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Abstract We show that the zeta function of a regular graph admits a representation as a quotient of
a determinant over a L2-determinant of the combinatorial Laplacian.
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1. Introduction

In [2] we showed that a geometric zeta function of a locally symmetric space of rank one
admits a representation as a quotient

det{A + P(s))
detr{A + P(s))'

where P is a polynomial and A a generalized Laplacian, det refers to the determinant
and det r to the L2-determinant. The combinatorial counterpart to these geometric zeta
functions are zeta functions of finite graphs. In this paper we show an analogous formula
for finite graphs. For the sake of conceptual clarity we will give the full proof only for
regular graphs, i.e. graphs of constant valency, but the methods are easily seen to cover
the general case as well. By the results of [1] we are reduced to a computation of the L2-
determinant of A + A, which cannot be calculated directly because of the combinatorial
complexity. We circumvent this problem by using a technique developed in [3], which
essentially gives a way of computing L2-determinants as limits of ordinary determinants.
See [6] for a similar assertion. Using the results of [1] or [5], the proof of the main theorem
(3.3) then becomes easy.

If the valency of the graph is q +1 for q a prime power, the same result can be derived
by means of the harmonic analysis of the locally compact group G = SL,2(F) for a p-adic
field F, since then the graph may be compared to a quotient of the Bruhat-Tits building
of G. In [4] we generalized the notion of geometric zeta functions to higher rank Bruhat-
Tits buildings. The question of whether there is an analogous formula in the higher rank
case is as yet unanswered.
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2. The convergence theorem

Let (y, d) be a discrete metric space that is proper, i.e. for any y 6 Y and any R > 0
the set of all x € Y with d(x,y) ^ R is compact. By the discreteness this means the
latter set is finite. Let F be a group of isometries of Y that acts freely and such that the
quotient F\Y is finite. Note that the existence of F implies that Y is uniformly proper,
i.e. for any y E.Y and any R > 0 the number of points x with d(x, y) ^ R is bounded by
a constant depending only on R and not on y.

Let T be a sheaf of complex vector spaces over Y of dimension r. By the discreteness
this just means that to each y eY there is attached an r-dimensional vector space T{y).
Assume the action of F lifts to T such that it preserves stalks and is linear on each stalk.
For R > 0 and M C Y, let UR{M) be the ̂ -neighbourhood of M, i.e. UR(M) is the set
of y e Y with d{y, M) < R.

Let F{T) be the space of global sections of T and let FC{T) be the subspace of sections
with compact support. Let R > 0, a linear operator D : FC{T) —> r'(^r) is said to have
finite propagation speed ̂  R if for any </> S -Tel-?7) we have suppDy? C C/R (suppy>). An
operator with finite propagation speed maps F^F) to itself.

Lemma 2.1. Suppose the operator D maps FC(J-) to itself. Suppose further that D
commutes with the action of F on FC(J-). Then D is of finite propagation speed.

Proof. Let D be an operator stabilizing J'c(^"). A 5-section at y € Y of the sheaf T
is a section 8 that vanishes outside {y}. Let Fo(y) be the maximum distance d(x,y) of
a point x £ Y with D6(x) ^ 0 for a 5-section at y. By the finite dimensionality of f{y),
this maximum is attained. Note that D has finite propagation speed if and only if the
function FD is bounded. Now assume D to be .T-invariant, then so is Fo, which then,
since F\Y is finite, must be bounded. •

Since F acts freely on Y, the quotient Tr '•= F\T defines a sheaf on the finite set
Yp := F\Y. The space of sections F{Tr) can be identified with the space of T-invariant
sections F(J7)r of T. Note that the summation map 5 : FC{T) -> F{Tr) given by
S<p(y) •= E 7 6 r7~V(7J / ) is surjective.

Lemma 2.2. Let D : FC{!F) —> F(!F) be linear, F-invariant and of finite propagation
speed, then there is a unique operator Dp, the pushdown of D on F(!Fr), such that the
diagram

{) 2 FC{T)

I'
commutes.

Proof. Define Dp : FC(F) -> F(fr) by Dr(<p) := SD(<p). The T-invariance of D and
the finite propagation speed then implies that Dp vanishes on the kernel of S, hence
induces an operator Dp as claimed. D
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Let D : FC(!F) -t F{T) be linear, then D has a kernel, i.e. it can be wri t ten as

where (x|£)|j/) 6 Yiorac{J:{y),T{x)) and the sum is finite for each x 6 Y. It follows that
D has propagation speed < R if and only if (x|D|j/) = 0 for all x, y E Y with d(x, y) > R.
Further, D is /^-invariant if and only if {•yx\D\'yy} = 7(x|.D|y)7~1 for all x, y € Y and all
jer.

L e m m a 2 . 3 . Let D be F-invariant and of finite propagation speed, then the operator

Dp has the kernel:

-yer

Proof. A computation. D

Suppose that the sheaf T is hermitian and that F acts unitarily. Let L2{T) be the
space of square integrable sections of T. Let 5 be a set of representatives of F\Y, then
L2{T) =\ L2(F) <g> L2{T\S) =i L2(F) ® L2(Tr), where L2(F) is taken with respect to the
counting measure and the tensor product is the tensor product in the category of Hilbert
spaces. Let VN(.T) denote the von Neumann algebra of F, i.e. the von Neumann algebra
of all bounded operators on L2(F) that commute with, say, the right action of F. It is
easy to see that this algebra is topologically generated by the left translations L7, 7 € F.
The algebra VN(f1) carries a natural finite trace T given by T(%2 g r c7L7) = ce. By the
above we get that the von Neumann algebra B(L2(J-))r of jT-invariant operators on
L2{T) is isomorphic to B{L2(F))r 3* VN(F) ® B(L2(Fr))- Let t r r denote the trace on
B(L2(f))r given by tensoring r with the usual trace on B(L2(Tr))-

Lemma 2.4. Let T € £(L2(.F))r with kernel (x\T\y), then, for any set S of repre-
sentatives of F\Y, we have

Proof. As an element of B{L2{T))r £* VN(F) ® S(L2(^|S)), the operator T writes
as T = £ } 7 e r L1 ® PT |s, where P : T -* T\s is the projection. Since the operator PT \s
has kernel (-ITI^ISXS, the claim follows. •

Let A > 0. For A large enough, we may assume that the spectrum of the operator D + X
lies in the right half plane. Taking the standard branch of the logarithm, the holomorphic
functional calculus then allows us to define the operator (D + \)~s € B{L2{T))r for any
s e C. Set Cr>+A,r(s) := trr((£> + A)~s), and define the L2-determinant of D + A as

det r (£> + A) := exp( - — (D+\,r(s) )
V d S 3=0 J
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Proposition 2.5. The map A »-» detr{D + X) extends to a holomorphic function on
the universal covering of C — Spec(—D).

Proof. Let X be the universal covering in question. The map A *-> log(D + X) extends
to an operator valued holomorphic map on X and so does (D+X)~s = exp(—s log(D+A)).
The claim follows. •

A tower of subgroups of F is a sequence F = A D I2 D • • •, with HjFj = {1} and
each Fj is normal of finite index in F.

For any F and any natural number AT, fix a standard iVth root of det(Dr + A) for
Re(A) 3> 0 by requiring that

detCDr + A) _
| d t ( D + A)1/W|

We now come to the main result of this section.

Theorem 2.6. Let D be F-invariant and of finite propagation speed. Let (Fj) be a
tower in F. For Re(A) » 0 w e have locally uniform convergence

det(Drj + A)1 / [ r : r^ -> detr(£> + A),

as j'< —¥ oo.

Proof. Let, for Re(A) > 0 and Re(s) » 0:

r(s) Jo \ \ r : rj\

Lemma 2.7. For any z € C, the operator ezDr has kernel

Proof. The norms on !F(x) and T{y) give rise to a norm on Homc(^7(y),^r(x)). We
have the estimate

\\(x\Dn
r\y)\\= sup ||<z|Z??|yM|

< sup \\{x\Dn
r\y)v\\

x,y,v

< \\Dn
r\\ < \\Dr\\

n,
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where \\Dr\\ is the operator norm on L2{J-r)- It follows that we have absolute convergence
in

y€Y

so that

ra>0

The last equation follows from the above considerations, which are clearly also valid for
trivial T. •

Lemma 2.8. There is a sequence Cj > 0 tending to zero such that

— trr e
zD

for all z £ C, with \z\ < 1 and all j € N.

Proof. Let Sj be a set of representatives of Fj\Y. By Lemma 2.7, we compute

= Y tr(s|e^; \s)

= £
Now let S = Si and assume that

sentatives of F/Fj. The above equals

£ £

^S, where a runs over a set of repre-
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Replacing 7 by aj(r~1, which is possible since Fj is normal in F, gives

since e2 ^ is /^-invariant. Now the cr-conjugation vanishes by taking traces, so we get

s€S 7GTj

It follows that

In this sum we always have 7s ^ s, so the diagonal of the kernel is never met. Hence,
the term of n = 0 in the sum ezD = X^n>o(2"/n')-Cn does not contribute. It follows for
Ul < 1

D

giving the claim. D

To finish the proof of the theorem we have to show that Fj(X, s) tends to zero locally
uniformly in A when Re(A) S> 0 and s is in a neighbourhood of zero. To this end, we
split the integral into the pieces /0 and J^°. The second one converges for all s when
Re(A) is large enough, and the first one converges for Re(s) > —1 by the Lemma 2.8.
Furthermore, Lemma 2.8 already shows the convergence in question for the /0 part.

We now show that the second integral tends to zero. For (p 6 F^Pj), let ||y||oo :=
the sup-norm. Let ||Z?r,||oo denote the corresponding operator norm.

Lemma 2.9. There is a constant c > 0 such that \\Dpj ||oo ^ c for all j G
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Proof. We estimate

xeYyeY

xeYy€Y

Now suppose ||</>||oo ̂  1) then we get

independent ofj. D

Lemma 2.10. There are Ci, C2 > 0, such that for all j G N:

Proof. We only show the assertion for \(trezDrj)/[F : Fj]\ since the other one is
proven analogously. Since for any operator A on a finite dimensional Euclidean space V
we have \trA\ < (dirny)!!^!!^, it follows that

which, by Lemma 2.10, implies the claim. •

Now choose A with Re(A) > C2, then it follows by the Lemma 2.10 that the second
integral of Fj(X,s) converges dominatedly independent of j . Hence, it suffices that the
integrand tends to zero pointwise. This, however, is clear. The theorem is proven. D

3. Laplacians

Let Xp = F\X be a finite connected CW-complex with fundamental group F and
universal covering X. Let Tr be a hermitian locally constant sheaf of finite-dimensional
complex vector spaces and let T be its pullback to X. Choosing a basepoint XQ gives a
representation p of F on the stalk over XQ. For the cohomology, we have Hp(Xr,J~r) =

Hp(F,p) for all p € Z. Let q ̂  0 and let Xq be the set of g-dimensional cells of X.
We construct a discrete proper metric space (Y, d) as follows. The set Y is given by Xq

and the distance d(a, b) between two cells equals the minimal number of cells hit by a
path joining a given point in a to a given point in b minus one. For any cell c of X, let
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F{c) denote the stalk of T at a given fixed point of c. (These points should be chosen
.T-invariantly.) This way, T induces a hermitian sheaf Ty on Y on which F acts unitarily.
The combinatorial Laplacian Aq^ now induces an operator on Ty that is f-invariant
and of finite propagation speed. The theorem of the last section applies.

We will make use of this fact to prove a theorem on zeta functions of graphs. So we
restrict to the case dimX = 1, so X is a tree and Xp is a finite graph. We give X and
Xp a metric by giving each edge the metric of the unit interval. It then makes sense to
speak of geodesies and especially of closed geodesies in Xp. Let 7 be a closed geodesic
and x a point on its trace. Since the sheaf T is locally constant, parallel transport along
7 gives a monodromy operator m7 on the stalk T(x). We define the zeta function Zp^
of Tp as

7
where the product runs over all primitive closed geodesies, i.e. those which are not a
power of a shorter one. The definition does not depend on the choices of points x on
the geodesies. In general the product will be infinite but it is easy to show convergence
for u G C with |u| sufficiently small. In [5] it is shown that Zp,? extends to a rational
function, indeed a polynomial, on C. Note that F, being the fundamental group of a
finite graph, contains a tower.

Lemma 3.1. Let (Fj) be a tower in F, then Zpi^(u)xl^r'-r^ tends to 1 for any u G C
with \u\ small.

Proof. Let Xp be the barycentric subdivision of Xp, then Xp is bipartite, i.e. the
vertex set of Xp can be written as a disjoint union V = Vo U V\, where vertices in Vt are
only connected by edges to vertices in Vi_j for i = 0,1. Let (Y, d) be the discrete proper
metric space attached to the set of edges X± of Xb. The sheaf T can also be considered
as a locally constant sheaf on Xh. We will construct two operators To and Xi on Ty.
Note first that for a, b G Y, having a common vertex in Xh, then parallel transport gives
an isomorphism ipa^ : ̂ (a) —> J~(b). For v G J-(a), let 5V be the section of Ty that maps
a to v and is zero elsewhere. Then the % are defined by

beY
a^ib

where o~j 6 means that a and b have a common vertex in Vi for i = 0,1. This prescription
defines two F-invariant operators of finite propagation speed on Ty. A computation
shows

= det(l - u(rori)r)

= u2ldet((l/u)-(T0T1)p),

where I is the number of edges of Xp. Theorem 2.6 implies that

i] -> u2t detr((l/u) - (ToT^p
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as j -*• oo when Re(l/u) 3> 0. The operator T0Ti has the property that the diagonal
of the kernel (x\(T0Ti)n\x) vanishes for any n > 0. This implies, by Lemma 2.4, that
det r((l /u) - (T0Ti)) = det r ( l /u) = u~21, whence the claim. D

We will say a graph is regular of valency q+1 for q 6 N if every edge has two distinct
endpoints and every vertex is connected to q + 1 distinct edges. To see which topological
information is encoded in Zp,T we will connect it to the combinatorial Laplacian A),:Fr-

Proposition 3.2. Let A = Ao,Fr and let n be the number of vertices ofXp- Assume
Xp is regular of valency q + 1 for q ^ 2. Then

ZrA
u) = (! - u2)~x{p'un det(A -(q + l-qu- (1/u))),

where x(p) = dim H°(F, p) - dim H1 (F, p) is the Euler characteristic.

Proof. In [5], it is shown that Zr,p(u) equals

ZrAu) = (1 - u2)~x^ det(l - Apu + qu2),

where Ap is the adjacency operator of Tr- A calculation shows that A = q +1 — Ap. The
claim follows. D

The next theorem is the main result of this paper.

Theorem 3.3. Let A = Ao,pr • For \u\ small we have

det(A + qu+ (1/u) - q - 1)
detp(A + qu+ (1/u) — q — 1)

Proof. At first, note that, since the cohomology is computed by a finite-dimensional
complex, it follows that

where n is the number of edges on X. Next, when Re(l/u) tends to infinity, then so does
Re(Au) with Xu = qu + (1/u) -q-1. Fix a tower (Fj). For Re(l/u) > 0 w e have that
ZrJA

u)l^r''r^ tends to 1 as j tends to infinity. On the other hand, by Theorem 2.6 it
follows that with A,- = AOt^r. we have det(A,- + \u)

l^r'r^ tends to d e t r ( ^ + \u). By
Proposition 3.2 we infer that

detr(Z\ + X^ = (1 - U2j-[(fl-l)/2]dim(p)nu-ni

and thus the claim. D

Using the results of [1], the theorem can be extended to arbitrary finite graphs, where
the number q has to be replaced by the operator qf(x) = q(x)f(x), where q(x) is the
number of edges emanating from the vertex x.

https://doi.org/10.1017/S0013091500020800 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500020800


194 A. Deitmar

References

1. H. BASS, The Ihara-Selberg zeta function of a tree lattice, Int. J. Math. 3 (1992), 717-797.
2. A. DEITMAR, A determinant formula for the generalized Selberg zeta function, Q. J.

Math. 47 (1996), 435-453.
3. A. DEITMAR, Regularized and L2-determinants, Proc. Lond. Math. Soc. 76 (1998), 150-

174.
4. A. DEITMAR, Geometric zeta functions on p-adic groups, Math. Japon. 47 (1998), 1-17.
5. K. HASHIMOTO, Zeta functions of finite graphs and representations of p-adic groups.

Automorphic forms and geometry of arithmetic varieties, Adv. Stud. Pure Math. 15 (1989),
211-280.

6. W. LUCK, Approximating L2-invariants by their finite-dimensional analogues, Georn.
Fund. Analysis 4 (1994), 455-481.

https://doi.org/10.1017/S0013091500020800 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500020800

