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Abstract. A complete study is made of the 5/2 resonant motion of two planets revolving
around a star, in the model of the general planar three body problem. Families of 5/2 resonant
symmetric periodic orbits are computed numerically, for the masses of the extrasolar system
47 UMa. The phase of the two planets (alignment or antialignment of perihelia and position
of each planet at perihelion or aphelion) plays an important role, and the change of the phase,
other things being the same, may destabilize the system. Stable motion exists even in the case
where the two planetary orbits intersect. A small value of the eccentricities, for the same phase,
stabilizes the system. The above results are applied to the study of 47 UMa, which according
to some observations is close to the 5/2 resonance.
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1. Introduction
The stability and the long term evolution of a planetary system is determined from

the topology of its phase space. It is clear that the topology of the phase space of any
dynamical system depends on the position and the stability properties of the periodic
orbits, or equivalently, on the fixed points of the Poincaré map. In particular, the mean
motion resonances in a planetary system correspond to periodic motion, in a rotating
frame. This is the reason why the resonances play an important role in the study of the
long term evolution of a planetary system, although the corresponding periodic orbits
are a set of measure zero.

There are several planetary systems at different resonances, and we shall study in the
present paper the 5/2 resonance. This resonance appears in our own planetary system,
between Jupiter and Saturn. Also, according to Fisher et al. 2002, the extrasolar planetary
system 47 UMa has a ratio of the planetary periods equal to T2/T1 = 2.38, which can be
considered as close to the 5/2 resonance (but also close to the 7/3 resonance). A more
recent analysis of the observational data for 47 UMa (Fisher et al. 2003) revise these
values and give a new value for the planetary periods, T2/T1 = 2.64, which is close to
the 8/3 resonance (but not far from the 5/2 resonance). Altough the planetary masses
are also revised, the ratio m1/m2 is in all cases larger than unity.

There are several papers that study the dynamics of a planetary system at the 5/2
resonance and of the system 47 UMa in particular, by numerical simulations and analytic
work (Ji et al. 2003, Barnes and Quinn, 2004, Gozdziewski, 2002, Laughlin et al. 2002,
T.A.Michtchenko and S. Ferraz-Mello 2001, Beaugé et al. 2003). In the present study
we make a global analysis of the 5/2 resonant motion of a planetary system. In this
global analysis, we used for the planetary masses, the (minimum) masses given for the
47 UMa system by Fisher et al. (2002). Note that for these masses m1/m2 ≈ 0.30, which
is very close to the ratio of the masses of the Jupiter-Saturn system and consequently
the dynamics is also applicable to our own planetary system.
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Figure 1. The rotating frame xOy

We find all the basic families of resonant periodic orbits at this resonance and in this
way we have a complete knowledge of the regions of the phase space where stable motion
exists. The orbits are periodic in a non-uniformely rotating frame, which means that
the relatative configuration is repeated in space, and are symmetric with respect to the
rotating x-axis, defined in the next section. The stability analysis of these families gives
the regions of the phase space where a planetary system at the 5/2 resonance can exist,
and also the regions of the phase space where a planetary system could be trapped, if it
had followed in the past a migration process. In addition, the motion close to a stable
periodic orbit is the motion with small variation of the orbital elements, a condition
which may play an important role in the appearance of life.

The general study of the 5/2 resonance that we made is applied to the observed extra-
solar planetary system 47 UMa, using the data given by Fisher et al. 2002. The stability
of this system, for different initial phases, is compared with the exact resonant periodic
motion at the 5/2 resonance.

In all the following the central star will be called the sun, the inner planet will be
called P1 and the outer planet P2.

2. The dynamical Model
The model we used in the study of periodic motion of the planetary system is the

general three body problem, for planar motion.
The center of mass of the planetary system is considered as fixed in an inertial frame,

and the study is made in a non-uniformely rotating frame of reference xOy, whose x-axis
is the line sun - P1, the origin O is the center of mass of these two bodies and the y-axis
is perpendicular to the x-axis (Figure 1). In this rotating frame P1 moves on the x-axis
and P2 in the xOy plane. The coordinates are the position x1 of P1, the position x2, y2

of P2 and the angle θ between the x-axis and a fixed direction in the inertial frame. The
coordinates x1, x2, y2, define the position of the system in the rotating frame and the
angle θ defines the orientation of the rotating frame, so these four coordinates determine
the position of the system in the inertial frame. This is a system of four degrees of
freedom, but it turns out that the angle θ is ignorable, and consequently the angular
momentum integral L = ∂L/∂θ̇=constant, where L is the Lagrangian of the system. So
the study is reduced to a system of three degrees of freedom, in the rotating frame only,
and the angular momentum L is a fixed parameter (Hadjidemetriou 1975).

Symmetric periodic orbits exist in the above rotating frame, such that the planet P2

starts perpendicularly from the x-axis (y2 = 0, ẋ2 = 0) and at that time ẋ1 = 0, and
after some time t = T/2 the planet P2 crosses again the x-axis perpendicularly and at
that time it is ẋ1 = 0. This means that the non zero initial conditions of a symmetric
periodic orbit, in the rotating frame, are x10, x20, ẏ20. So, a family of symmetric periodic
orbits is represented as a smooth curve in the three dimensional space x10 x20 ẏ20. The
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Figure 2. The three families of 5/2 resonant periodic orbits. The unstable sections are indicated
by a thicker line. The sectors I-IV, defined by the sign of e1 and e2, correspond to the different
phases given in Figure 3. The position of the 47 UMa is also shown, for all four possible phases.

symmetry implies that the perihelia of the two planets are either in the same direction
or in opposite directions when the two planets and the sun are aligned. Viewed from the
inertial frame, the line of apsides of the two planets precesses slowly, in such a way that
∆ω is equal to 0 or 2π.

In order to avoid duplication of the results we fix the units of mass, length and time.
This is achieved by taking the total mass of the system as the unit of mass, the grav-
itational constant equal to unity and also by keeping a fixed value of the angular mo-
mentum L for all the orbits of a family of periodic orbits. So, the normalizing conditions
are m0 + m1 + m2 = 1, G = 1, L = constant. In practice, we made the integration of
the planetary system in the inertial frame (where the center of mass is fixed) and the
reduction to three degrees of freedom, in the rotating frame, was made by a coordinate
transformation. The method of integration was based on Taylor series expansion, and
the accuracy was 10−14.

3. The 5/2 resonance
The extrasolar planetary system 47 UMa is close to a resonant system, but not exactly

resonant. The elements of this system that we used in the present study are (Fisher
et al. 2002): m0 = 1.03 MSUN , m1 sin i = 2.54 MJ, m2 sin i = 0.76 MJ, a1 = 2.09 AU,
a2 = 3.73, T1 = 1089 ± 3 d, T2 = 2594 ± 90 d, e1 = 0.061 ± 0.014, e2 = 0.1 ± 0.1,
ω1 = 1720, ω2 = 1270. Note that ω1 − ω2 = 450. For later updates see the web page
maintained by Jean Schneider (http://www.obspm.fr/encycl/catalog.html). The planetary
masses are multiplied by sin i, where i is the inclination of the planetary orbit and
are therefore the minimum masses. The observed values give a ratio of the planetary
periods equal to T2/T1 = 2.38, which is close to the 5/2 resonance (but also close to
the 7/3 resonance). In this paper we restrict the study to the computation of families of
periodic orbits for the 5/2 resonance and for the minimum masses of the system 47 UMa.
The study of the 7/3 and 8/3 resonances will be included in a forthcoming paper. In
all the computations we used normalized values of the (minimum) masses, which are
m0 = 0.996942, m1 = 0.002354, m2 = 0.000704.
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Figure 3. The four different configurations at t = 0 and t = T/2 (denoted by prime). The
planet P2 is at the same position after half a period, but the planet P1 shifts from perihelion to
aphelion (or vice versa). The panels I-IV correspond to the sectors of Figure 2 (for positive or
negative eccentricities), as indicated.

The 5/2 resonance is of a different nature than the 2/1 resonance, studied by Psychoyos
and Hadjidemetriou, 2004. In the present case there are two distinct resonant families,
that bifurcate from the family of circular orbits from two points close to each other. One
more family also exists, which does not bifurcate from the circular family.

3.1. Periodic orbits
In Figure 2 we present three families of 5/2 resonant periodic orbits, for the (normalized)
values of the masses of the planetary system 47 UMa. To make the presentation clearer
from the physical point of view, we present these families in the eccentricity space e1 e2,
instead of the initial condition space x10 x20 ẏ20. To avoid artificial discontinuities in
the presentation of the families, we use the notation ei > 0 for position of the planet
at aphelion and ei < 0 for position at perihelion (i = 1, 2). Note that for a symmetric
periodic orbit the planets are either at perihelion or at aphelion at t = 0 and at t = T/2,
where T is the period.

Along the families 1 and 2 (denoted by f1 and f2, respectively, in Figure 2), the
eccentricities of the planets increase, starting from zero values, because these two families
bifurcate from the circular family, where e1 = e2 = 0. For the family 3 (denoted by f3
in Figure 2), only the eccentricity e1 of the first planet crosses the zero point, while e2

stays at high values. We also computed the linear stability. The unstable sections of these
families are indicated by a thicker line. In Figure 3 we give the four possible positions of
a 5/2 resonant planetary system, corresponding to the four different configurations I-IV
of Figure 2. It is simple geometry to see that there are eight different initial positions
of the two planets at t = 0: The perihelia of the two planetary orbits can be aligned
or antialigned and in each case the planets can be either at perihelion or at aphelion.
These eight configurations are however equivalent in pairs, due to the fact that we are
at a symmetric resonance, and consequently there are only four different configurations.
Consider for example the case where the two planets are both at perihelia at t = 0 (cases
III and IV in Figure 3). After half a period, at t = T/2, P2 will be at perihelion but P1

will be at aphelion.

3.2. Stability
In order to find the region of stability around a periodic orbit, we perturbed it and com-
puted the Poincaré map on the surface of section y2 = 0. We considered as perturbation
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Figure 4. The evolution of the eccentricities of an orbit close to the stable periodic orbit 2 of
the family 2, when the orbit of P2 is rotated by 100 (panel a) and by 450 (panel b). The motion
is bounded for a small perturbation, but for a larger perturbation the system is destabilized.
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Figure 5. The evolution of the eccentricities of an orbit close to the unstable periodic orbit 1 of
the family 2, when the orbit of P2 is rotated by 100 (panel a) and by 450 (panel b). The motion
is chaotic, implying that large values of the eccentricities destabilize the system.
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Figure 6. The evolution of the eccentricities of an orbit close to the unstable periodic orbits 3
(panel a) and 4 (panel b) of the family 2, when the orbit of P2 is rotated by 450. The motion
is bounded, but the amplitude of the variation is much larger for the orbit 4, which has larger
eccentricities than the orbit 3.

the rotation of the orbit of P2, at t = 0, by a certain angle, thus destroying the symmetry
of the system. Some typical results are given bellow.

We considered first the stable periodic orbit 2 on the family 2 (Figure 4a), which
corresponds to the phase where the perihelia are antialigned and P1 is at perihelion and
P2 at aphelion (phase I). This orbit is linearly stable and a small perturbation, which in
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Figure 7. The evolution of the eccentricities of an orbit close to the unstable periodic orbit
5 (panel a) and the stable periodic orbit 6 (panel b) of the family 1, when the orbit of P2 is
rotated by 450. The motion is bounded, but the amplitude of the variation is much larger for
the unstable orbit 5 which has larger eccentricities than the orbit 6.
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Figure 8. The evolution of the semimajor axes (panel a) and of the eccentricities (panel b), of
an orbit close to the unstable periodic orbit 7 of the family 1, when the orbit of P2 is rotated
by 100. The motion is bounded.
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Figure 9. The evolution of the semimajor axes (panel a) and of the eccentricities (panel b), of
an orbit close to the unstable periodic orbit 8 of the family 1, when the orbit of P2 is rotated
by 100. The motion is chaotic.

this case is the rotation of P2 by 100, gives bounded motion. We remark that the two
planetary orbits intersect, and still the motion is stable. A larger perturbation however
(rotation by 450), destabilizes the system (Figure 4b). Next, we consider the unstable
orbit 1 of the same family 2, which has the same phase but larger eccentricities than
the orbit 2. A rotation of the orbit of P2 by 100 and also by 450 results to instability
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Figure 10. The evolution of the semimajor axes (panel a) and of the eccentricities (panel b),
of an orbit close to the unstable periodic orbit 9 of the family 3, when the orbit of P2 is rotated
by 100. The motion is chaotic.

(Figure 5). We note that the orbit 1 has the same phase as the orbit 2, which implies
that small values of the eccentricities are essential, in the 5/2 resonance, for the stability
of the system.

The third orbit that we considered is orbit 3, on family 2, which corresponds to the
phase where the perihelia are aligned and both planets are at perihelia (phase III). This
orbit is linearly unstable, but a rotation of P2 by 450 gives bounded motion (Figure 6a).
The fourth orbit on same family that we consider is the unstable orbit 4, which has larger
eccentricities than the orbit 3. A rotation of the orbit of P2 by 100 in this latter case
results to bounded motion, but now the variation of the eccentricities is much larger,
compared to the orbit 3 on this family, which has the same phase. Again we see that a
small value of the eccentricities is necessary for the stability of the system.

We repeated the same procedure as for the orbits 1-4 of the family 2, to the orbits 5-8
on the family 1. The orbits 5 and 6 have the same phase (phase III). The motion in their
neighborhood is bounded, when the system is perturbed by rotating the orbit of P2 by
450, but the variation of the eccentricities is much larger in the unstable orbit 5 (Figure
7a) than in the stable orbit 6 (Figure 7b).

The orbits 7 and 8 are linearly unstable, and correspond to the same phase (phase
IV), but close to the orbit 7, which has small planetary eccentricities, the motion is
bounded, as shown if Figure 8. On the contrary, the same perturbation to the orbit 8
results to destabilization of the system, (Figure 9). Again we note that a small value of
the eccentricities is necessary for a stable planetary system at the 5/2 resonance.

All orbits of the family 3 are unstable and a small perturbation results to the destabi-
lization of the system. A typical example is shown in Figure 10 for the orbit 9.

We remark that in all bounded orbits of the system, the amplitude of the variation of
the semimajor axes is small. This is in agreement with Barnes and Quinn (2004), even
in the cases where the variation of the eccentricirties is quite large.

3.3. The system 47 UMa
In Figure 2 we show the position of the system 47 UMa for all the four different phases,
which are symmetric with respect to the origin and also symmetric with respect to
the e1 and e2 axes. We note that these positions are close to periodic motion which
has a stable region in its vicinity. In order to study the stability of these systems, we
computed the evolution of these four different configurations, by the Poincaré map on
a surface of section, by rotating the orbit of P2 by 450 (because in the observed system
it is ω1 − ω2 = 450). In all cases the numerical computations showed that we have a
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well defined bounded motion. Note that for these small eccentricities we have bounded
motion both for alignment and for antialignment of the apsides. This is in agreement
with Ji et al. (2003).

4. Discussion
From all the above results we come to the conclusion that small planetary eccentricities

are necessary for stable motion at the 5/2 resonance. We remark that stable motion exists
even in the case where the planetary orbits intersect (orbit 2), and even in the case where
the system is linearly unstable (orbits 3, 7), provided that the phase is III (alignment of
perihelia and position of both planets at perihelion) or IV (antialignment of perihelia and
position of both planets at perihelia). We also note that the system 47 UMa lies close to
the regions in the e1 e2 space of Figure 2, where we have bounded motion. This system
would be unstable if the eccentricities were higher (see also Laughlin et al. 2002, Barnes
and Quinn, 2004), contrary to the 2/1 resonance, where a large value of the eccentricities
stabilizes the system (Psychoyos and Hadjidemetriou, 2004), because, in this latter case,
the minimum distance between the planets is increased when the eccentricities increase
(for the same phase). We also remark that the symmetry of the orbit is a stabilizing
factor, and the system is destabilized if the symmetry is destroyed, other parameters
being the same, since a rotation of the orbit of P2 results to instability in some cases.

Since the ratio of the masses of the Jupiter-Saturm system is very close to the ratio
we used for 47 UMa, the same remarks for the stability apply to our own solar system.

Acknowledgement

This work was supported by the research programme Pythagoras, Nr.21878 of the
Greek Ministry of Education and the E.U.

References
Barnes, R. and Quinn Th. 2004, The (in)stability of planetary systems, preprint.
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