p-1)J(x)} \\ &\leqslant \frac{\hat{I}(x-1) - \hat{I}(x)}{(p-1)\hat{I}(x)} \leqslant \frac{2}{p-1} - \frac{1}{p-1} \leqslant \frac{1}{p-1}, \end{aligned}$$

so f satisfies (3.8). In addition we have

$$\int_x^{x+1} \frac{s(t)}{f(t)} \, \mathrm{d}t \leqslant \frac{1}{f(x)} \int_x^{x+1} s(t) \, \mathrm{d}t \leqslant \frac{\bar{c}}{f(x)},$$

which tends to zero as $x \to \infty$ by (4.4), thus verifying (3.9). Next,

$$\int_{x}^{x+1} f(t)^{p-1} q^{-}(t) dt \leq f(x+1)^{p-1} I(x)$$

$$\leq f(x+1)^{p-1} \tilde{I}(x)$$

$$\leq f(x+1)^{p-1} \hat{I}(x)$$

$$= \frac{\hat{I}(x)}{J(x+1)} \leq \frac{\hat{I}(x)}{\hat{I}(x)} \leq 1.$$
 (4.5)

Hence, for $\lambda < 0$,

$$\int_{x}^{x+1} f(t)^{p-1} (q(t) - \lambda)^{-} dt \leq \int_{x}^{x+1} f(t)^{p-1} q^{-}(t) dt \leq 1,$$
(4.6)

so (B⁻) is satisfied. Moreover, for any $0 < \varepsilon \leqslant 1$ and $\lambda < 0$,

$$\int_{x}^{x+\varepsilon} f(t)^{p-1} (q(t) - \lambda)^{+} dt \to \infty \quad \text{as } x \to \infty.$$

Note that

$$\int_{x}^{x+\varepsilon} f(t)^{p-1} (q(t) - \lambda)^{+} dt$$

$$= \int_{x}^{x+\varepsilon} f(t)^{p-1} (q(t) - \lambda) dt + \int_{x}^{x+\varepsilon} f(t)^{p-1} (q(t) - \lambda)^{-} dt$$

$$\geqslant |\lambda| \int_{x}^{x+\varepsilon} f(t)^{p-1} dt + \int_{x}^{x+\varepsilon} f(t)^{p-1} q^{+}(t) dt - \int_{x}^{x+\varepsilon} f(t)^{p-1} q^{-}(t) dt$$

$$\geqslant |\lambda| f(x)^{p-1} \varepsilon - 1$$

by (4.5). Now (M^+) follows from (4.4).

4.2. We now give some results to prepare for Theorem 4.5, which is the main result of this section.

Lemma 4.2. Suppose $\lambda < 0$ and $\lambda \in \Lambda_n^+$ for some *n*. Then $\liminf_{x\to\infty} \theta(x,\lambda) > (n+\frac{1}{2})\pi_p$, where $\theta(x,\lambda)$ is the unmodified Prüfer angle defined by (3.3).

Proof. Since $\varphi(x,\lambda) \to (n+1)\pi_p$ from below as $x \to \infty$, we see that

$$\theta(x,\lambda) \in \left((n+\frac{1}{2})\pi_p, (n+1)\pi_p \right) \quad \text{for } x > X, \tag{4.7}$$

where X is sufficiently large.

Assume that $\liminf_{x\to\infty} \theta(x,\lambda) = (n+\frac{1}{2})\pi_p$. Then, for any $\eta > 0$ small enough, there exists a sequence $\{x_n\}_1^\infty$ such that $\lim_{n\to\infty} x_n = \infty$ and

$$(n+\frac{1}{2})\pi_p < \theta(x_n,\lambda) < (n+\frac{1}{2})\pi_p + \eta_p$$

Let

$$\delta_n := \sup\{\delta \in (0,1] : \theta(x_n + \varepsilon, \lambda) < (n + \frac{1}{2})\pi_p + 3\eta \text{ for all } \varepsilon < \delta\}.$$

In particular,

if
$$\theta(x_n + \delta_n, \lambda) < (n + \frac{1}{2})\pi_p + 3\eta$$
, then $\delta_n = 1.$ (4.8)

It follows from (4.2) that there exists X' > X such that

$$\int_{x}^{x+1} q^{-}(t) \, \mathrm{d}t < \eta \quad \text{if } x \geqslant X'.$$

Assume that $x_n > X'$. We see from (3.3) and (4.1) that

$$\theta(x_n + \delta_n, \lambda) < (n + \frac{1}{2})\pi_p + \eta + \bar{c}|\sin'_p(\frac{1}{2}\pi_p + 3\eta)|^p + \eta < (n + \frac{1}{2})\pi_p + 3\eta$$

whenever

$$|\sin_p'(\frac{1}{2}\pi_p + 3\eta)|^p < \eta/\bar{c}.$$
(4.9)

Let us show that (4.9) is fulfilled for $\eta > 0$ small enough. Indeed, using properties of the function \sin_p (see, for example, [4, §1]), one finds, for $0 < \nu < \frac{1}{2}\pi_p$,

$$|\sin'_{p}(\frac{1}{2}\pi_{p}+\nu)|^{p} = 1 - |\sin_{p}(\frac{1}{2}\pi_{p}+\nu)|^{p}$$

$$= 1 - \sin^{p}_{p}(\frac{1}{2}\pi_{p}-\nu)$$

$$= \int_{\frac{1}{2}\pi_{p}-\nu}^{\pi_{p}/2} (\sin^{p}_{p}(t))' dt$$

$$= p \int_{\pi_{p}/2-\nu}^{\pi_{p}/2} \sin^{p-1}_{p}(t) \sin'_{p}(t) dt$$

$$< p\nu \sin'_{p}(\frac{1}{2}\pi_{p}-\nu).$$

Since $\sin'_p(\frac{1}{2}\pi_p) = 0$, (4.9) holds if $\sin'_p(\frac{1}{2}\pi_p - 3\eta) < 1/3p\bar{c}$.

P. Binding, P. J. Browne and I. M. Karabash

Thus, by (4.8), there exists $N \in \mathbb{N}$ such that n > N implies

$$(n+\frac{1}{2})\pi_p < \theta(x_n+\delta,\lambda) < (n+\frac{1}{2})\pi_p + 3\eta$$
 for all $\delta \in (0,1]$.

Now with (4.9) we see that if $3\eta/|\sin_p(\frac{1}{2}\pi_p+3\eta)|^p<-\lambda$, then

$$\theta(x_n+1,\lambda) < (n+\frac{1}{2})\pi_p + 3\eta + \lambda |\sin_p(\frac{1}{2}\pi_p + 3\eta)|^p < (n+\frac{1}{2})\pi_p,$$
(4.10)

so (4.10) holds for η small enough and contradicts (4.7).

At this point we shall make an assumption complementary to (4.1):

there exists
$$\underline{c} > 0$$
 so that $\underline{c} < \int_{x}^{x+1} s(t) \, \mathrm{d}t$ for every $x > 0$. (4.11)

Lemma 4.3. Suppose $0 > \lambda \in \Lambda_n^+$ for some n. If y satisfies (3.1) and (3.2), then

- (i) y'/s is bounded on $[0, \infty)$,
- (ii) $|y(x)| < Ae^{-kx}$, x > 0, for certain constants A, k > 0,
- (iii) $q^-y^p \in L_1$.

Proof. (i) Since $\varphi(x,\lambda) \to (n+1)\pi_p$ from below, we can assume without loss that

$$\theta(x,\lambda) \in ((n+\frac{1}{2})\pi_p, (n+1)\pi_p), \quad y(x) > 0 \text{ and } y'(x) < 0$$

for $x \ge X$, where X is sufficiently large. Thus, $0 < y(x) \le y(X)$ for $x \ge X$.

Assume that for a sequence $x_j \to \infty$ we have $y'(x_j)/s(x_j) \to -\infty$. Then, for x > X+1and $0 \leq t \leq 1$,

$$({}^{\circ}|y'/s|^{p-1})' = (p-1)(q-\lambda){}^{\circ}|y|^{p-1} \ge -(p-1)(q-\lambda){}^{-}y^{p-1},$$

$$\int_{x-t}^{x} ({}^{\circ}|y'/s|^{p-1})' \ge -(p-1)\int_{x-t}^{x} (q-\lambda){}^{-}y^{p-1} \ge -(p-1)(y(X))^{p-1}(C_{1}+|\lambda|),$$

where

$$C_1 = \max_{x \ge X} \int_x^{x+1} q^- \,\mathrm{d}t < \infty.$$

Hence,

$$|y'(x)/s(x)|^{p-1} - |y'(x-t)/s(x-t)|^{p-1} \ge -(p-1)(y(X))^{p-1}(C_1 + |\lambda|),$$

$$|y'(x)/s(x)|^{p-1} - |y'(x-t)/s(x-t)|^{p-1} \le (p-1)(y(X))^{p-1}(C_1 + |\lambda|).$$

Now, choosing j large enough to ensure

$$|y'(x_j)/s(x_j)|^{p-1} > (p-1)(y(X))^{p-1}(C_1+|\lambda|) + \left(\frac{2}{\underline{c}}y(X)\right)^{p-1},$$

we see that

$$|y'(x_j - t)/s(x_j - t)| \ge \frac{2}{\underline{c}}y(X),$$

$$y'(x_j - t) \le -\frac{2}{\underline{c}}y(X)s(x_j - t),$$

$$\int_0^1 y'(x_j - t) \, \mathrm{d}t \le -\frac{2}{\underline{c}}y(X) \int_0^1 s(x_j - t) \, \mathrm{d}t \le -\frac{2}{\underline{c}}y(X)\underline{c},$$

$$y(x_j) - y(x_j - 1) \le -2y(X).$$

Hence,

$$y(x_j) \leqslant -2y(X) + y(x_j - 1) \leqslant -y(X) < 0.$$

This contradiction establishes statement (i).

(ii) By Lemma 4.2, we can assume that

$$\frac{y'(x)}{sy(x)}(x) < -C_2 \quad \text{for } x \ge X_1,$$

where C_2 and X_1 are certain positive constants. Using (4.1), we obtain, for $x \ge X_1$,

$$\ln y(x) - \ln y(X_1) = \int_{X_1}^x \frac{y'(t)}{y(t)} \, \mathrm{d}t < -C_2 \int_{X_1}^x s(t) \, \mathrm{d}t < -C_2 \underline{c}(x - X_1 - 1)$$

and $y(x) < y(X_1) e^{C_2 \underline{c}(X_1+1)} e^{-C_2 \underline{c}x}$.

(iii) This follows from [3, Lemma 3.2].

4.3. We are now ready to establish the remaining assumption of Theorem 3.12.

Theorem 4.4. Each set Λ_n^+ contains at most one point.

Proof. Suppose λ and μ both belong to Λ_n^+ and $\lambda < \mu$, so

$$\theta(x,\lambda) < \theta(x,\mu) < (n+1)\pi_n$$

for all x. Suppose y and z are non-trivial solutions of (3.1), (3.2) corresponding to λ and μ , respectively. We define x_0 by

$$\theta(x_0, \lambda) = n\pi_p \quad \text{when } n \ge 1,$$

 $x_0 = 0 \quad \text{when } n = 0$

and we take v to be the solution of the IVP consisting of the differential equation (3.1) on $[x_0, \infty)$ with μ in place of λ and subject to the initial condition $v(x_0) = 0$ when $n \ge 1$ or $n = \alpha = 0$, and $v'(x_0)/s(x_0)v(x_0) = \cot_p(\alpha)$ when $n = 0 \ne \alpha$. Note that, for n = 0, v = z and, furthermore, we can assume that y, v are of one sign, which we take to be positive on (x_0, ∞) .

If we define an angle θ_v on $[x_0, \infty)$ via $v'/sv = \cot_p \theta_v$, then

$$\theta(x,\lambda) - n\pi_p < \theta_v < \theta(x,\mu) - n\pi_p,$$

so $\liminf_{x\to\infty}\theta_v(x)>\frac12\pi_p$ follows from Lemma 4.2. As in the proof of Lemma 4.3 (ii), we now have

 $v(x) < A_v e^{-k_v x}$ for $x > x_0$ and v'/s remains bounded as $x \to \infty$. (4.12)

For small $\varepsilon > 0$ we use

$$w = \frac{y^p}{(v+\varepsilon)^{p-1}}$$

 \mathbf{SO}

286

$$w' = \frac{py^{p-1}y'}{(v+\varepsilon)^{p-1}} - \frac{(p-1)y^pv'}{(v+\varepsilon)^p}.$$

Now the *p*-Laplacian version of Picone's identity [1, Theorem 1.1] shows that

$$R = R(y, v, \varepsilon) := |y'|^p - w'|v'|^{p-2}v' \ge 0 \text{ for a.a. } x > x_0,$$

and hence, for any $b > x_0$,

$$\begin{split} 0 &\leqslant \int_{x_0}^{b} \frac{R}{s^{p-1}} = \int_{x_0}^{b} {}^{\circ} |y'/s|^{p-1} y' - \int_{x_0}^{b} {}^{\circ} |v'/s|^{p-1} w' \\ &= (p-1) \int_{x_0}^{b} (\lambda - q) y^p - (p-1) \int_{x_0}^{b} (\mu - q) y^p \left(\frac{v}{v+\varepsilon}\right)^{p-1} + B|_{x_0}^{b} \\ &= (p-1) \int_{x_0}^{b} y^p \left(\lambda - \mu \left(\frac{v}{v+\varepsilon}\right)^{p-1}\right) - (p-1) \int_{x_0}^{b} q y^p \left(1 - \left(\frac{v}{v+\varepsilon}\right)^{p-1}\right) + B|_{x_0}^{b} \\ &\leqslant (p-1) \int_{x_0}^{b} y^p \left(\lambda - \mu \left(\frac{v}{v+\varepsilon}\right)^{p-1}\right) + (p-1) \int_{x_0}^{b} q^- y^p \left(1 - \left(\frac{v}{v+\varepsilon}\right)^{p-1}\right) + B|_{x_0}^{b} \end{split}$$

where

$$B = {}^{\mathrm{o}}|y'/s|^{p-1}y - {}^{\mathrm{o}}|v'/s|^{p-1}w.$$

Let $b \to \infty$ and note, by Lemma 4.3 (i), (ii) and (4.12), that $B(b) \to 0$. This gives

$$0 \leq (p-1) \int_{x_0}^{\infty} y^p \left(\lambda - \mu \left(\frac{v}{v+\varepsilon}\right)^{p-1}\right) + (p-1) \int_{x_0}^{\infty} q^- y^p \left(1 - \left(\frac{v}{v+\varepsilon}\right)^{p-1}\right) \\ - {}^{\mathrm{o}} |\cot_p \alpha|^{p-1} (y(x_0))^p \left(1 - \left(\frac{v(x_0)}{v(x_0)+\varepsilon}\right)^{p-1}\right),$$

where the last term is to be taken as 0 unless $n = 0 \neq \alpha$. Now let $\varepsilon \to 0$ and, noting Lemma 4.3 (iii), use Lebesgue's Dominated Convergence Theorem to obtain

$$0 \leqslant \int_{x_0}^{\infty} y^p (\lambda - \mu) < 0.$$

This contradiction establishes the result.

287

4.4. Taking Theorem 3.12 into account, we can summarize the results of this section as follows.

Theorem 4.5. Under conditions (4.1), (4.2) and (4.11), the conclusions of Theorem 3.12 hold, and the λ_n therein are precisely the negative eigenvalues of problem (3.1), (3.2). For any eigenfunction y_n (associated with λ_n) we have $y_n e^{kx} \in L_\infty$ for some k > 0, $y'_n s^{-1} \in L_\infty$ and $y'_n s^{1-1/p} \in L_1$.

Proof. This follows from Theorems 3.12, 4.1 and 4.4, Lemma 4.3 and from suitable amendment to the proof of [3, Theorem 4.1].

Note that one can now easily obtain Sturmian comparison properties for eigenvalues as in [3, Theorem 4.3] and the fact that y_n has precisely n zeros in $(0, +\infty)$ as in [3, Corollary 4.2].

4.5. A special case

We conclude this section with the situation where s satisfies (4.1) and (4.11), and lim inf q(x) is finite (say 0 after a shift of eigenparameter) as $x \to \infty$. Then one may replace (4.3) by the simpler formula f(x) = x + 1. Indeed, (3.8) and (3.9) are obvious, as is (B⁻) in (3.10). To establish (M⁺), we note that, for $\lambda < 0$ and x sufficiently large, $q(x) > \frac{1}{2}\lambda > \lambda$. For such x we have

$$\int_{x}^{x+1} (f(t)(q(t) - \lambda))^{+} dt = \int_{x}^{x+1} (t+1)(q(t) - \lambda) dt$$
$$\geqslant \int_{x}^{x+1} (t+1)(-\frac{1}{2}\lambda) dt \to \infty \quad \text{as } x \to \infty$$

Thus, this simple modification φ of θ also has the $k\pi_p$ property. As special cases one could consider certain situations of [10, Chapter XIII] where p = 2 and s(x) and q(x) are both continuous in x and have limits as $x \to \infty$. We note that θ need not have the $k\pi_p$ property, and, for example, when s = 1 and q is continuous with $q(x) \to 0$ as $x \to \infty$, Brown and Eastham [6] have shown (for $\lambda < 0$) that $\theta(x, \lambda)$ has a limit which is not a multiple of π_p as $x \to \infty$.

5. Oscillatory cases

We shall call the problem (3.1), (3.2) oscillatory at λ if some (and hence every) solution y has infinitely many zeros on \mathbb{R}^+ . The converse property was the subject of the previous sections. Since the angle $\theta(x, \lambda)$ (or its modified version $\varphi(x, \lambda)$) increases through multiples of π_p , oscillatory behaviour is equivalent to unboundedness of such angles as $x \to \infty$. In this section we shall examine some oscillatory situations, leading to conditions for location of λ_e and for existence of infinitely many eigenvalues below λ_e .

Theorem 5.1. Assume that there exist sequences $\{x_n\}_1^\infty$, $\{y_n\}_1^\infty$, $\{c_n\}_1^\infty$ such that

- (i) $0 \leq x_n < y_n$ and $0 < c_n$ for all $n \in \mathbb{N}$, and c_n are bounded,
- (ii) $c_n(y_n x_n) \to +\infty \text{ as } n \to \infty,$

(iii)
$$\frac{1}{c_n(y_n - x_n)} \int_{x_n}^{y_n} ((c_n - s(t))^+ + q^+(t)) dt \to 0 \text{ as } n \to \infty.$$

Then the problem (3.1), (3.2) is oscillatory at any $\lambda > 0$; in particular, $\lambda_{\rm e} \leq 0$.

Proof. From (3.3),

$$\begin{aligned} \theta(y_n,\lambda) &\ge \theta(y_n,\lambda) - \theta(x_n,\lambda) \\ &= \int_{x_n}^{y_n} \theta'(t,\lambda) \, \mathrm{d}t \\ &= \int_{x_n}^{y_n} (s|\sin'_p \theta|^p - (q-\lambda)|\sin_p \theta|^p) \\ &\geqslant \int_{x_n}^{y_n} (c_n|\sin'_p \theta|^p + \lambda|\sin_p \theta|^p) - \int_{x_n}^{y_n} ((c_n-s)|\sin'_p \theta|^p + q|\sin_p \theta|^p) \\ &\geqslant \min\{c_n,\lambda\}(y_n-x_n) - \int_{x_n}^{y_n} ((c_n-s)^+ + q^+) \, \mathrm{d}t. \end{aligned}$$

If $c_n > c > 0$ for all n, then, with $C = \min\{c, \lambda\} > 0$, we have

$$\theta(y_n,\lambda) \ge (y_n - x_n) \left(C - \frac{1}{y_n - x_n} \int_{x_n}^{y_n} ((c_n - s)^+ + q^+) \,\mathrm{d}t \right) \to +\infty$$

since we can replace $c_n(y_n - x_n)$ by $y_n - x_n$ in (ii) and (iii).

If $\{c_n\}$ is not bounded away from 0, we can assume (for simplicity of notation) that $\lim_{n\to\infty} c_n = 0$. Then, for *n* large enough,

$$\theta(y_n,\lambda) \ge c_n(y_n-x_n) \left(1 - \frac{1}{c_n(y_n-x_n)} \int_{x_n}^{y_n} ((c_n-s)^+ + q^+) \,\mathrm{d}t\right),$$

and the right-hand side tends to $+\infty$ by (ii) and (iii).

Taking $x_n = 0$, $y_n = x$ and $c_n = c$, we obtain the following.

Corollary 5.2. Assume that there exists a constant c > 0 such that

$$\liminf_{x \to \infty} \frac{1}{x} \int_0^x ((c - s(t))^+ + q^+(t)) \, \mathrm{d}t = 0.$$
(5.1)

Then the conclusions of Theorem 5.1 hold.

A stronger condition was used in [14, Theorem 15.1 (b)] when p = 2 for a stronger conclusion.

If we combine Corollary 5.2 with the work of $\S4$, then we obtain the following.

Corollary 5.3. If (4.1), (4.2), (4.11) and (5.1) hold, then the $k\pi_p$ property holds for every eigenvalue below $0 = \lambda_e$.

We turn now to the number of eigenvalues below $\lambda_{\rm e}$, which is also related to oscillatory behaviour. The connection depends on the following result, which we express in terms of N_{μ} introduced in (3.13).

Theorem 5.4. Let $\mu \in \mathbb{R}$. Then the problem (3.1), (3.2) is oscillatory at μ if and only N_{μ} is infinite.

Proof. Since 'only if' is evident, suppose that IVP (3.1), (3.2) is oscillatory at μ , but that $k = N_{\mu}$ is finite. Since $\theta(x, \mu) \to +\infty$ with x, we can choose x_k to ensure that

$$\theta(x_k,\mu) > k\pi_p. \tag{5.2}$$

On the other hand, $\theta(x, \lambda)$ cannot decrease through multiples of π_p as x increases, so $\theta(x_k, \lambda) < k\pi_p$ for all $\lambda < \mu$. Since the right-hand side of (3.3) is continuous in λ , obeys Carathéodory's conditions in (x, θ) and is Lipschitz in θ , $\theta(x_k, \lambda)$ is continuous in λ at μ . Letting $\lambda \nearrow \mu$, we obtain $\theta(x_k, \mu) \leq k\pi_p$, contradicting (5.2).

Thus, the distinction between whether there are infinitely or finitely many λ_n in Theorem 3.12 depends on whether IVP (3.1), (3.2) is oscillatory or not at 0. Indeed, from Theorems 4.5 and 5.4, we have the following.

Corollary 5.5. Assume that (4.1), (4.2) and (4.11) hold. Then each negative eigenvalue satisfies the $k\pi_p$ property. If, in addition,

$$IVP(3.1), (3.2)$$
 is oscillatory at 0, (5.3)

then there are infinitely many negative eigenvalues converging to $0 = \lambda_{e}$. Similarly, if (5.3) fails, then there are only finitely many negative eigenvalues.

The oscillatory condition (5.3) is connected with the Elbert–Prüfer angle via Theorem 5.4 and Definition 3.4. The following result gives a corresponding analogue of Theorem 5.1.

Theorem 5.6. Assume that there exist sequences $\{x_n\}_1^\infty$ and $\{y_n\}_1^\infty$ such that $0 \leq x_n < y_n$ and

$$\lim_{n \to +\infty} \int_{x_n}^{y_n} \min\{-q(t), s(t)\} \, \mathrm{d}t = +\infty.$$
(5.4)

Then $N_0 = +\infty$, so IVP (3.1), (3.2) is oscillatory at 0.

Proof. Let us show that

for any $N \in \mathbb{N}$ there exist $\lambda_0 < 0$ and $n \in \mathbb{N}$ such that $\theta(y_n, \lambda_0) > N\pi_p$. (5.5)

Indeed, for negative λ , we have

$$\theta(y_n, \lambda) - \theta(x_n, \lambda)$$

$$= \int_{x_n}^{y_n} (s(t)|\sin'_p \theta(t, \lambda)|^p - (q(t) - \lambda)|\sin_p \theta(t, \lambda)|^p) dt$$

$$\geqslant \int_{x_n}^{y_n} (\min\{-q(t), s(t)\}|\sin'_p \theta(t, \lambda)|^p + \min\{-q(t), s(t)\}|\sin_p \theta(t, \lambda)|^p) dt$$

$$+ \lambda \int_{x_n}^{y_n} |\sin_p \theta(t, \lambda)|^p dt$$

$$\geqslant \int_{x_n}^{y_n} \min\{-q(t), s(t)\} dt - |\lambda|(y_n - x_n).$$
(5.6)

It follows from (5.4) that

$$\int_{x_n}^{y_n} \min\{-q(t), s(t)\} \,\mathrm{d}t > N\pi_p + 1 \quad \text{for some } n.$$

Taking $\lambda_0 \in (-(y_n - x_n)^{-1}, 0)$, we see that (5.6) implies $\theta(y_n, \lambda_0) - \theta(x_n, \lambda_0) > N\pi_p$ and so (5.5) is satisfied.

Thus, $n(\lambda_0) \ge N$, whence $N_0 \ge N$ and, since N is arbitrarily large, the proof is complete.

There is a substantial literature on oscillation conditions for p = 2 (cf. [10, 13, 15]), and even for 1 (cf. [9]). We shall give two comparisons with our work. Thefirst concerns the Leighton–Wintner conditions, which were generalized to <math>1in [9, Theorem 1.2.9] in a form equivalent to

$$\int^{\infty} s^{1/(p-1)} = +\infty \tag{5.7}$$

and

$$\int^{\infty} q = -\infty. \tag{5.8}$$

Hölder's inequality shows that (4.11) implies (5.7) for 1 , so, for such <math>p, (5.3) may be replaced by (5.8) in Corollary 5.5. This result may be compared with [13, Theorem 2.19], which (for p = 2) uses (5.8) and various extra conditions on q and s to obtain an infinite number of eigenvalues below λ_e , but with no conclusion about the $k\pi$ property. Also, if we take $x_n = 0$, $y_n = x$ in Theorem 5.6, then we see that

$$\int_0^\infty \min\{-q(t), s(t)\} \,\mathrm{d}t = +\infty \tag{5.9}$$

can be used instead of (5.4) in Theorem 5.6. When p = 2, the Leighton–Wintner conditions are implied by (5.9). On the other hand, (5.7) is not implied by (5.4) for p = 2, or by the special case (5.9) for any $p \neq 2$.

Our second comparison concerns Kneser's condition, for which we assume s = 1. Then

$$\limsup_{x \to \infty} x^p q(x) < -(1 - p^{-1})^p \tag{5.10}$$

suffices for (5.3) (see [9, Theorem 1.4.5] for an equivalent version). Thus, (5.10) may be used instead of (5.3) in Corollary 5.5. Moreover, [9, Theorem 1.4.5] also shows that

$$\liminf_{x \to \infty} x^p q(x) > -(1 - p^{-1})^p$$

suffices for (3.1), (3.2) to be non-oscillatory at 0, so, by the final sentence of Corollary 5.5, only finitely many negative eigenvalues exist; this result was recently proved directly (for continuous q) in [6, Theorem 3.2].

Acknowledgements. The research of P.B. was supported in part by grants from the NSERC of Canada. I.M.K. was supported by a Postdoctoral Fellowship at the University of Calgary.

References

- W. ALLEGRETTO AND Y. HUANG, A Picone's identity for the *p*-Laplacian and applications, Nonlin. Analysis 32 (1998), 819–830.
- 2. P. BINDING, L. BOULTON AND P. J. BROWNE, A Prüfer angle approach to singular Sturm-Liouville problems with Molčanov potentials, *J. Computat. Appl. Math.* **208** (2007), 226–234.
- 3. P. BINDING AND P. J. BROWNE, Generalized Prüfer angle and variational methods for *p*-Laplacian eigenvalue problems on the half-line, *Proc. Edinb. Math. Soc.* **51** (2008), 565–579.
- P. BINDING AND P. DRÁBEK, Sturm-Liouville theory for the p-Laplacian, Studia Sci. Math. Hungar. 40 (2003), 375–396.
- 5. I. BRINCK, Self-adjointness and spectra of Sturm-Liouville operators, *Math. Scand.* 7 (1959), 219–239.
- 6. M. BROWN AND M. EASTHAM, Eigenvalues of the radial *p*-Laplacian with a potential on $(0, \infty)$, J. Computat. Appl. Math. **208** (2007), 111–119.
- M. BROWN AND W. REICHEL, Eigenvalues of the radially symmetric *p*-Laplacian, J. Lond. Math. Soc. 69 (2004), 657–675.
- 8. R. E. CRANDALL AND M. RENO, Ground state energy bounds for potentials $|x|^{\nu}$, J. Math. Phys. 23 (1982), 64–70.
- 9. O. DOŠLY AND P. ŘEHÁK, *Half-linear differential equations*, North-Holland Mathematics Studies, Volume 202 (Elsevier, 2005).
- 10. N. DUNFORD AND J. T. SCHWARTZ, *Linear operators*, Volume II (Wiley Interscience, 1964).
- A. ELBERT, A half-linear second-order differential equation, Colloq. Math. Soc. Janos Bolyai 30 (1979), 153–179.
- A. MOLČANOV, Conditions for the discreteness of the spectrum of self-adjoint secondorder differential equations, *Trudy Mosk. Mat. Obshc.* 2 (1953), 169–200 (in Russian).
- 13. E. MÜLLER-PFEIFFER, Spectral theory of ordinary differential operators (Ellis Horwood, New York, 1981).
- 14. J. WEIDMANN, Spectral theory of ordinary differential operators, Lecture Notes in Mathematics, Volume 1258 (Springer, 1987).
- 15. A. ZETTL, *Sturm-Liouville theory*, Mathematical Surveys and Monographs, Volume 121 (American Mathematical Society, Providence, RI, 2005).