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Abstract. It is shown that purely growingmagnetic fields in a two-component dusty
plasma can be generated due to the equilibrium drift of positive and negative dust
grains. For this purpose, a linear dispersion relation has been derived by using
the hydrodynamic equations for the charged dust fluids, the Maxwell equation
and Faraday’s law. The dispersion relation admits a purely growing instability,
the growth rate of which is proportional to the equilibrium streaming speeds of
positive and negative dust grains. A possible physical explanation for the instability
is offered. Applications of our investigation to magnetic fields in the thin Martian
environments, interplanetary spaces and dense molecular clouds are mentioned.

Multi-component plasmas and charged dust grains are ubiquitous in our universe
and planetary ring systems [1–4], as well as in low-temperature laboratory set-
tings [5] and in industry [6]. Specifically, they appear in protoplanetary nebulae,
in interplanetary space and interstellar media, in and around cluster of galaxies,
cometary tails and comae, in the asteroid Gaspra, in Saturn’s rings, in the Martian
environments, as well as in the near-Earth atmospheres. Both in cosmic environ-
ments and astrophysical settings, there is conclusive evidence of magnetic fields.
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For example, recent observations [7] indicate signatures of electric and magnetic
fields in a Nevada Playa located outside of Boulder and on Mars, where dust
grains in the swirling dust devils may become electrically charged via triboelectric
effects [8,9].
Multi-component dusty plasmas are an admixture of electrons, ions and meso-

scopic (sub-micrometer to micrometer and sub-millimeter sized) dust particles. The
latter are charged both positively and negatively owing to a variety of processes [1,
3, 10]. Positively and negatively charged dust particles can coexist in the polar
mesosphere [11–15], and in the Martian atmosphere [16, 17]. Field experiments
on terrestrial dust devils show evidence of electric and magnetic field signatures
that are thought to be related to the presence of positively and negatively charged
dust grains in different regions of the dust devil [7]. It is plausible that positive
and negative dust clouds may stream through each other, and there is thus a free
energy source which can be coupled to fluctuations [17] in dusty plasmas.
In this letter, we demonstrate the possibility of a novel purely growing electro-

magnetic instability due to the equilibrium drift of dust grains of opposite polarity
in a dusty plasma. The latter is composed of positive and negative dust grains of
uniform sizes. There are no electrons and ions in our two-component dusty plasma
system.
Let us suppose that the positively and negatively charged dust grains are stream-

ing with the equilibrium drift velocities ẑu0±, where ẑ is the unit vector along
the z-axis in a Cartesian coordinate system and the subscript +(−) stands for
the positive (negative) dust grain. The dynamics of one-dimensional mixed-mode
electromagnetic perturbations in our dusty plasma is governed by the continuity
equation

∂n±
∂t

+ n0±
∂vx±
∂x

= 0, (1)

the x-component of the momentum equation

∂vx±
∂t

= ∓ Z±e

m±c
u0±By, (2)

and the z-component of the Maxwell equation

∂By

∂x
=

4πe

c
(Z+n0+vz+ − Z−n0−vz−) +

4πe

c
(Z+n+u0+ − Z−n−u0−) +

1
c

∂Ez

∂t
, (3)

where the z-component of the dust fluid velocity uz± is determined from

∂vz±
∂t

= ±Z±e

m±
Ez. (4)

Here the z-component of the wave electric field Ez is related to the wave magnetic
field By by Faraday’s law,

∂Ez

∂x
=

1
c

∂By

∂t
. (5)

In (1) and (3) n± (which is much less than the equilibrium dust particle number
density n0±) is a small density perturbation caused by the non-vanishing of the
divergence of the dust particle flux n0±vx± in the presence of the equilibrium dust
flows. The latter produce the dust velocity perturbation vx± due to the Lorentz force
involving the cross-coupling between the equilibrium dust flows and the perturbed
magnetic fieldBy. Furthermore, Z+ and Z− are the number of positive and negative
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charges residing on dust grains, respectively,m± is the dust mass, e is the magnitude
of the electron charge and c is the speed of light in vacuum.
Combining (1) and (2), we obtain

∂2n±
∂t2

= ±Z±n0±u0±e

m±c

∂By

∂x
, (6)

which shows that finite density perturbations exist only if u0± is present.
Taking the time derivative on both sides of (3), and using (4) we obtain

∂2By

∂x∂t
=

1
c

(
ω2
p +

∂2

∂t2

)
Ez +

4πe

c

(
Z+u0+

∂n+

∂t
− Z−u0−

∂n−
∂t

)
, (7)

where ωp = (
∑

+,− ω2
p±)1/2 and ωp± = (4πZ2

±e2n0±/m±)1/2 is the dust plasma
frequency. Furthermore, from (6) and (7) we have(

∂2

∂t2
−

∑
+,−

ω2
p±u2

0±

c2

)
∂2By

∂x2
=

1
c

(
ω2
p +

∂2

∂t2

)
∂2Ez

∂x∂t
. (8)

By using (5) we can now eliminate Ez from (8), obtaining the wave equation

∂4By

∂t4
+

(
ω2
p − c2 ∂2

∂x2

)
∂2By

∂t2
+

(∑
+,−

ω2
p±u2

0±

)
∂2By

∂x2
= 0. (9)

We now Fourier transform (9) by supposing thatBy is proportional to exp(−iωt+
ikx), where ω and k are the frequency and wavenumber, respectively. The result is
the dispersion relation

ω4 − (k2c2 + ω2
p)ω

2 − k2
∑
+,−

ω2
p±u2

0± = 0, (10)

which has the solutions

ω2 =
1
2
Ω2
em ± 1

2

(
Ω4
em + 4k2

∑
+,−

ω2
p±u2

0±

)1/2

, (11)

where Ωem = (k2c2 + ω2
p)

1/2 is the frequency of the electromagnetic wave in a
positive–negative dust plasma. Equation (11) admits a purely growing instability
(ω = iγ). The growth rate is

γ =
[

−1
2
Ω2
em +

1
2

(
Ω4
em + 4k2

∑
+,−

ω2
p±u2

0±

)1/2]1/2

. (12)

Finally, we note that for |ω| � Ωem, we have from (10)

ω2 = − k2

Ω2
em

∑
+,−

ω2
p±u2

0±, (13)

which also admits a purely growing instability, whose growth rate is

γ =
k

Ωem

(∑
+,−

ω2
p±u2

0±

)1/2

. (14)

To summarize, we have discussed the possibility of spontaneous magnetic field
generation in a positive–negative dusty plasma in the presence of the equilibrium
dust particle flow. Physically, the Lorentz force arising from the coupling between
the dust flow and an infinitely small magnetic field perturbation can move positive
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and negative dust fluids in opposite directions to each other. As a result, a space-
charge electric field and dust density perturbations appear. Since the latter cannot
keep in phase with the magnetic field perturbation, one encounters a purely growing
instability due to which magnetic fields are spontaneously created in dusty plasmas.
The present results are important for understanding the origin of magnetic fields
in the Martian dusty atmosphere, as well as in interplanetary spaces and in dense
dusty molecular clouds.
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