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CONTACT AND QUASICONFORMAL MAPPINGS
ON REAL MODEL FILIFORM GROUPS

B E N WARHURST

We prove that Carnot groups with real model filiform Lie algebras are not rigid.
Consequently non-trivial smooth contact and quasiconformal mappings exist in abun-
dance.

1. INTRODUCTION

A Carnot group is a connected, simply connected nilpotent Lie group, equipped
with a left-invariant sub-Riemannian metric, denned on a left-invariant sub-bundle of
the tangent bundle. The sub-bundle is called the horizontal bundle and the metric is
called a Carnot-Caratheodory metric. Diffeomorphisms which preserve the horizontal
bundle are called contact maps. Quasiconformal maps are denned with respect to the
Carnot-Caratheodory metric which, in a weak sense, implies they must also be contact
maps. Carnot groups are said to be rigid when the space of contact maps is finite
dimensional, which appears to be the rule rather than the exception. The Euclidean
spaces and the real and complex Heisenberg groups are the only established examples of
a non-rigid groups. This paper establishes the non-rigidity of Carnot groups whose Lie
algebra is real and model filiform.

Quasiconformal mappings on Carnot groups were first considered by Mostow [6].
In the proof of his celebrated rigidity theorem, Carnot groups arise as the one point
compactifications of the boundaries of non-compact rank one symmetric spaces with
negative sectional curvature, that is, the hyperbolic spaces H^, where K = R,C, H
and the 16-dimensional Cayley hyperbolic plane H™. A homeomorphism h : M -> N
between negatively curved locally symmetric spaces of rank one lifts to a homeomorphism
h : H%\ -» HK\, equivariant with respect to the action of the fundamental groups of M
and N, which implies that h induces a quasiconformal map of the spheres at infinity. The
rigidity theorem follows by showing that the induced quasiconformal map is conformal,
thus implying h is equivalent to an isometry, K\ = K-i and n\ = n^.
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For H£, the sphere at infinity is 5"" 1 = R""1 U {oo}, hence the quasiconformal
theory is relative to the Euclidean metric. It is well known that Euclidean spaces are
not rigid, for example, see [8]. For H£ the sphere at infinity is the Heisenberg group
Hn. In this setting Koranyi and Reimann [4, 5] showed that the spaces of contact and
quasiconformal maps are also infinite dimensional, and furthermore, Reimann and Ricci
[10] proved similar results for the complexified Heisenberg group C <g> i ? | .

Pansu [7] established the rigidity of the remaining cases H%, where K = H and
H^. These cases are particular examples of Heisenberg-type groups, and Reimann [9]
established the rigidity of all Heisenberg-type groups with centre of dimension at least
3. Pansu's crucial observation was, that in a certain sense, contact and quasiconformal
mappings are differentiable and that the derivative must be an isomorphism of the group.
Usually, nilpotent Lie groups have few automorphisms, which is why Carnot groups are
usually rigid.

2. C A R N O T G R O U P S

An n-step stratification of a nilpotent Lie algebra g is a direct sum decomposition
0 = 0i © • • • © fln such that Qj+1 = [fli, flj], where j = 1 , . . . , n - 1, and gn is contained in
the centre Z(g). A Carnot group is a connected, simply connected nilpotent Lie group
G, with stratified Lie algebra equipped with an inner product such that g, ± 0j, i ^ j .

For simply connected nilpotent Lie groups, the exponential map exp : 0 -¥ G is a
diffeomorphism which becomes an isomorphism (g, •) —» G when we define

X * Y = exp-1 (exp(X) exp(K)).

The Baker-Campbell-Hausdorff formula gives an explicit expression for X * Y. Choosing
a basis for 0 identifies (0, *) with RdimB and X * Y becomes polynomial of degree < n — 1.
A coordinate system of this type is said to be normal of the first kind.

In a similar fashion we obtain normal coordinates of the second kind. Given a basis

{ej)f=ia o f 9 t h e m a P n : s -*G s i v e n by

X =
j j

is a diffeomorphism, [11, p. 86], which becomes an isomorphism (0,0) -> G when we

define

As before X QY becomes polynomial of degree ^ n — 1.
Left translation, denoted TXY, is the analogue of translation in Euclidean spaces.

Specifically TXY - X*Y in coordinates of the first kind and TXY = XQY in coordinates
of the second kind. An important feature of Carnot groups is an analogue of dilation.
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[3] Contact and quasiconformal mappings 331

n n
For t > 0, the dilation5t : g ->• g is given by 6t(X) = £ VX, where X = £ *>> ^> € g,,

which defines dilation on G via the coordinate systems.

Let

denote a basis of g such that

& = span{ei|tt(i) | a{i) = 1 , . . . .dimflj}

and let
{AiiW) | i = l , . . . , n , 0(i) = l , . . . ,d imgi} C g*

denote the corresponding dual basis such that

11 if i = j and /3(i) = a(i)
*i,f)(i)(ej,<*U)) = „

10 otherwise.

Since we identify g with G, the \i,a{i) serve the dual role as coordinates on G and TG,
that is, V eTxG has coordinates

since
axiMi)(v) = ftxiMi

d
o~dt^l'aw

The fields (Xiia^))x = rx<ej|Q(j) form a basis for the left-invariant fields and the corre-
sponding dual forms are (#i,Q(i))x = ( T " 1 ) * ^ ^ ) . The stratification of the left-invariant
fields is then given by

Li = span{XliO(1) | a ( l ) = l . - . -di

and
Lj+1 = [Li, Lj] = span{Xj+1,a ( i+1) | a(j + 1) = 1,.. .dl

where j — I,.. .,n- I. Furthermore the basis

is orthonormal relative to the inner product

A curve 7 in G is said to be horizontal if j(t) G Li(j(t)). If ro(X, Y) denotes the
set of horizontal curves joining X to Y then the Carnot-Caratheodory distance is
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where ||7(*)||G = v/(7(*)>7M)G- The theorem of Chow [1] implies that Carnot groups
are path connected via horizontal curves and that dc is a metric. By definition dc is left-
invariant, that is, dc{rzX,TZY) = dc(X,Y), and homogeneous with respect to dilation,
that is, dc(6tX,6tY) = tdc{X,Y).

If / : fii -» Q.2 is a diffeomorphism between open sets fii,f22 C G and V € TXG,

X € fti then

(2.2) /-00 = E E E E ^Mi)(f*H
< a(t) J /SO)

(2-3) - E E E E w/-*7,

and we use the notation Jf and £>/ to denote the matrices

,a(i)(/.eJlW))J and

Note that the substitutions

(^t,a(i))x ^

and

(^t,a(i))x = (r

show that

(2.4)

If / . (LipO) C Li(X) then / is called a contact diffeomorphism, the trivial examples

being left translation and dilation. For such a diffeomorphism, #i,i(/»Xii|8(i)) = 0 when

1 < i and 1 < /?(1) ^ dimLi, however more is true. Indeed if f,{Li) C Li then

f.(Lj{X)) C Li(X) © • • • © Lj(X), since for any pair of smooth vector fields V and W

we have / . [V(X), W{X)] = [f,V(X), f.W{X)]. It follows that / is a contact diffeomor-

phism if and only if

(2.5) 0irti)if.

3 . QUASICONFORMAL MAPS

The metric definition of quasiconformality is as follows. Let f2i and fi2 be open

subsets of G, let / : fii -> fi2 be a homeomorphism and define

lim=up S- hmsup .

Then / is said to be K-quasiconformal if Hj is bounded and
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[5] Contact and quasiconformal mappings 333

The trivial examples are dilations and left translations which are 1-quasiconformal.

The analytic definition, due to Pansu [7], requires the notion of P-differentiability.

A homeomorphism / is P-differentiable at X € G, if for each Y 6 G,

converges locally uniformly in Y as t -¥ 0, and defines an isomorphism of G. The

P-differential of / at X is the corresponding Lie algebra isomorphism (j>..

The analytic definition is as follows. A homeomorphism / : fia —> fi2 is K-

quasiconformal if and only if the horizontal distributional derivatives exist and belong to

L,foc, f is P-differentiable almost everywhere with the P-differential satisfying

where Q = J ^ i dim 0; is the homogeneous dimension of G,

\\4>.\\x = sup | |* .V| |O )

|
and det Jf(X) is the generalized Jacobian determinant of / .

LEMMA 1 . A diffeomorphism f : fix —• f22 between open sets fii,fi2 Q G, is
P-differentiable if and only if it is a contact diffeomorphism.

PROOF: From (2.4) we have

(3.1) Vx(Y) = T~1
X) oforx(Y)= Df(X)Y + E(X,Y)

hence if / is P-differentiable, then limSi/t(DF(X)5t(Y)) exists, forcing ^t,o(t)(/*-^7,o(i))

= 0 for 1 < i and j < i which implies that / is a contact diffeomorphism.

Conversely if / is a contact diffeomorphism, then continuous differentiability implies
that the map is locally Lipschitz with respect to the Carnot-Caratheodory metric. Let
Bi(Z0) be a Carnot-Caratheodory ball with centre Zo and radius I. If X, Y € Bi{Z0),
then the triangle inequality implies that dc(X,Y) < 21. Let U,{X,Y) c F0(X,Y) be
the set of horizontal curves joining X to Y of length at most 21. If Z = j(t) for some
7 € Ui(X, Y), then the triangle inequality implies that dc(Z0,Z) ^ 3/, hence

U U,(X,Y) C B3l(ZQ).
X,YeB,(Z0)

If 7 € Ui(X, Y), then by (2.3) and the Schwarz inequality,
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It now follows that, if X, Y £ Bi(Z0), then

inf vf\\M(t)\\Gdt < sup
•yeu,{X,Y) J ZeB3i(ZeB3i(Z0)

hence / is Lipschitz.
Pansu's theorem, [7, Thm 2], states that Lipschitz maps are P-differentiable almost

everywhere. Since / is Lipschitz and continuously differentiable, we conclude that it is
P-differentiable everywhere. D

4. MODEL FILIFORM GROUPS

A stratified nilpotent Lie algebra g = fli©- • -©0n-i is model filiform if it has a basis
{ei,... ,en} such that

[ei,en] =0, i>\

[ei,ej] = ej+i, j = 2 , . . . ,n - 1

0i =span{e!,e2}

Qj = span{ei+i} j = 2, . . . , n - 1.

A connected, simply connected, real nilpotent Lie group G is called model filiform
if its Lie algebra is model filiform, moreover modelfiliform groups are Carnot groups.

In coordinates of the second kind, the elements of the corresponding connected,
simply connected Lie group G take the form

exp(xiei) exp(z2e2 H 1- xnen).

The multiplication in terms of the identification with K" can be found by solving

(4.1) exp f ^ w^ j = expfoeO exp f ̂  Xje, j exp^ei) exp f ̂  yjej J

for w. To this end we use the following model of g in GL(n,R):

\
0
0
0

0
0
0

Xi

0
0

0
0
0

0 •••

Xi •••

0 •••

0 •••

0 •••

0 •••

0 xn
0 xn-

U %n-

X\ X3

0 x2
0 0
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It follows that

0 1 xx x\/2\ ••• z ? - 3 / ( n - 3 ) ! 0
0 0 1 xi ••• a%-*/{n-4)\ 0
0 0 0

0 0 0

0 0 0

0 0 0

1

0

0

0

say, and

exp

0 1 0 0
0 0 1 0
0 0 0 1

0 0 0 0

0 0 0 0

_n-5// _ ell ri A(x)
0

1 0 0 0 ••• 0 xn \

0 1

Id v{x)
0 1

Substituting these expressions into (4.1) gives

(4.2)
X(ti;)

0 1
A(x)A(y) A{x)A{y)v{y) + A{x)v(x)

0 1

From (4.2), we have

A(w) = A(x)A(y) and A(w)v(w) = A(x)A(y)v(y) + A(x)v(x).

It follows that

uii—xi+yi and v(w) = v(y) + A(y)~1v(x),

hence, in terms of the identification with Rn. multiplication takes the form

where

and x~l — (xi,..., xn) where

^2

k-2

x2 = -x2, xk — -
j=0

J
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The left-invariant vector fields take the form

* - ^ a n d x i = d^> j > 2

and the corresponding dual forms are

#i = dxi 62 = dx2 6j = dxj + Xj-idxi, j ^ 3.

5. CONTACT FLOWS

The main result of this paper is that contact and quasiconformal mappings on real
model filiform Carnot groups are abundant. This is achieved by showing that the vector
fields which generate contact and quasiconformal flows form infinite dimensional vector
spaces.

THEOREM 1 . A smooth vector Held V = 5^ v(Xi defined on Q C G induces a
local Bow of contact mappings if and only if

(5.i) v = (-ir-3(x2xr3vn)xl+
7=2

where vn = F(xx,xn-i,xn) and F € C°°(Q).

P R O O F : The flow ft of a vector field V has the contact property fttLi(x) C Li(x)

if and only if [LUV] C Lu see [3, p. 33]. If V = Y.vixu t h e n

n n—1

hence [Li, V] C Li if and only if

(5.2) Xlvi+i+vi = Q, i = 2,...,n-l

(5.3) X2v3 - vi = 0

(5.4) X2Vi = 0, i = 4,...,n.

Formula (5.1) now follows from (5.2) and (5.3), moreover (5.2) and (5.4) show that

(5.5) X2X$vn = 0, k = 0 , . . . , n - 4.

Since

(5.6) X2+k = (tf
j=o
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n = 0, when k = 0 , . . . , n - 4, hence vn = F(xi, zn_i, xn) with F € C°°(n).
Conversely, if vn = F ( i i , i n _ i , i n ) , where F € C°°(fl) and V is defined as in (5.1),

then the flow will consist of contact maps provided (5.2), (5.3) and (5.4) are satisfied.
By definition, (5.2) and (5.3) are immediately satisfied. To see that (5.4) holds, observe
that X"~*F depends on xi,Xi-\,..., xn only, hence

X2Vi = ( - l ) n - ' X 2 X r ' > = 0, i = 4 , . . . , n,

as required. D

The function F will be called the generator of V. Since the space of generators

{F{xuxn.1,xn)\FeCeo(n)}

is infinite dimensional we have the following result.

COROLLARY 1 . T i e smooth vector Gelds which induce contact Bows form an
infinite dimensional vector space.

6. DIFFERENTIALS AND QUASICONFORMALITY

To apply the analytic definition of quasiconformality, we need to compute the P-
differential from the differential Df{X) = (^(/.Xj)). By (2.5), if / is a contact diffeo-
morphism, then

(6.1) 0i{f.XJ) = X i f i + f i - 1 X i f 1 = 0 , 3 ^ i < n , j < i

a n d

n

(6.2) det Df(x) = (el(f,xl)e2(f.x2) - el{f.x2)e2{f.xl)) J ] e^Xi) ± o.
i=3

LEMMA 2 . If f is a contact diffeomorphism offlcG then

(1) Xifx=Q, j = 2,...,n-2

(2) 6iU.Xi) = {X,hy-\X2f2), j = 3,...,n

PROOF: For i = 4 , . . . , n, the substitutions j — i — 1 and j = i - 2 in (6.1) give

(6.3) X.--i/,- + /*-i(Xi-i/i) = 0

(6.4) Xi-2fi + fi-i{Xi-2fi) = 0.

Letting X,_2 act on (6.3) and Xi-\ act on (6.4), we obtain

(6.5) X^Xi-ifi + (Xi-ifi-MXi-ih) + fi-iiXi^Xt^fi) = 0

(6.6) Xi.xXi.iU + (Xi-1fi.1)(Xi.2f1) + h-iiXi.xXi.ih) = 0
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for i = 4, ...,n. Subtracting (6.5) from (6.6), keeping in mind that X*_i and Xt-2

commute, gives

(6.7) = 0, i = 4.. .n.

For i = 4 , . . . , n, we can make the the substitution Xi^fi-i = —fi~2{Xi-2fi), hence (6.7)
becomes

-i(/.*i-i) = 0, i = 4,..., n.(6.8) (Xi-

Item (1) now follows from (6.2) and (6.8).

To prove item (2) we first recall [3, p. 36] that for any pair of smooth vector fields
X, Y and any smooth 1-form w on a manifold M,

(6.9) u([X, Y]) = Xw(Y) - YUJ(X) - 2dcj(X, Y).

It follows that for j = 3 , . . . , n,

~-2d0jtf.Xuf.Xi-!)

= -2dxj-i A dxiif.Xu f*Xj^)

= -dxj-1(f.X1)dxi(f.Xj-1)+dxi-1(f.XJ-1)dx1(f.Xl)

(6.10) = -(XJj

Moreover if j > 3, then we can make the substitution Xxfj_i = —fj-

giving

Ojif.Xj) = fj_2(Xlfl)(Xj.1fl) + (Xj-rfj-

in (6.10),

Putting j = 3 in (6.10) gives

03(f.X3) = (X1f1)(X2f2),

which together with (6.11) proves item (3).

The P-differential takes the form

Xi/i 0 0
*i/a X2f2 0

0 0 XlflX2f2

0 0 0

0 0 0

0
0

0

0
0
0
0

https://doi.org/10.1017/S0004972700037710 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700037710


[11] Contact and quasiconformal mappings 339

hence \\4>,\\2
g is the largest eigenvalue of MtTM where

M=( Xlfl °
\ -̂ 1/2 ^2/2

The eigenvalues of MtrM are

the homogeneous dimension of (? is

Q = 1 + n(n - l)/2,

and, by (2.4),

If

+ ( n - l ) ( n - 2 ) \ . , . 4(n -1) (n-2)(n-3)
7 ( " } = 2 2 + n(n -

then, by the analytic definition, / is if-quasiconformal if

(6.12) A( / ) = A x ( / ) + V / ( A 1 ( / ) ) 2 - 4 A 2 ( / )

where

(x1h)2 + (xj2)
2 + (x2f2)

2

7. QUASICONFORMAL FLOWS

Conditions on the generating function F(xi,xn-i,xn) which imply quasiconformality
of the flow, fs, are obtained by estimating A(/a) in terms of Ai(/5) . For if Ai(/3)
^ K', then the flow is at most (A'')Q/2-quasiconformal. Following the methods of [4], we
obtain estimates on Ai(/ , ) involving the generating function by integrating estimates on

THEOREM 2 . A contact vector Geld V defined on fi C G with generator

F(xi,xn-i,xn) € C°°(Q) induces a Bow of quasiconformal maps if

(P(n) - 1) [(n - VXiXn-iF - XUF] + \J[(n- VXrf^F -

is bounded.
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d

[12]

P R O O F : The flow equations are ~ff(s,x) = A(f(s,x))e(v(f(s,x))) ', where

A(x) =

( 1 0 0 0 ••• 0 \
0 1 0 0 ••• 0

-x2 0 1 0 ••• 0
-x3 0 0 1 ••• 0

\ - I n _ X 0 0 0 .-. 1 ,

:is the transition matrix satisfying dx(v) = A(x)6(v) and

(7.1) A(f(s,x))Df(s,x) = Jf{s,x)A{x).

Let

/ 1 0 0 ••• 0 \
0 1 0 ••• 0

E= 0 0 0 ••• 0

^ 0 0 0 ••• 0 /

Then Df(s,x)E = EDf(s,x)E, which together with (7.1) and the variational equation

-J/(s,x) = J0(V){f(8,x))Jf(s,x),
ds

gives

where

—M = EJ6{V)(f(s,x))A{f(s, x))EM - Y(f(s,x))M,
ds

It follows that

where

Y(x) =

• Ai \f(s, x)j —
ds ds

0
XlV2(x) X2v2{x) ) '

S = Ytr + Y-^- (-f (det Jf)) (det Jf)~lI.
Q \ds I

Using || ||T to denote the trace norm, we obtain
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[13] Contact and quasiconformal mappings 341

where A(5) denotes the largest eigenvalue of 5. It follows from the previous inequality
that

d

ds
hence if 0 ^ A(5) ̂  k, then the flow is quasiconformal.

Since

= ( (2 - a(n))XlVl - p(n)X2v2 Xxv2 \

\ Xxv2 -or(n)*it»i + (2 - P(n))X2v2 ) '

we have

A(S) = (1 - a(n))XiVi + (l - P(n))X2v2 + y/(Xivx - X2v2)
2 +

From (5.1), (5.5) and (5.6), we have

„, ( i \n—3 v yn-3 c1 V T?

-^2^2 — y-i-) A2A! i< = Ani* — (Tl — l)AiXn_xt,

which when replaced in (7) gives

X(S) = (/9(n)-

moreover 0 < /3(n) ^ 6/7, when n ^ 4. D

For example, if F (z i , z n _ i , z n ) = g ^ ) , then A(5) = l ^ " - 1 ' ^ ) ! , hence if |^<"-1>(an) j
is bounded then the flow is quasiconformal. Furthermore

v =
fc=2

and the flow takes the form

(7.2) fi{t,x)=x1, and / t ( t , i ) = ( - l ) " - V n " l ) ( i i ) * + i l , A = 2 , . . . , n .

COROLLARY 2 . The smooth vector Gelds which induce quasiconformal Sows form
an infinite dimensional vector space, furthermore global contact and quasiconformal
transformations exist in abundance.

8. COMMENTS AND FURTHER RESULTS

The results of this paper are motivated by the problem of classifying the rigid and
non-rigid Carnot groups, that is, rigidity should reflect the non-commutativity of the
group. As is demonstrated by the examples in the introduction, the known results which
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apply to this question concern mainly 2-step groups. Using MAPLE to calculate the
contact vector fields, it seems, at least from an experimental point of view, that semi-
direct products of the established non-rigid groups are rigid. It should also be pointed
out that the non-rigidity of the four dimensional real model filiform group was observed
in [2], where rigidity phenomena of the nilpotent parts of Iwasawa decompositions are
considered. In particular, the four dimensional real model filiform group is the nilpotent
part of the Iwasawa decomposition of Sp{2, R). Again using MAPLE, it appears that the
analogue for Sp(n, M), n > 4, is rigid.

We mention here some results which will appear in future papers. An expanded
version of Lemma 2 brings the Schwarzian derivative to bear on questions on the structure
of the globally defined contact mappings of G. Using (7.2) as a guide, the results on global
contact mapping give rise to explicit groups of contact and quasiconformal automorphisms
of G, manufactured from the absolutely continuous functions of R. These groups contain
the 1-quasiconformal maps. We can also prove the following Liouville type theorem. A
1-quasiconformal map of f2 C G is a composition of left translation, dilation, the reflecting
dilation J_i and the switch map given by

a{x) = ( -x i ,X2,-x 3 ,x 4 , . . . , ( - l ) n a ; n ) .

In the complexified setting we have analogues of theorems 1 and 2, however, due to
Liouville's theorem on bounded entire functions, the vector space of vector fields which
generate global quasiconformal flows is finite dimensional.
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