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TESTING REGRESSION
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Department of Economics, UCLA

Monotonicity is a key qualitative prediction of a wide array of economic models de-
rived via robust comparative statics. It is therefore important to design effective and
practical econometric methods for testing this prediction in empirical analysis. This
article develops a general nonparametric framework for testing monotonicity of a
regression function. Using this framework, a broad class of new tests is introduced,
which gives an empirical researcher a lot of flexibility to incorporate ex ante infor-
mation she might have. The article also develops new methods for simulating critical
values, which are based on the combination of a bootstrap procedure and new selec-
tion algorithms. These methods yield tests that have correct asymptotic size and are
asymptotically nonconservative. It is also shown how to obtain an adaptive and rate
optimal test that has the best attainable rate of uniform consistency against models
whose regression function has Lipschitz-continuous first-order derivatives and that
automatically adapts to the unknown smoothness of the regression function. Simu-
lations show that the power of the new tests in many cases significantly exceeds that
of some prior tests, e.g., that of Ghosal, Sen, and Van der Vaart (2000).

1. INTRODUCTION

The concept of monotonicity plays an important role in economics. For example,
in economic theory, monotone comparative statics has been a popular research
topic for many years; see Milgrom and Shannon (1994). In industrial organiza-
tion, lack of monotonicity has been used to detect certain phenomena related to
strategic behavior of economic agents that are difficult to detect otherwise; see
Ellison and Ellison (2011). In econometric theory, shape restrictions including
monotonicity have been argued to be among the most important implications of
economic theory that could be used for identification and estimation; see Matzkin
(1994). In this article, I develop a general nonparametric framework for testing
monotonicity of a regression function.
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I consider the model

Y = f (X)+ ε, (1)

where Y is a scalar dependent random variable, X a scalar covariate, ε an un-
observed scalar noise variable satisfying E[ε|X] = 0 almost surely, and f (·) an
unknown function.1 I am interested in testing the null hypothesis, H0, that f (·)
is nondecreasing against the alternative, Ha , that there are x1 and x2 such that
x1 < x2 but f (x1) > f (x2). The decision is to be made based on an i.i.d. sample
of size n, {Xi ,Yi }1�i�n from the distribution of the pair (X,Y ). I assume that f (·)
is smooth but do not impose any parametric structure on it. I derive a theory that
yields tests with the correct asymptotic size. I also show how to obtain consis-
tent tests and how to obtain a test with the optimal rate of uniform consistency
against classes of alternatives having continuously differentiable regression func-
tions with Lipschitz-continuous first order derivative. Moreover, the rate optimal
test constructed in this article is adaptive in the sense that implementing the test
does not require knowing the smoothness of f (·).

Many statistics suitable for testing monotonicity may have highly complicated
limit distributions. In some cases, like in the case of the statistic leading to the
adaptive and rate optimal test, it is not even clear whether the limit distribution
exists. The difficulty here is that the processes underlying the test statistic do not
have an asymptotic equicontinuity property, and so classical functional central
limit theorems, as presented for example in van der Vaart and Wellner (1996) and
Dudley (1999), do not apply.

One of the main contributions of this article is to address these issues by pro-
viding bootstrap critical values and proving their validity uniformly over a large
class of data generating processes. Several previous articles, for example, Gijbels,
Hall, Jones, and Koch (2000), Hall and Heckman (2000), and Ghosal et al. (2000),
used specific techniques to prove validity of their tests of monotonicity but it is
difficult to generalize their techniques to make them applicable for other tests of
monotonicity, in particular for the adaptive and rate optimal test. By contrast, in
this article, I introduce a general approach that can be used to prove validity of
many different tests of monotonicity. Other shape restrictions, such as concavity
and super-modularity, can be tested by procedures similar to those developed in
this article.

Another problem is that test statistics studied in this article have some asymp-
totic distribution when f (·) is constant but may diverge if f (·) is not a con-
stant. This discontinuity implies that for some sequences of models f (·)= fn(·),
the limit distribution depends on the local slope function, which is an unknown
infinite-dimensional nuisance parameter that cannot be estimated consistently
from the data. A common approach in the literature on testing monotonicity to
solve this problem is to calibrate the critical value using the case when the type

1 The working version of the article, which can be found online, also contains some results for the model with
multivariate X ’s, endogenous X ’s, and sample selection; see arXiv:1212.6756.
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I error is maximized (the least favorable model), i.e., the model with constant
f (·).2 By contrast, I develop two selection procedures that estimate the set where
f (·) is not strictly increasing, and then adjust the critical value to account for this
set. The estimation is conducted so that no violation of the asymptotic size oc-
curs. The critical values obtained using these selection procedures yield important
power improvements in comparison with other tests if f (·) is strictly increasing
over some subsets of the support of X . The first selection procedure, which is
based on the one-step approach, is related to those developed in Chernozhukov,
Lee, and Rosen (2013), Andrews and Shi (2010), and Chetverikov (2016), all
of which deal with the problem of testing conditional moment inequalities. The
second selection procedure is novel and is based on the step-down approach.
It is somewhat related to methods developed in Romano and Wolf (2005a) and
Romano and Shaikh (2010) but the details are rather different.

Furthermore, an important issue that applies to nonparametric testing in gen-
eral is how to choose a smoothing parameter for the test. In theory, the optimal
smoothing parameter can be derived for many smoothness classes of functions
f (·). In practice, however, the smoothness class that f (·) belongs to is usually
unknown. I deal with this problem by employing the adaptive testing approach.
This approach allows me to obtain tests with good power properties when the in-
formation about smoothness of the function f (·) possessed by the researcher is
absent or limited. More precisely, I construct a test statistic using many different
weighting functions that correspond to many different values of the smoothing
parameter so that the distribution of the test statistic is mainly determined by the
optimal weighting function. I provide a basic set of weighting functions that yields
an adaptive and rate optimal test and show how the researcher can change this set
in order to incorporate ex ante information.

The literature on testing monotonicity of a nonparametric regression function
is quite large but is not complete. The tests of Gijbels et al. (2000) and Ghosal et
al. (2000) are based on the signs of (Yi+k − Yi )(Xi+k − Xi ) and may be incon-
sistent against models with conditional heteroscedasticity; see Section 2 for de-
tails. The test of Hall and Heckman (2000) is based on the slopes of local linear
estimates of f (·). As explained in Section 2 below, the Hall and Heckman test
statistic is contained in the class of the test statistics studied in this article and, in
fact, corresponds to the adaptive and rate optimal test with the specific choice of
the kernel. Hall and Heckman (2000), however, only established validity of their
test for (nonrandom) equidistant Xi ’s and did not show that their test is adaptive
and rate optimal. Moreover, it is not immediately clear how to extend their proof
technique to allow for i.i.d. data. My article complements theirs by establishing
validity of their test in the i.i.d. setting, improving their critical values, and also
establishing adaptivity and rate optimality of their test. Other tests are developed
in Schlee (1982), Bowman, Jones, and Gijbels (1998), Dumbgen and Spokoiny

2 The exception is Wang and Meyer (2011) who use the model with an isotonic estimate of f (·) to simulate the
critical value. They do not prove whether their test maintains the required size, however.

https://doi.org/10.1017/S0266466618000282 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466618000282


732 DENIS CHETVERIKOV

(2001), Durot (2003), Baraud, Huet, and Laurent (2005), Wang and Meyer (2011),
and Gutknecht (2016). The test of Schlee (1982) does not seem to be practical; see
Gijbels et al. (2000). The test of Bowman et al. (1998) is known to be inconsistent;
see Hall and Heckman (2000). The properties of the test of Durot (2003) are only
established for the case of (nonrandom) equidistant Xi ’s and i.i.d. εi ’s. The test of
Baraud et al. (2005) is similar to that of Hall and Heckman (2000) but the valid-
ity of the test is only established in the homoscedastic Gaussian noise case.3 The
properties of the test of Wang and Meyer (2011) are not established in the liter-
ature. The results on adaptive and rate optimal testing in this article are related
to (and inspired by) those in Dumbgen and Spokoiny (2001). An important dif-
ference, however, is that Dumbgen and Spokoiny (2001) study the ideal Gaussian
white noise model, which allows them to use some fine properties of the Gaus-
sian processes, and do not have to deal with the distributional approximations.
Juditsky and Nemirovski (2002) showed in the homoscedastic Gaussian noise case
that if the smoothness of the function f (·) is known, then essentially optimal testing
can be obtained by considering an optimal estimator of f (·) itself and using a test
statistic based on the distance from this estimator to the set of monotone functions.

In a contemporaneous work, Lee, Song, and Whang (2017) derived another ap-
proach to testing a general class of functional inequalities, including regression
monotonicity, based on Lp-functionals. An advantage of their method is that it can
be applied not only to the problem of testing regression monotonicity but also to
many other problems, like testing monotonicity of nonparametric quantile func-
tions. A disadvantage of their method, however, is that it yields a nonadaptive test.

Results in this article are also different from those in Romano and Wolf (2013)
who also consider the problem of testing monotonicity. In particular, they assume
that X is nonstochastic and discrete, which makes their problem semi-parametric
and substantially simplifies proving validity of critical values, and they test the
null hypothesis that f (·) is not weakly increasing against the alternative that it is
weakly increasing. Lee, Linton, and Whang (2009) and Delgado and Escanciano
(2010) derived tests of stochastic monotonicity, which is a related but different
problem. Specifically, stochastic monotonicity means that the conditional cdf of
Y given X , FY |X (y,x), is (weakly) decreasing in x for any fixed y.

I also note that the problem of testing monotonicity is related to but differ-
ent from the problem of testing conditional moment inequalities, which is con-
cerned with testing the null hypothesis that f (·) is nonnegative against the al-
ternative that there is x such that f (x) < 0. Although the latter problem has
been extensively studied in the recent econometric literature (see Andrews and
Shi, 2010; Chernozhukov et al., 2013; Armstrong, 2014; Armstrong and Chan,
2016; and Chetverikov, 2016 among others), the results from that literature can
not be used directly for the former problem. Indeed, under the null hypothesis,

3 Note that assuming the homoscedastic Gaussian noise eliminates the important problem of finding an appropriate
critical value for the test as long as an appropriately studentized test statistic is considered since, in this case,
one can simply simulate the critical value from the model with the flat regression function, which gives the least
favorable case under the null.
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the latter problem yields the inequalities E[Yi |Xi ] � 0, each of which depends
only on one observation i , whereas the former problem yields the inequalities
E[Yi −Yj |Xi ,X j ,Xi > X j ]� 0, each of which depends on the pair of observations
(i, j). The basic ideas used in this article on constructing adaptive and rate opti-
mal tests for the former problem, however, can be traced back to the results in
Armstrong (2014), Armstrong and Chan (2016), and Chetverikov (2016) for the
latter problem.

The rest of the article is organized as follows. Section 2 describes the general
class of test statistics and gives several methods to simulate the critical value.
Section 3 contains the main results under high-level conditions. Section 4 uses
the results in Section 3 to construct an adaptive and rate optimal test under mild
low-level conditions. Section 5 presents a small Monte Carlo simulation study.
Section 6 concludes. All proofs are contained in the appendix.

2. TESTS

2.1. The Test Statistic

Let Q(·, ·) : R×R → R be a non-negative and symmetric weighting function, so
that Q(x1,x2)= Q(x2,x1) and Q(x1,x2)� 0 for all x1,x2 ∈ R, and let

b = 1

2

∑
1�i, j�n

(Yi − Yj )sign(X j − Xi)Q(Xi ,X j )

be a test function. Since Q(Xi ,X j ) � 0 and E[Yi |Xi ] = f (Xi ), it is easy to see
that under H0, that is, when the function f (·) is nondecreasing, E[b] � 0. On
the other hand, if H0 is violated and there exist x1 and x2 on the support of X
such that x1 < x2 but f (x1) > f (x2), there exists a function Q(·, ·) such that
E[b]> 0 if f (·) is smooth. Therefore, b can be used to form a test statistic if there
is an effective mechanism to find an appropriate weighting function Q(·, ·). For
this purpose, I will use the adaptive testing approach developed in the statistics
literature.

The idea behind the adaptive testing approach is to choose Q(·, ·) from a large
set of potentially useful weighting functions that maximizes the studentized ver-
sion of b. Formally, let Sn be some general set that depends on n and is (implic-
itly) allowed to depend on {Xi }1�i�n , and for s ∈ Sn , let Q(·, ·,s) : R×R→R be
some weighting function such that Q(x1,x2,s)= Q(x2,x1,s) and Q(x1,x2,s)�
0 for all x1,x2 ∈R. The functions Q(·, ·,s) are also (implicitly) allowed to depend
on {Xi }1�i�n . In addition, let

b(s)= 1

2

∑
1�i, j�n

(Yi − Yj )sign(X j − Xi )Q(Xi ,X j ,s) (2)

be a test function. To derive the variance of b(s), note that b(s) can be equivalently
rewritten as
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b(s)=
n∑

i=1

Yi

⎛⎝ ∑
1� j�n

sign(X j − Xi )Q(Xi ,X j ,s)

⎞⎠ . (3)

Hence, conditional on {Xi }1�i�n , the variance of b(s) is given by

V (s)=
∑

1�i�n

σ 2
i

⎛⎝ ∑
1� j�n

sign(X j − Xi )Q(Xi ,X j ,s)

⎞⎠2

, (4)

where σi = (E[ε2
i |Xi ])1/2 and εi = Yi − f (Xi ). In general, σi ’s are unknown,

and have to be estimated from the data. For all i = 1, . . . ,n, let σ̂i denote some
estimator of σi . Available estimators are discussed later in this section. Then the
estimated conditional variance of b(s) is

V̂ (s)=
∑

1�i�n

σ̂ 2
i

⎛⎝ ∑
1� j�n

sign(X j − Xi )Q(Xi ,X j ,s)

⎞⎠2

. (5)

The general form of the test statistic that I consider in this article is

T = max
s∈Sn

b(s)

(V̂ (s))1/2
. (6)

Large values of T indicate that the null hypothesis H0 is violated. Later in this
section, I will provide methods for estimating (or bounding) quantiles of T under
H0 and for choosing a critical value for the test based on the statistic T .

The set Sn determines adaptivity properties of the test, that is the ability of the
test to detect many different deviations from H0. Indeed, each weighting func-
tion Q(·, ·,s) is useful for detecting some deviation, and so the larger is the set of
weighting functions Sn , the larger is the number of different deviations that can
be detected, and the higher is adaptivity of the test. In this article, I allow for expo-
nentially large (in the sample size n) sets Sn . This implies that the researcher can
choose a huge set of weighting functions, which allows her to detect a large set of
different deviations from H0. The downside of the adaptivity, however, is that ex-
panding the set Sn increases the critical value, and thus decreases the power of the
test against those alternatives that can be detected by weighting functions already
included in Sn . Fortunately, the loss of power is relatively small. In particular, it
follows from Lemmas A.3 and A.6 in the appendix that the critical values for the
tests developed below are bounded from above by a slowly growing C(log p)1/2

for some constant C > 0 where p = |Sn |, the number of elements in the set Sn .

2.2. Typical Weighting Functions

Let me now describe typical weighting functions. Consider some compactly sup-
ported kernel function K : R → R satisfying K (x)� 0 for all x ∈ R. For conve-
nience, I will assume that the support of K (·) is [−1,1]. In addition, let s = (x,h)
where x is a location point and h is a bandwidth value (smoothing parameter).
Finally, define
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FIGURE 1. Regression functions illustrating different deviations from H0.

Q(x1,x2,s)= |x1 − x2|k K

(
x1 − x

h

)
K

(
x2 − x

h

)
(7)

for some k � 0. I refer to this Q as a kernel weighting function.4

Assume that a test is based on kernel weighting functions and Sn consists of
pairs s = (x,h) with many different values of x and h. Such a test would have
good adaptivity properties. To see this, consider Figure 1 that plots two regression
functions, f1(·) and f2(·). Both f1(·) and f2(·) violate H0 but locations where
H0 is violated are different. In particular, f1(·) violates H0 on the interval [x1,x2]
and f2(·) violates H0 on the interval [x3,x4]. In addition, f1(·) is relatively less
smooth than f2(·), and [x1,x2] is shorter than [x3,x4]. To have good power against
f1(·), Sn should contain a pair (x,h) such that [x −h,x +h] ⊂ [x1,x2]. Indeed, if
[x −h,x +h] is not contained in [x1,x2], then positive and negative values of the
summand in b will cancel out yielding a low value of b. In particular, it should be
the case that x ∈ [x1,x2]. Similarly, to have good power against f2(·), Sn should
contain a pair (x,h) such that x ∈ [x3,x4]. Therefore, using many different values
of x yields a test that adapts to the location of the deviation from H0. This is
spatial adaptivity. Furthermore, note that larger values of h yield higher signal-to-
noise ratio. So, given that [x3,x4] is longer than [x1,x2], the optimal pair (x,h)
to test against f2(·) has a larger value of h than that used to test against f1(·).

4 It is possible to extend the definition of kernel weighting functions given in (7). Specifically, the term |x1 − x2 |k in
the definition can be replaced by general function K̄ (x1, x2) satisfying K̄ (x1, x2)� 0 for all x1 and x2. I thank Joris
Pinkse for this observation.
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Therefore, using many different values of h results in adaptivity with respect to
smoothness of the function, which, in turn, determines how fast its first derivative
is varying and how long the interval of nonmonotonicity is.

If no ex ante information is available, I recommend using kernel weighting
functions (7) with

Sn =
{
(x,h) : x ∈ {X1, . . . ,Xn},h ∈ Hn

}
,

where

Hn =
{

h = hmaxul : h � hmin,l = 0,1,2, . . .
}
,

hmax = max
1�i, j�n

|Xi − X j |/2, and hmin = Chhmax(logn/n)1/3.

I also recommend setting u = 0.5, Ch = 0.4, and k = 0 or 1. I refer to this Sn as
a basic set of weighting functions. This choice of parameters is consistent with
the theory presented in this article and has worked well in simulations. Moreover,
the basic set of weighting functions yields an adaptive and rate optimal test; see
Section 4. The constant Ch is selected so that each test function b(s) uses approx-
imately at least 15 observations when n = 100 and X is distributed uniformly on
some interval.

If some ex ante information is available, the general framework considered
here gives the researcher a lot of flexibility to incorporate this information. In
particular, if the researcher expects that the function f (·) is rather smooth, she
can restrict the set Sn by considering only pairs (x,h) with large values of h since
in this case deviations from H0, if present, are more likely to happen on long
intervals. Moreover, if the smoothness of the function f (·) is known, one can find
an optimal value of the smoothing parameter h̃ = h̃n corresponding to this level
of smoothness, and then consider kernel weighting functions with this particular
choice of the bandwidth value, that is Sn = {(x,h) : x ∈ {X1, . . . ,Xn},h = h̃}.
Furthermore, if nonmonotonicity is expected at one particular point x̃ , one can
consider kernel weighting functions with Sn = {(x,h) : x = x̃,h = h̃} or Sn =
{(x,h) : x = x̃,h ∈ Hn} depending on whether the smoothness of f (·) is known
or not. More broadly, if nonmonotonicity is expected on some interval X̄ , one can
use kernel weighting functions with Sn = {(x,h) : x ∈ {X1, . . . ,Xn} ∩ X̄ ,h ∈ h̃}
or Sn = {(x,h) : x ∈ {X1, . . . ,Xn}∩ X̄ ,h ∈ Hn} again depending on whether the
smoothness of f (·) is known or not. Note that all these modifications will increase
the power of the test because smaller sets Sn yield lower critical values.

Another interesting choice of weighting functions is

Q(x1,x2,s)=
∑

1�r�m

|x1 − x2|k K

(
x1 − xr

h

)
K

(
x2 − xr

h

)
,

where s = (x1, . . . ,xm ,h). These weighting functions are useful if the researcher
expects multiple deviations from H0.
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2.3. Comparison with Other Known Tests

I will now show that the general framework described above includes the Hall
and Heckman’s (HH) test statistic and a slightly modified version of the Ghosal,
Sen, and van der Vaart’s (GSV) test statistic as special cases that correspond to
different values of k in the definition of the kernel weighting functions (7).

First, consider the GSV test. This test is based on the test functions

b(s)= 1

2

∑
1�i, j�n

sign(Yi − Yj )sign(X j − Xi)K

(
Xi − x

h

)
K

(
X j − x

h

)
,

whereas setting k = 0 in (7) yields

b(s)= 1

2

∑
1�i, j�n

(Yi − Yj )sign(X j − Xi )

(
Xi − x

h

)
K

(
X j − x

h

)
. (8)

Hence, the only difference between the GSV test and my test is that I use the term
(Yi −Yj ) whereas they use sign(Yi −Yj ). It will be shown in the next section that
my tests are consistent. On the other hand, one can see that the GSV test is not con-
sistent under the presence of conditional heteroscedasticity. Indeed, assume that
Xi is supported on [0,1], that f (Xi )= −Xi , and that εi is −2Xi or 2Xi with equal
probabilities. Then (Yi − Yj )(X j − Xi ) > 0 if and only if (εi − εj )(X j − Xi ) > 0,
and so the probability of rejecting H0 for the GSV test is numerically equal to
that in the model with f (·)≡ 0. But the latter probability does not exceed the size
of the test. This implies that the GSV test is not consistent since it maintains the
required size asymptotically.5 Moreover, the GSV test is nonadaptive with respect
to the smoothness of the function f (·).

Next, consider the HH test. The idea of this test is to make use of the local linear
estimates of the slope of the function f (·). Using well-known formulas for the
OLS regression, one can show that the slope estimate of the function f (·) given
the data {Xi ,Yi }s1<i�s2 with s1 < s2 where {Xi }1�i�n is an increasing sequence
is given by

b(s)=
∑

s1<i�s2
Yi
∑

s1< j�s2
(Xi − X j )

(s2 − s1)
∑

s1<i�s2
X2

i − (∑s1<i�s2
Xi )2

, (9)

where s = (s1,s2). Note that the denominator of (9) depends only on Xi ’s, and
so it disappears after studentization. In addition, simple rearrangements show that
the numerator in (9) is up to the sign equal to

1

2

∑
1�i, j�n

(Yi − Yj )(X j − Xi )1{x − h � Xi � x + h}1{x − h � X j � x + h} (10)

5 The same conclusion on inconsistency also applies to the test of Gijbels et al. (2000).
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for some x and h. On the other hand, setting k = 1 in (7) yields

b(s)= 1

2

∑
1�i, j�n

(Yi − Yj )(X j − Xi )K

(
Xi − x

h

)
K

(
X j − x

h

)
. (11)

Hence, the expression in (10) is proportional to that on the right-hand side in (11)
with K (·) = 1{−1 � · � +1}, and so the HH test statistic is a special case of
those studied in this article. Note also that the HH test statistic maximizes the
studentized version of b(s) over s1 < s2, and so it corresponds to the basic set of
weighting functions with the given kernel function K (·) and leads to an adaptive
and rate optimal test.

2.4. Estimating σi ’s

In practice, the σi ’s are usually unknown, and have to be estimated from the data.
In this subsection, I explain how this estimation can be carried out.

First, if the regression model (1) is homoscedastic, so that σi = σ for all i =
1, . . . ,n and some σ , one can use the estimator of Rice (1984):

σ̂ =
(

1

2n

n−1∑
i=1

(Yi+1 − Yi )
2

)1/2

, (12)

where it is assumed that the observations {Xi ,Yi }1�i�n are arranged so that Xi �
X j whenever i � j . This estimator is

√
n-consistent for σ under mild regularity

conditions as long as f (·) is piecewise Lipschitz-continuous.
Second, if the regression model (1) is heteroscedastic, so that σi varies over i =

1, . . . ,n, one can use a local version of the Rice estimator. To define the estimator,
let bn > 0 be some bandwidth value. Also, for i = 1, . . . ,n, let

J (i)=
{

j = 1, . . . ,n : |X j − Xi | � bn

}
,

and let |J (i)| denote the number of elements in J (i). Then the local Rice estimator
is

σ̂i =
⎛⎝ 1

2|J (i)|
∑

j∈J (i) : j+1∈J (i)

(Yj+1 − Yj )
2

⎞⎠1/2

, i = 1, . . . ,n. (13)

The intuition behind this estimator is as follows. Note that if bn is small enough,
X j+1 is close to X j for all j ∈ J (i) such that j +1 ∈ J (i). So, if the function f (·)
is continuous,

Yj+1 − Yj = f (X j+1)− f (X j )+ εj+1 − εj ≈ εj+1 − εj ,

so that

E
[
(Yj+1 − Yj )

2|{Xi }1�i�n

]
≈ σ 2

j+1 +σ 2
j
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since εj+1 is independent of εj and E[εj |{Xi }1�i�n] = 0. In addition, if bn is
small enough and the function E[ε2|X = ·] is continuous, σ 2

j+1 +σ 2
j ≈ 2σ 2

i since
|X j+1 − Xi | � bn and |X j − Xi | � bn . Hence, if |J (i)| is large enough, which
happens with high probability if bn is not too small, σ̂ 2

i is close to σ 2
i by the

law of large numbers. The formal properties of this estimator will be given in
Section 4. Other available estimators are presented, for example, in Muller and
Stadtmuller (1987), Fan and Yao (1998), Horowitz and Spokoiny (2001), Hardle
and Tsybakov (2007), and Cai and Wang (2008).

2.5. Simulating the Critical Value

In this subsection, I provide three methods for estimating (or bounding) quan-
tiles of the null distribution of the test statistic T . These are plug-in, one-step,
and step-down methods. All of these methods are based on the procedure known
as the Wild bootstrap. The Wild bootstrap was introduced in Wu (1986) and
used, among many others, by Liu (1988), Mammen (1993), Hardle and Mammen
(1993), Horowitz and Spokoiny (2001), Chetverikov (2016), and Chernozhukov,
Chetverikov, and Kato (2013, 2016a, 2017). The three methods are arranged
in terms of increasing power and computational complexity. The validity of all
three methods is established in Theorem 3.1 below. To describe the methods, let
{εi }1�i�n be i.i.d. N(0,1) random variables that are independent of the data.

2.6. Plug-in Approach

Suppose that we are interested in obtaining a test of level α. Throughout the rest
of the article, and without further notice, I assume that α ∈ (0,1/2). The plug-in
approach is based on two observations. First, under H0, for all s ∈ Sn ,

b(s)= 1

2

∑
1�i, j�n

( f (Xi )− f (X j )+ εi − εj )sign(X j − Xi )Q(Xi ,X j ,s) (14)

� 1

2

∑
1�i, j�n

(εi − εj )sign(X j − Xi )Q(Xi ,X j ,s) (15)

since Q(Xi ,X j ,s)� 0 and f (Xi )� f (X j ) whenever Xi � X j under H0. Hence,
the (1−α) quantile of T is bounded from above by the (1−α) quantile of T in the
model with f (·)≡ 0, which is the least favorable model under H0. Second, I will
show that conditional on {Xi }1�i�n , the distribution of T asymptotically depends
on the distribution of noise {εi}1�i�n only through second moments {σ 2

i }1�i�n ;
see Lemma A.5 in the appendix. These two observations suggest that the criti-
cal value for the test can be obtained by simulating the (1 − α) quantile of the
conditional distribution of T given {Xi }1�i�n in the model with f (·) ≡ 0, fixed
{Xi }1�i�n , and Gaussian noise, so that εi ∼ N(0, σ̂ 2

i ) for all i = 1, . . . ,n. More
precisely, I define the plug-in critical value cP I

1−α as the (1 − α) quantile of the
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conditional distribution of the bootstrap test statistic

T Sn = max
s∈Sn

1
2

∑
1�i, j�n (̂σiεi − σ̂jεj )sign(X j − Xi)Q(Xi ,X j ,s)

(V̂ (s))1/2

given the data {Xi ,Yi }1�i�n .

2.7. One-Step Approach

The test with the plug-in critical value is computationally simple. It has, however,
poor power properties. Indeed, the distribution of T in general depends on f (·) but
the plug-in approach is based on the least favorable regression function f (·)≡ 0,
and so it is too conservative when f (·) has strictly increasing parts. To (partially)
fix this problem, let {γn}n�1 be a sequence of positive numbers converging to
zero, and let cP I

1−γn
be the (1 − γn) plug-in critical value. In what follows, I refer

to the number γn as a threshold probability. In addition, denote

SOS
n =

{
s ∈ Sn : b(s)/(V̂ (s))1/2 >−2cP I

1−γn

}
.

I define the one-step critical value cOS
1−α as the (1 −α) quantile of the conditional

distribution of the bootstrap test statistic

T SOS
n = max

s∈SOS
n

1
2

∑
1�i, j�n (̂σiεi − σ̂jεj )sign(X j − Xi)Q(Xi ,X j ,s)

(V̂ (s))1/2

given the data {Xi ,Yi }1�i�n .6 Intuitively, the one-step critical value cOS
1−α works

because the weighting functions corresponding to elements of the set Sn\SOS
n

have an asymptotically negligible influence on the distribution of T under H0.
Indeed, I will show that the probability that at least one element s of Sn such that

1
2

∑
1�i, j�n( f (Xi )− f (X j ))sign(X j − Xi)Q(Xi ,X j ,s)

(V̂ (s))1/2
>−cP I

1−γn
(16)

belongs to the set Sn\SOS
n is at most γn + o(1); see Lemma A.7 in the appendix.

On the other hand, the probability that at least one element s of Sn such that (16)
does not hold for this element gives b(s)/(V̂ (s))1/2> 0 is again at most γn +o(1);
see Lemma A.8 in the appendix. Since γn converges to zero, this suggests that
the critical value can be simulated using only elements of SOS

n . In practice, one
can set γn as a small fraction of α. For example, the Monte Carlo simulations
presented in this article use γn = 0.01 with α = 0.1.7

6 If SOS
n turns out to be empty, set cOS

1−α = +∞.
7 More formally, it is shown in the proof of Theorem 3.1 that the probability of rejecting H0 under H0 in large
samples is bounded from above by α+2γn . This suggests that if the researcher does not agree to tolerate small size
distortions, she can use the test with level α̃ = α− 2γn instead. On the other hand, I note that α+ 2γn is only an
upper bound on the probability of rejecting H0, and in many cases the true probability of rejecting H0 is smaller
than α+2γn .
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2.8. Step-Down Approach

The one-step approach, as the name suggests, uses only one step to drop those
elements of Sn that have negligible influence on the distribution of T . It turns out
that this step can be iterated using the step-down procedure and yielding second-
order improvements in the power. The step-down procedures were developed in
the literature on multiple hypothesis testing; see, in particular, Holm (1979), Ro-
mano and Wolf (2005a,b), and Romano and Shaikh (2010). See also Lehmann and
Romano (2005) for a textbook introduction. The use of the step-down method in
this article, however, is rather different.

To explain the step-down approach, let me define the sequences {cl
1−γn

}l�1 and

{Sl
n}l�1. Set c1

1−γn
= cOS

1−γn
and S1

n =SOS
n . Then for l > 1, let cl

1−γn
be the (1−γn)

quantile of the conditional distribution of

T S l
n = max

s∈S l
n

1
2

∑
1�i, j�n (̂σiεi − σ̂jεj )sign(X j − Xi)Q(Xi ,X j ,s)

(V̂ (s))1/2

given the data {Xi ,Yi }1�i�n where

Sl
n =

{
s ∈ Sn : b(s)/(V̂ (s))1/2 >−cP I

1−γn
− cl−1

1−γn

}
.

It is easy to see that (cl
1−γn

)∞l=1 is a decreasing sequence, and so Sl
n ⊇ Sl+1

n for

all l � 1. Since S1
n is a finite set, there exists l(0)� 1 such that Sl

n = Sl+1
n for all

l � l(0). Let SS D
n = Sl(0)

n . I define the step-down critical value cS D
1−α as the (1−α)

quantile of the conditional distribution of the bootstrap test statistic T S l(0)
n given

the data {Xi ,Yi }1�i�n .
Note that SS D

n ⊂ SOS
n ⊂ Sn , and so cS D

1−α � cOS
1−α � cP I

1−α . This explains that the
three methods for simulating the critical values are arranged in terms of increasing
power.

3. THEORY UNDER HIGH-LEVEL CONDITIONS

In this section, I present the main results of the article on the size and the power
properties of the tests. Since some of the conditions used to derive the results are
high-level, I will verify those conditions for the basic set of weighting functions
and the local Rice estimator in the next section. I will also use the results from this
section to obtain an adaptive and rate optimal test of monotonicity under low-level
conditions in the next section.

Let c1, C1, c2, C2, c3, C3, β, and L be some constants such that 0< c1 � C1,
c2 < C2, 0< c3 � C3, 0< β � 1, and L > 0. Also, let σ(·)= (E[ε2|X = ·])1/2 be
the heteroscedasticity function. Moreover, for any differentiable function g : R→
R, let g′(·) denote its derivative. Throughout the article, I will use the following
low-level assumptions.
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Assumption L 1 (Noise moments). The random variable ε is such that
(E[|ε|4|X])1/4 � C1 and σ(X)� c1 almost surely.

Assumption L2 (Distribution of X). The support of X is X = [c2,C2], and the
distribution of X is absolutely continuous with respect to the Lebesgue measure
on X with the pdf bounded from below by c3 and from above by C3 on X .

Assumption L3 (Smoothness). The regression function f (·) is continuously
differentiable and is such that | f ′(x)| � L for all x ∈ X and | f ′(x2)− f ′(x1)| �
L|x2 − x1|β for all x1,x2 ∈ X . In addition, the heteroscedasticity function σ(·) is
such that |σ(x2)−σ(x1)| � L|x2 − x1| for all x1,x2 ∈ X .

These are mild assumptions on the moments of the noise variable ε, on the dis-
tribution of X , and on the smoothness of the regression and heteroscedasticity
functions f (·) and σ(·). The condition that σ(X) � c1 almost surely imposed in
Assumption L1 precludes the existence of super-efficient estimators. Assumption
L2 means that for any x1,x2 ∈ X with x1 < x2,

c3(x2 − x1)� P(x1 � X � x2)� C3(x2 − x1).

This assumption precludes discrete X’s, but I note that when X is discrete, the
function f (·) can be estimated with the

√
n-rate of consistency for all points

on the support of X and the problem of testing monotonicity of f (·) reduces
to a standard parametric testing problem. Assumption L3 requires, among other
things, that f (·) is continuously differentiable with the derivative being Lipschitz-
continuous with Lipschitz constant L and Lipschitz order β.

Furthermore, let c4, C4, c5, and κ be some constants such that 0 < c4 � C4,
c5 > 0, 0< κ � 1/2, and define the following sensitivity parameter:

An = max
s∈Sn

max
1�i�n

∣∣∣∣∣∣
∑

1� j�n

sign(X j − Xi )Q(Xi ,X j ,s)

(V (s))1/2

∣∣∣∣∣∣ . (17)

This (random-valued) parameter provides an upper bound on the weights each
observation i may have in the studentized test functions b(s)/(V (s))1/2; see (3).
Moreover, let p = |Sn | denote the number of elements in the set Sn , and let hn =
(log p/n)1/(2β+3). To derive the results, I will also use the following high-level
assumptions in addition to low-level Assumptions L1–L3.

Assumption H1 (Noise variance estimators). The estimators σ̂i , i = 1, . . . ,n,
are such that max1�i�n |̂σi −σi | = op(n−κ).

Assumption H2 (Test function variance estimators). The estimators V̂ (s), s ∈
Sn , are such that maxs∈Sn |(V̂ (s)/V (s))1/2 − 1| = op(n−κ ).

Assumption H3 (Growth conditions). The sensitivity parameter An is such
that n A4

n log7(pn)= op(1) and the number of weighting functions p is such that
log p/nκ = o(1).
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Assumption H4 (Weighting functions). With probability 1 − o(1), for any
interval [x1,x2] ⊂ X with x2 − x1 � hn , there exists s ∈ Sn such that (i)
Q(y1, y2,s) = 0 for all (y1, y2) /∈ [x1,x2]2, (ii) Q(y1, y2,s) � C4(x2 − x1)

k for
all (y1, y2) ∈ [x1,x2]2, and (iii) there exist nonintersecting subintervals [xl1,xr1]
and [xl2,xr2] of [x1,x2] such that xr2 � xl2 + c5(x2 − x1)� xr1 +2c5(x2 − x1)�
xl1 + 3c5(x2 − x1) and Q(y1, y2,s) � c4(x2 − x1)

k for all (y1, y2) ∈ [xl1,xr1] ×
[xl2,xr2].

These are high-level assumptions on the rate of consistency of the estimators σ̂i ,
on the rate of consistency of the estimators V̂ (s), on the sensitivity parameter
An , and on the weighting functions. In the next section, I will verify these as-
sumptions for the basic set of weighting functions and the local Rice estimator.
Note that Assumption H3 includes p only through log p, and so it allows an expo-
nentially large (in the sample size n) number of weighting functions. Also, note
that it is shown in the proof of Theorem 4.2 in Appendix A.2 that when the ker-
nel weighting functions with bandwidth values h � hmin are used, there exists a
constant C > 0 such that the sensitivity parameter An with probability 1 − o(1)
satisfies the bound An � C/(nhmin)

1/2. Hence, in this case, the condition that
n A4

n log7(pn) = op(1) holds as long as n1−εh2
min � c and log p � C logn for all

n � 1 with arbitrarily small constants c,ε > 0 and arbitrarily large constant C > 0.
Next, to state the main results on the size and the power properties of the tests,

let M be a model given by the regression function f (·) and the joint distribution
of the pair (X,ε) such that E[ε|X] = 0 almost surely. For the model M , I assume
that the dependent variable Y is generated from the pair (X,ε) and the regression
function f (·) according to (1), so that Y = f (X)+ε. Also, let ML denote the set
of all models M that satisfy Assumptions L1, L2, and L3 (with the same constants
c1, C1, c2, C2, c3, C3, β, and L). Since different models M ∈ ML may have
different regression functions f (·), I will sometimes index the regression function
f (·) by the model M: f (·)= fM (·). Furthermore, let MH denote a set of models
M ∈ML such that Assumptions H1–H4 hold uniformly over this set.8 In the next
section, I will show that if the basic set of weighting functions and the local Rice
estimator are used, one can take MH = ML. For M ∈ ML, let PM (·) denote
the probability measure generated by the model M . The following theorem shows
that the tests developed in this article control asymptotic size uniformly over the
class MH.

THEOREM 3.1 (Size properties of the tests). Let P = P I , OS, or SD and let
M0,H denote the set of all models M ∈ MH satisfying H0. Then

inf
M∈M0,H

PM (T � cP
1−α)� 1 −α+ o(1)

as n → ∞. In addition, let M00,H denote the set of all models M ∈ M0,H such

8 Assumptions H1, H2, and H3 contain statements of the form Z = op(n−κ ) for some random variable Z and some
constant κ > 0. I say that these assumptions hold uniformly over a set of models if for any C > 0, P(|Z | > Cn−κ )=
o(1) uniformly over this set.
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that fM (·)≡ C for some constant C. Then

sup
M∈M00,H

∣∣∣PM (T � cP
1−α)− (1 −α)

∣∣∣→ 0

as n → ∞.

Comment 3.1. (i) This theorem states that the wild bootstrap combined with
the selection procedures developed in this article yields valid critical values in the
sense that the resulting tests control asymptotic size. Moreover, critical values are
valid uniformly over the class of models M0,H, and, in addition, the tests are
nonconservative in the sense that their level converges to the nominal level α.
(ii) The proof technique used in this theorem is based on finite sample approxima-
tions that are built on the results of Chernozhukov, Chetverikov, and Kato (2013,
2015). In particular, the validity of the bootstrap is established without referring to
the asymptotic distribution of the test statistic. This is important because, for ex-
ample, when the test is based on the basic set of weighting functions, the asymp-
totic distribution of the test statistic is unknown. Moreover, it is not even clear
whether this distribution exists.
(iii) The standard techniques from the empirical process theory as presented, for
example, in van der Vaart and Wellner (1996) are not sufficient to prove The-
orem 3.1. The problem is that it is typically impossible to embed the process
{b(s)/(V (s))1/2}s∈Sn into an asymptotically equicontinuous process since, for
example, when the basic set of weighting functions is used, so that s = (x,h),
the random variables b(x1,h)/(V (x1,h))1/2 and b(x2,h)/(V (x2,h))1/2 for fixed
x1 < x2 become asymptotically independent as h → 0.
(iv) Note that T asymptotically has a form of U-statistic. The analysis of such
statistics typically requires a preliminary Hoeffding projection. An advantage of
the approximation method used in this article is that it applies directly to the test
statistic with no need for the Hoeffding projection, which greatly simplifies the
derivations.

Next, I present power properties of the tests. The following theorem establishes
consistency of the tests against fixed alternatives in the class MH.

THEOREM 3.2 (Consistency against fixed alternatives). Let P = P I , OS, or
SD. Then for any model M ∈ MH such that there exist x1,x2 ∈ X with x1 < x2
but fM (x1) > fM (x2) (H0 is false),

PM (T � cP
1−α)→ 0 as n → ∞

as n → ∞.

Furthermore, to derive the rate of consistency of the tests against local one-
dimensional alternatives, consider any M ∈ MH such that there exist x1,x2 ∈ X
with x1 < x2 but fM (x1) > fM (x2) (H0 is false), and let {Mn}n�1 be a sequence
of models such that for all n � 1, the joint distribution of the pair (X,ε) in Mn
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coincide with that in M but the regression function fMn (·) in Mn has the following
form: fMn (·) = ln fM (·), where {ln}n�1 is some sequence of positive numbers
converging to zero. Note that all the models Mn are under Ha but they approach
H0 as n increases.

THEOREM 3.3 (Rate of consistency against local one-dimensional
alternatives). Let P = P I , OS, or SD. Suppose that the sequence {Mn}n�1 de-
fined above is such that Mn ∈ MH for all n � 1. Then

PMn (T � cP
1−α)→ 0

as n → ∞ as long as (log p/n)1/2 = o(ln).

Finally, to derive the rate of uniform consistency of the tests against alternatives
in the class MH, let {ln}n�1 be a sequence of positive numbers converging to zero,
and let MH,ln be the set of all models M ∈ MH such that infx∈X f ′

M (x) <−ln .

THEOREM 3.4 (Rate of uniform consistency against smooth alternatives). Let
P = P I , OS, or SD. Then

sup
M∈MH,ln

PM (T � cP
1−α)→ 0

as n → ∞ as long as (log p/n)β/(2β+3) = o(ln).

To conclude this section, I present a theorem that gives a lower bound on
the possible rates of uniform consistency against alternatives in the class ML
so that no test that maintains asymptotic size can have a faster rate of uni-
form consistency. Let ψ = ψ({Xi ,Yi }1�i�n) be a generic test where the function
ψ({Xi ,Yi }1�i�n) gives the probability of rejecting H0 upon observing the data
{Xi ,Yi }1�i�n . Also, let M0,L denote the set of all models M ∈ ML satisfying
H0. Moreover, for M ∈ML, let EM [·] denote the expectation under the probabil-
ity measure generated by the model M .

THEOREM 3.5 (Lower bound on possible rates of uniform consistency). For
any test ψ such that

sup
M∈M0,L

EM [ψ] � α+ o(1)

as n → ∞, there exists a sequence {Mn}n�1 of models belonging to the
class ML and a constant c > 0 such that for all n � 1, infx∈X f ′

Mn
(x) <

−c(logn/n)β/(2β+3) and

EMn [ψ] � α+ o(1)

as n → ∞.
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4. AN ADAPTIVE AND RATE-OPTIMAL TEST

In this section, I study properties of the test based on the basic set of weighting
functions and the local Rice estimator. In particular, I show that this test controls
asymptotic size and is adaptive and rate optimal against alternatives with regres-
sion functions having Lipschitz-continuous derivative. For these purposes, I apply
results from the previous section. Specifically, I show that for the test based on the
basic set of weighting functions and the local Rice estimator, Assumptions H1–
H4 hold uniformly over models M ∈ ML. This allows me to apply Theorems
3.1–3.4 with MH = ML and obtain the desired results.

Throughout this section, I will assume, without further notice, that the basic
set of weighting functions is used with a kernel function K (·) having the sup-
port [−1,+1], being continuous, and being strictly positive on the interior of its
support. Many commonly used kernel functions including uniform, triangular,
Epanechnikov, biweight, triweight, and tricube kernels satisfy these restrictions;
see Tsybakov (2009) for definitions. Note, however, that these restrictions exclude
higher order kernels since those are necessarily negative on parts of their supports.

The following theorem verifies Assumption H1 for the local Rice estimator.

THEOREM 4.1 (Verification of Assumption H1 for local Rice estimator). Sup-
pose that for all i = 1, . . . ,n, σ̂i is the local Rice estimator of σi given in (13) and
based on the bandwidth value bn = Cb(logn)1/2/n1/4 where Cb > 0 is some con-
stant. Then Assumption H1 holds uniformly over M ∈ ML for any κ ∈ (0,1/4).

Comment 4.1. (i) This theorem provides a partial answer to the question of
selecting the bandwidth value bn for the local Rice estimator by showing how fast
bn should converge to zero but it does not provide the full answer because it does
not specify the constant Cb in the formula bn = Cb(logn)1/2/n1/4. In general,
the optimal choice of Cb depends on the constants c1, C1, c2, C2, c3, C3, β, and
L, which are unknown. Instead, I suggest an ad hoc rule Cb = 0.2. With this
choice of Cb , the local Rice estimator σ̂i is based on about 25 observations for all
i = 1, . . . ,n when the sample size n = 100 and X is distributed uniformly over
some interval.
(ii) The proof of the theorem also shows that the local Rice estimators σ̂i satisfy

max
1�i�n

|̂σi −σi | = Op

(
bn + logn

bnn1/2

)
.

This result on the rate of uniform consistency of the local Rice estimators can be
of independent interest.

The following theorem verifies Assumptions H2, H3, and H4 for the basic set
of weighting functions.

THEOREM 4.2 (Verification of Assumptions H2, H3, and H4 for basic set of
weighting functions). Suppose that Sn is the basic set of weighting functions and
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that the estimators σ̂i are the same as those in Theorem 4.1. Then Assumptions
H2, H3, and H4 hold with any κ ∈ (0,1/4) uniformly over M ∈ ML.

To conclude this section, I combine Theorems 3.1–3.4 with Theorems 4.1 and
4.2 to obtain the following corollary on the properties of the test based on the
basic set of weighting functions and the local Rice estimator.

COROLLARY 4.1 (Size and power properties of test based on the basic set
of weighting functions and local Rice estimator). Let P = P I , OS, or SD and
suppose that Sn is the basic set of weighting functions and that the estimators σ̂i

are the same as those in Theorem 4.1. Then

inf
M∈M0,L

PM (T � cP
1−α)� 1 −α+ o(1) (18)

as n → ∞. In addition, let M00,L denote the set of all models M ∈ M0,L such
that fM (·)≡ C for some constant C. Then

sup
M∈M00,L

∣∣∣PM (T � cP
1−α)− (1 −α)

∣∣∣→ 0 (19)

as n → ∞. Furthermore, for any model M ∈ML such that there exists x1,x2 ∈X
with x1 < x2 but fM (x1) > fM (x2) (H0 is false),

PM (T � cP
1−α)→ 0 (20)

as n → ∞. Moreover, if M ∈ML is such that there exists x1,x2 ∈X with x1 < x2
but fM (x1)> fM (x2) and {Mn}n�1 is a sequence of models such that for all n � 1,
the joint distribution of the pair (X,ε) in Mn coincides with that in M but the
regression function fMn (·) in Mn has the form fMn (·) = ln fM (·), where {ln}n�1
is some sequence of positive numbers converging to zero (H0 is false), then

PMn (T � cP
1−α)→ 0 (21)

as n → ∞ as long as (logn/n)1/2 = o(ln). Finally, let ML,ln denote the set of all
models M ∈ ML such that infx∈X f ′

M (x) <−ln , where {ln}n�1 is a sequence of
positive numbers converging to zero. Then

sup
M∈ML,ln

PM (T � cP
1−α)→ 0 (22)

as n → ∞ as long as (logn/n)β/(2β+3) = o(ln).

Comment 4.2. (i) This theorem shows that the test based on the basic set of
weighting functions and the local Rice estimator controls asymptotic size, is not
conservative, and is consistent against fixed alternatives. The theorem also shows
that the test is consistent against local one-dimensional alternatives Mn having the
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regression function fMn (·)= ln fM (·) for some sequence {ln}n�1 of positive num-
bers converging to zero and satisfying (logn/n)1/2 = o(ln). Finally, the theorem
shows that the test is uniformly consistent against alternatives in the set ML,ln as
long as (logn/n)β/(2β+3) = o(ln).
(ii) Comparing the rate of uniform consistency in this theorem against alternatives
in the class ML with the lower bound on possible rates of uniform consistency
in the same class ML derived in Theorem 3.5 shows that the optimal rate of
uniform consistency is (logn/n)β/(2β+3) and that the test based on the basic set
of weighting functions and the local Rice estimator is rate optimal. Moreover,
carrying out the test does not require knowing β, and so the test is adaptive. Hence,
this test is adaptive and rate optimal.

5. MONTE CARLO SIMULATIONS

In this section, I provide results of a small Monte Carlo simulation study. The
purposes of the simulation study are (i) to shed some light on the size properties
of the tests developed in this article in finite samples, (ii) to quantify the power
gains from using the one-step and the step-down critical values relative to the
plug-in critical values, and (iii) to compare the power of the tests developed in
this article with that of other tests in the literature. In particular, I consider the
tests of Gijbels et al. (2000) (GHJK) and of Ghosal et al. (2000) (GSV).

I consider samples of size n = 500, 1,000, and 2,000 with X having uniform
distribution on the [−1,1] interval. I also consider the regression functions f (·)
of the form

f (x)= c1x − c2φ(c3x), x ∈ [−1,1],

where c1, c2, and c3 are some parameters, and φ(·) is the pdf of the standard
normal distribution. I assume that ε is a zero-mean random variable that is inde-
pendent of X . Depending on the experiment, ε has either a Gaussian or a uniform
distribution. In both cases, the variance of ε is normalized to be one. Five combi-
nations of the parameter values are studied:

DGP 1: c1 = 0, c2 = 0, c3 = 0;

DGP 2: c1 = −0.2, c2 = 0, c3 = 0;

DGP 3: c1 = 10, c2 = 50, c3 = 1;

DGP 4: c1 = 10, c2 = 10, c3 = 6;

DGP 5: c1 = 10, c2 = 8, c3 = 9.

DGP 1 satisfies the null hypothesis but DGPs 2–5 do not. DGP 1 has a flat regres-
sion function f (·), which gives the least favorable model under the null. DGP 2
has a strictly decreasing regression function f (·), and DGPs 3–5 have regression
functions f (·) that are mostly increasing but are strictly decreasing on some parts
of the domain. In particular, f (·) is strictly decreasing on (−1,−0,6) in DGP 3,
on (−0.27,−0.08) in DGP 4, and on (−0.19,−0.04) in DGP 5. For DGPs 2–5
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the parameter values were chosen so as to have nontrivial rejection probabilities
in most cases (that is, bounded below from zero and above from one).

Let me now describe the tuning parameters for all the tests used in the simula-
tions. For the GHJK and GSV tests, I followed instructions in the corresponding
articles. In particular, for the GHJK test, I use their run statistic with k = 0.2n (see
the original article for the explanation of the notation), and I use standard normal
random variables with B = 1,000 bootstrap repetitions to simulate the critical
value. For the GSV test, I use their sup-statistic and the kernel function

K (x)= 0.75 · (1 − x2) ·1{|x |� 1}, x ∈ R (23)

with the bandwidth value hn = n−1/5. To prevent the boundary effects, I take the
supremum in the definition of their test statistic over x ∈ (−0.9,+0.9). Finally, for
the tests developed in this article, I use the basic set of weighting functions with
the kernel function K (·) given in (23) and the parameter values chosen according
to recommendations in Section 2.2 (and k = 0). For estimating σi ’s, I use the local
Rice estimator with the bandwidth value bn chosen according to the recommen-
dations in Comment 4.1. For the one-step and the step-down critical values, I take
the threshold probability γn = 0.01. All three critical values (plug-in, one-step,
and step-down) are calculated using B = 1,000 bootstrap repetitions.

For all the tests, I set the nominal level α = 0.1. In addition, since my tests
slightly over-reject and the GSV test slightly under-reject in finite samples under
the null, I use size correction for DGPs 2–5, where the rejection probabilities give
the power of the tests. In particular, for these DGPs, I present the results with
α = 0.9 when ε is Gaussian and α = 0.8 when ε is uniform for my tests, and I
present the results with α= 0.13 both in the Gaussian and in the uniform cases for
the GSV test. This correction slightly decreases the power of my tests but slightly
increases the power of the GSV test. For each design of the experiment, I use
1,000 simulations.

Intuitively, the power of the GSV test may be large when the bandwidth value
hn for this test turns out to be appropriate for the given alternative, which happens
when the length of the region where the function f (·) is decreasing is of the same
order as that of the bandwidth value hn . In these cases, the power of the GSV test
may exceed that of my tests because the former does not incur the cost of adapta-
tion. My tests, however, may have much larger power when the bandwidth value
hn for the GSV test turns out to be inappropriate for the given alternative. Also, as
noted in the original article, the advantage of the GHJK test is not its power, which
may be low relative to that of other tests, but computational simplicity, minimal
requirements on the distribution of ε, and exceptional size control.

The results of the Monte Carlo simulations are presented in Table 1 for the
case of the Gaussian ε and in Table 2 for the case of the uniform ε. Specifically,
the tables contain information on rejection probabilities for each test depending
on the sample size and the DGP. The tests developed in this article are denoted
by “ARO, PI”, “ARO, OS”, and “ARO, SD”, where “ARO” is a shorthand for
“adaptive and rate optimal”. The following observations can be taken from these
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TABLE 1. Results of monte carlo experiments, Gaussian noise

DGP Sample Size
Proportion of rejections for

GHJK GSV ARO, PI ARO, OS ARO, SD

1
500 0.115 0.070 0.129 0.129 0.129

1,000 0.101 0.075 0.130 0.130 0.130
2,000 0.100 0.074 0.116 0.116 0.116

2
500 0.165 0.154 0.398 0.398 0.398

1,000 0.148 0.173 0.680 0.680 0.680
2,000 0.142 0.217 0.913 0.913 0.913

3
500 0.089 0.253 0.220 0.286 0.289

1,000 0.111 0.456 0.480 0.602 0.605
2,000 0.143 0.720 0.791 0.830 0.830

4
500 0.081 0.006 0.156 0.226 0.229

1,000 0.109 0.166 0.371 0.478 0.483
2,000 0.156 0.767 0.639 0.708 0.709

5
500 0.104 0.000 0.265 0.339 0.340

1,000 0.162 0.003 0.596 0.685 0.691
2,000 0.252 0.348 0.904 0.928 0.929

tables. First, results for the Gaussian and the uniform cases are similar. Second,
the tests developed in this article may slightly over-reject in moderate samples un-
der the null. For example, in the case of the Gaussian ε, all three tests developed
in this article reject with probability 0.129 when n = 500 and with probability
0.130 when n = 1,000. On the other hand, over-rejection decreases as the sam-
ple size grows. In particular, all three tests developed in this article reject with
probability 0.116 in the case of the Gaussian ε and with probability 0.106 in the
case of the uniform ε when n = 2,000. In comparison, the GSV test under-reject
under the null, and this under-rejection does not seem to decrease much as the
sample size grows. On the other hand, the GHJK test has a very good size control
both for the Gaussian and for the uniform ε for all sample sizes considered (in
fact, by construction, the GHJK test would have the exact size control if I were
to use an infinite number of bootstrap repetitions and an infinite number of simu-
lations). Third, the selection procedure used in the one-step critical value for the
tests developed in this article gives improvements in terms of power relative to the
plug-in critical value. For example, for DGP 3, the Gaussian ε, and the sample size
n = 1,000, the rejection probabilities for the “ARO, PI” and the “ARO, OS” tests
are 0.480 and 0.602, respectively. On the other hand, the step-down critical value
improves power of my tests relative to the one-step critical value only marginally.
Fourth, the selection procedures used in the one-step and the step-down critical
values for the tests developed in this article do not undermine the size control rel-
ative to the plug-in critical value. In particular, for DGP 1, the “ARO, PI”, “ARO,
OS”, and “ARO, SD” tests always have the same rejection probabilities. Fifth, the
power of my tests exceeds that of the GHJK and GSV tests in most experiments,
sometimes substantially. For example, for DGP 2, the uniform ε, and the sample
size n = 2,000, all my tests reject with probability 0.907 whereas the GHJK and
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TABLE 2. Results of monte carlo experiments, uniform noise

DGP Sample size
Proportion of rejections for

GHJK GSV ARO, PI ARO, OS ARO, SD

1
500 0.117 0.073 0.122 0.122 0.122

1,000 0.108 0.072 0.111 0.111 0.111
2,000 0.100 0.076 0.106 0.106 0.106

2
500 0.150 0.150 0.372 0.372 0.372

1,000 0.146 0.181 0.662 0.662 0.662
2,000 0.138 0.197 0.907 0.907 0.907

3
500 0.077 0.238 0.204 0.277 0.279

1,000 0.102 0.459 0.464 0.595 0.596
2,000 0.138 0.714 0.773 0.812 0.813

4
500 0.075 0.009 0.142 0.204 0.206

1,000 0.098 0.159 0.352 0.448 0.453
2,000 0.144 0.732 0.620 0.694 0.696

5
500 0.095 0.000 0.235 0.304 0.306

1,000 0.134 0.003 0.583 0.674 0.680
2,000 0.216 0.313 0.899 0.930 0.930

GSV tests reject only with probabilities 0.138 and 0.197, respectively. Finally, the
power of the GSV test exceeds that of all my tests only for DGP 4 and the sam-
ple size n = 2,000, and also exceeds that of my “ARO, PI” test for DGP 3 and
the sample size n = 500. These are the cases where the bandwidth choice for the
GSV test turns out to be appropriate. Even in these cases, however, the difference
in the power between the GSV test and my tests is not large. For example, for
DGP 4, the uniform ε, and the sample size n = 2,000, the GSV test rejects with
probability 0.732 and my “ARO, SD” test rejects with probability 0.696.

To complement simulations above, I also compare the rejection probabilities of
the adaptive and rate optimal test with step-down critical values with those of the
GSV test in the model where X has uniform distribution on the [−1,1] interval,
ε is independent of X and has uniform distribution with mean zero and variance
one, and the regression function f (·) takes the following form:

f (x)= c4x − (10/c5)φ(c5x), x ∈ [−1,1],

where c4 varies between 0 and 3 and c5 varies between 1 and 10. For both tests, I
use the same specifications as those described above. The results are presented in
Figure 2, which shows the difference of the rejection probability of the adaptive
and rate optimal test and that of the GSV test as a function of c4 and c5. To under-
stand the results, note that large values of c4 correspond to the null hypothesis, and
this is the region where the tests have similar rejection probabilities, so that the
difference is close to zero. Small values of c4, on the other hand, correspond to the
alternative, and this is the region where the tests have different rejection probabil-
ities. The figure shows that the difference is typically positive and is sometimes
substantial in this region, which indicates that the adaptive and rate optimal test
developed in this article outperforms the GSV test.
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FIGURE 2. Power difference between the adaptive and rate optimal test (with step-down
critical values) and the test of Ghosal et al. (2000).

6. CONCLUSION

In this article, I have developed a general framework for testing monotonicity of
a nonparametric regression function, and have given a broad class of new tests. A
general test statistic uses many different weighting functions so that an approx-
imately optimal weighting function is determined automatically. In this sense,
the test adapts to the properties of the model. I have also obtained new meth-
ods to simulate the critical values for these tests. These are based on the wild
bootstrap and the selection procedures. The selection procedures are used to es-
timate what counterparts of the test statistic should be used in simulating the
critical value. They are constructed so that no violation of the asymptotic size
occurs.
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APPENDIX A: Proofs for Section 3

In this appendix, I first prove a sequence of auxiliary lemmas (Section A.1) and then I
present the proofs of the theorems stated in Section 3 (Section A.2). In Section A.1, all
results hold uniformly over models M ∈ MH. For brevity, however, I drop the index M ,
and do not claim this uniformity repeatedly.

Throughout this appendix, I will use the following additional notation. Let

wi (s)=
∑

1� j�n

sign(Xj − Xi )Q(Xi , Xj ,s), i = 1, . . . ,n, s ∈ Sn,

e(s) =
∑

1�i�n

wi (s)σiεi

(V (s))1/2
, and ε(s)=

∑
1�i�n

wi (s)εi

(V (s))1/2
, s ∈ Sn,
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where {εi }1�i�n are i.i.d. N(0,1) random variables that are independent of the data
{Xi ,Yi }1�i�n . Also, let

Vn = max
s∈Sn

(V (s)/V̂ (s))1/2.

Moreover, for all S ⊂ Sn and η ∈ (0,1), let cSη denote the η quantile of the conditional
distribution of

TS = max
s∈S

∑
1�i�n

wi (s)σ̂i εi

(V̂ (s))1/2

given the data {Xi ,Yi }1�i�n , and let cS,0η denote the η quantile of the conditional distri-
bution of

TS,0 = max
s∈S

∑
1�i�n

wi (s)σiεi

(V (s))1/2
= max

s∈S
e(s)

given the data {Xi ,Yi }1�i�n . Finally, for η� 0, define cSη and cS,0η as −∞, and for η� 1,

define cSη and cS,0η as +∞.

A.1. Auxiliary Lemmas

LEMMA A.1. For some universal constant C > 0,

E

[
max
s∈Sn

|e(s)||{Xi }1�i�n

]
� C(log p)1/2.

Proof. For all s ∈ Sn , conditional on {Xi }1�i�n , the random variable e(s) has the
N(0,1) distribution, and |Sn | = p. So, the result follows from Lemma 2.2.2 in van der
Vaart and Wellner (1996). �

LEMMA A.2. Let S ⊂ Sn. Then for all �> 0,

sup
t∈R

P

(
max
s∈S

e(s) ∈ [t, t +�]|{Xi }1�i�n

)
� C�(log p)1/2,

and for all (η,δ) ∈ (0,1)2,

cS,0η+δ −cS,0η � δ

C(log p)1/2
(A.1)

for some universal constant C > 0.

Proof. Theorem 3 in Chernozhukov et al. (2015) shows that if W1, . . . ,Wp are N(0,1)
random variables (not necessarily independent), then for all �> 0,

sup
t∈R

P

(
max

1� j�p
Wj ∈ [t, t +�]

)
� 4�

(
E

[
max

1� j�p
Wj

]
+1

)
.
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Therefore,

sup
t∈R

P

(
max
s∈S

e(s) ∈ [t, t +�]|{Xi }1�i�n

)
� 4�

(
E

[
max
s∈S

e(s)|{Xi }1�i�n

]
+1

)
,

and so the first asserted claim follows from Lemma A.1. For the second asserted claim,
note that (A.1) holds if η+ δ � 1 since cS,0η+δ = +∞ in this case. On the other hand, if
η+ δ < 1, then

δ = P
(

max
s∈S

e(s) ∈ [cS,0η ,cS,0η+δ]|{Xi }1�i�n

)
� C(cS,0η+δ −cS,0η )(log p)1/2,

and so (A.1) holds as well. This gives the second asserted claim and completes the
proof. �

LEMMA A.3. For all S ⊂ Sn and η ∈ (0,1),

cS,0η � C(log p)1/2

1−η (A.2)

for some universal constant C > 0.

Proof. Recall that cS,0η is the η quantile of the conditional distribution of maxs∈S e(s)
given {Xi }1�i�n . Hence, by Markov’s inequality and Lemma A.1,

1−η = P

[
max
s∈S

e(s) > cS,0η |{Xi }1�i�n

]
�

E[maxs∈S e(s)|{Xi }1�i�n]

cS,0η

� C(log p)1/2

cS,0η

for some universal constant C > 0. Rearranging this inequality gives the asserted claim. �

LEMMA A.4. The random variable

Un = max
s∈Sn

∣∣∣∣∣∣
∑

1�i�n

(
wi (s)σ̂i εi

(V̂ (s))1/2
− wi (s)σi εi

(V (s))1/2

)∣∣∣∣∣∣
satisfies

Un = op

(
(log p)1/2/nκ

)
.

In addition, there exists a sequence {ψ̃n}n�1 of positive numbers converging to zero such
that

P
(

Un > (log p)1/2/nκ
)

= o(ψ̃n).

Proof. Denote

U1,n = max
s∈Sn

∣∣∣∣∣∣
∑

1�i�n

wi (s)σi εi

(V (s))1/2

∣∣∣∣∣∣× max
s∈Sn

∣∣∣1− (V (s)/V̂ (s))1/2
∣∣∣ and
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U2,n = max
s∈Sn

∣∣∣∣∣∣
∑

1�i�n

wi (s)(σ̂i −σi )εi

(V (s))1/2

∣∣∣∣∣∣× max
s∈Sn

(V (s)/V̂ (s))1/2.

Then

Un � U1,n +U2,n, (A.3)

and so it suffices to bound U1,n and U2,n separately. To bound U1,n note that by Lemma
A.1,

E

⎡⎣max
s∈Sn

∣∣∣∣∣∣
∑

1�i�n

wi (s)σi εi

(V (s))1/2

∣∣∣∣∣∣
⎤⎦= E

[
max
s∈Sn

|e(s)|
]

= E

[
E

[
max
s∈Sn

|e(s)||{Xi }1�i�n

]]
� C(log p)1/2

for some universal constant C > 0 and by Assumption H2,

max
s∈Sn

∣∣∣1− (V (s)/V̂ (s))1/2
∣∣∣= op(n

−κ ).

Combining these bounds shows that

U1,n = op

(
(log p)1/2/nκ

)
. (A.4)

Furthermore, to bound U2,n , note that by Assumptions L1 and H1, conditional on the data
{Xi ,Yi }1�i�n , the random variable∑
1�i�n

wi (s)(σ̂i −σi )εi

(V (s))1/2

has a zero-mean Gaussian distribution with variance bounded from above by

∑
1�i�n

wi (s)
2(σ̂i −σi )

2

V (s)
�

max1�i�n |̂σi −σi |2
min1�i�n σ

2
i

×
∑

1�i�n

wi (s)
2σ 2

i
V (s)

= max1�i�n |̂σi −σi |2
min1�i�n σ

2
i

= op(n
−2κ ).

Hence, by the same argument as that used in the proof of Lemma A.1 and Markov’s in-
equality,

max
s∈Sn

∣∣∣∣∣∣
∑

1�i�n

wi (s)(σ̂i −σi )εi

(V (s))1/2

∣∣∣∣∣∣= op

(
(log p)1/2/nκ

)
.

Since maxs∈S(V (s)/V̂ (s))1/2 →p 1 by Assumption H2, the last bound implies that

U2,n = op

(
(log p)1/2/nκ

)
. (A.5)

Combining (A.3), (A.4), and (A.5) gives the first asserted claim. The second asserted claim
follows from the first claim. �
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LEMMA A.5. There exists an event An depending on the data only via {Xi }1�i�n such
that (i) P(An)= 1−o(1) and (ii) uniformly over {Xi }1�i�n ∈An, S ⊂ Sn, and η ∈ (0,1),

P

(
max
s∈S

ε(s)� cS,0η |{Xi }1�i�n

)
= η+o(1)

and

P

(
max
s∈S

(−ε(s))� cS,0η |{Xi }1�i�n

)
= η+o(1).

Proof. Recall that

ε(s)=
∑

1�i�n

wi (s)εi

(V (s))1/2
, s ∈ Sn .

Also, note that for all s ∈ S ,

E[ε(s)2] =
∑

1�i�n

(wi (s)σi )
2

V (s)
= 1.

In addition, by Assumption H3, n A4
n log7(pn) = op(1). Hence, there exists a sequence

{ωn}n�1 of positive numbers such that n A4
n log7(pn) = op(ωn) and ωn = o(1). Let An

denote the event that n A4
n log7(pn) � ωn . Then P(An) = 1 − o(1), and the event An de-

pends on the data only via {Xi }1�i�n . Furthermore, note that E[ε2
i /σ

2
i |Xi ] = 1, and since

(E[ε4
i |Xi ])1/4 � C1 and σi � c1 by Assumption L1, E[ε4

i /σ
4
i |Xi ] � C for some constant

C > 0. Therefore, applying Lemma C.3 with zis = √
nwi (s)σi/(V (s))

1/2 and ui = εi/σi
conditional on {Xi }1�i�n shows that there exists a sequence {ω′}n�1 of positive numbers
converging to zero and depending only on {ωn}n�1 such that on the event An ,∣∣∣∣P(max

s∈S
ε(s)� cS,0η |{Xi }1�i�n

)
−η
∣∣∣∣ � ω′

n .

The first asserted claim follows. The second asserted claim follows by replacing ε(s) by
−ε(s). �

LEMMA A.6. There exist a sequence {ψn}n�1 of positive numbers converging to zero
and an event Bn depending on the data only via {Xi }1�i�n such that (i) P(Bn)= 1−o(1)
and (ii) uniformly over {Xi }1�i�n ∈ Bn, S ⊂ Sn, and η ∈ (0,1),

P(cS,0η+ψn
< cSη |{Xi }1�i�n)= o(1) and P(cSη+ψn

< cS,0η |{Xi }1�i�n)= o(1).

Proof. By Assumption H3, log p/nκ = o(1). Hence, there exists a sequence {ωn}n�1
of positive numbers converging to zero such that log p/nκ � ωn . Furthermore, recall the
random variables TS and TS,0 defined in the beginning of this appendix:

TS = max
s∈S

∑
1�i�n

wi (s)σ̂i εi

(V̂ (s))1/2
and TS,0 = max

s∈S
∑

1�i�n

wi (s)σi εi

(V (s))1/2
.
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Then for all S ⊂ Sn ,

|TS − TS,0| � max
s∈S

∣∣∣∣∣∣
∑

1�i�n

(
wi (s)σ̂i εi

(V̂ (s))1/2
− wi (s)σi εi

(V (s))1/2

)∣∣∣∣∣∣
� max

s∈Sn

∣∣∣∣∣∣
∑

1�i�n

(
wi (s)σ̂iεi

(V̂ (s))1/2
− wi (s)σiεi

(V (s))1/2

)∣∣∣∣∣∣= Un

for Un defined in the statement of Lemma A.4. Therefore, Lemma A.4 shows that there
exists a sequence {ψ̃n} of positive numbers converging to zero such that

P

(
max
S⊂Sn

|TS − TS,0|> (log p)1/2/nκ
)

= o(ψ̃n).

Hence,

P

(
P

(
max
S⊂Sn

|TS − TS,0|> (log p)1/2/nκ |{Xi ,Yi }1�i�n

)
> ψ̃n

)
→ 0.

Let Bn denote the event that

P

(
max
S⊂Sn

|TS − TS,0|> (log p)1/2/nκ |{Xi ,Yi }1�i�n

)
� ψ̃n,

so that

P(Bn)= 1−o(1). (A.6)

Define ψn = ψ̃n +ω1/2
n +Cωn where C is the same universal constant as that in (A.1) in

the statement of Lemma A.2. Then ψn = o(1). Also, observe that

P
(

TS,0 � cS,0η |{Xi ,Yi }1�i�n

)
= η and P

(
TS � cSη |{Xi ,Yi }1�i�n

)
= η

for any η ∈ (0,1). So, on Bn , for all S ⊂ Sn and η ∈ (0,1) such that η+ ψ̃n < 1,

η+ ψ̃n = P

(
TS,0 � cS,0

η+ψ̃n
|{Xi ,Yi }1�i�n

)
� P

(
TS � cS,0

η+ψ̃n
+ωn/(log p)1/2|{Xi ,Yi }1�i�n

)
+ ψ̃n

� P
(

TS � cS,0η+ψn
|{Xi ,Yi }1�i�n

)
+ ψ̃n ,

where the last inequality follows from Lemma A.2. Therefore, cSη � cS,0η+ψn
for all S ⊂ Sn

and η ∈ (0,1) such that η+ ψ̃n < 1 on the event Bn . On the other hand, if η+ ψ̃n � 1, then

η+ψn � 1 and cSη � cS,0η+ψn
for all S ⊂ Sn and η ∈ (0,1). Conclude that cSη � cS,0η+ψn

for

all S ⊂ Sn and η ∈ (0,1) on the event Bn (both when η+ ψ̃n < 1 and when η+ ψ̃n � 1).
In addition, by (A.6), it follows that there exists an event Bn depending on the data only
via {Xi }1�i�n such that (i) P(Bn) = 1 − o(1) and (ii) uniformly over {Xi }1�i�n ∈ Bn ,
P(Bn |{Xi })= 1−o(1). The first asserted claim follows. The second asserted claim follows
similarly. �
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LEMMA A.7. Define

SR
n =

⎧⎨⎩s ∈ Sn :
∑

1�i�n

wi (s) f (Xi )

(V (s))1/2
>−cSn ,0

1−γn−ψn

⎫⎬⎭ ,
where {ψn}n�1 is the sequence of positive numbers defined in the statement of Lemma A.6.
Then P(SR

n ⊂ S S D
n )� 1−γn +o(1) and P(SR

n ⊂ SOS
n )� 1−γn +o(1).

Proof. I start with some preliminary bounds. First, by Lemma A.6,

P(cSn,0
1−γn−ψn

> cSn
1−γn

)= o(1) and P(c
S R

n ,0
1−γn−ψn

> c
S R

n
1−γn

)= o(1). (A.7)

Second, from the proof of Lemma A.6, log p/nκ = o(ψn). Hence, there exists a sequence
{ωn}n�1 of positive numbers converging to zero such that

log p/nκ � ωnψn . (A.8)

Third, recall the random variable Vn defined in the beginning of this appendix. By Lemma
A.3 and Assumption H2,

P

(∣∣∣cSn ,0
1−γn−ψn

(1/Vn −1)
∣∣∣ > (log p)1/2

nκ (γn +ψn)

)
= o(1). (A.9)

Fourth, by Lemma A.5, uniformly over η ∈ (0,1),

P

(
max
s∈S R

n

(−ε(s))� c
S R

n ,0
1−η

)
= η+o(1). (A.10)

Finally, suppose that SR
n \S S D

n �= ∅. Then there exists the smallest integer l such that

SR
n \S l−1

n = ∅ but SR
n \S l

n �= ∅ (if l = 1, let S0
n = Sn). For this l , c

S R
n

1−γn
� c

S l−1
n

1−γn
= cl−1

1−γn
.

Therefore, there exists s ∈ SR
n such that

∑
1�i�n

wi (s)Yi

(V̂ (s))1/2
� −cP I

1−γn
−cl−1

1−γn
� −cP I

1−γn
−c

S R
n

1−γn
= −cSn

1−γn
−c

S R
n

1−γn
.

It follows that

P(S R
n \S S D

n �= ∅) � P
(

min
s∈SR

n

∑
1�i�nwi (s)Yi /(V̂ (s))1/2 � −cSn

1−γn
− c

SR
n

1−γn

)
�(1) P

(
Vn min

s∈SR
n

∑
1�i�nwi (s)Yi /(V (s))1/2 � −cSn

1−γn
− c

SR
n

1−γn

)
+o(1)

�(2) P
(
Vn min

s∈SR
n

∑
1�i�nwi (s)Yi /(V (s))1/2 � −cSn ,0

1−γn−ψn
− c

SR
n ,0

1−γn−ψn

)
+o(1)

�(3) P
(
Vn min

s∈SR
n

(ε(s)− cSn ,0
1−γn−ψn

)� −cSn ,0
1−γn−ψn

− c
SR

n ,0
1−γn−ψn

)
+o(1),
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where (1) is by the definition of Vn since cSn
1−γn

+c
S R

n
1−γn

� 0 for n large enough (remember

that γn → 0 as n → ∞), (2) is by (A.7), and (3) is by the definition of SR
n . Furthermore,

for some constant C ′ > 0, the right-hand side of (3) is equal to

P
(

max
s∈S R

n

(−ε(s))� cSn ,0
1−γn−ψn

(1/Vn −1)+c
S R

n ,0
1−γn−ψn

/Vn

)
+o(1)

�(4) P
(

max
s∈S R

n

(−ε(s))� c
S R

n ,0
1−γn−ψn

/Vn − (log p)1/2n−κ /(γn +ψn)
)

+o(1)

�(5) P
(

max
s∈S R

n

(−ε(s))� c
S R

n ,0
1−γn−ψn

−2(log p)1/2n−κ/(γn +ψn)
)

+o(1)

�(6) P
(

max
s∈S R

n

(−ε(s))� c
S R

n ,0
1−γn−ψn−C ′(log p)n−κ/(γn+ψn )

)
+o(1)

�(7) P
(

max
s∈S R

n

(−ε(s))� c
S R

n ,0
1−γn−ψn−C ′ωnψn/(γn+ψn )

)
+o(1)

=(8) γn +ψn +C ′ωnψn/(γn +ψn)+o(1) =(9) γn +o(1),

where (4) is by (A.9), (5) is by (A.9) since c
S R

n ,0
1−γn−ψn

� cSn ,0
1−γn−ψn

, (6) is by Lemma A.2,
(7) is by (A.8), (8) is by (A.10), and (9) is by the definitions of ψn and ωn . The first asserted
claim follows. The second claim follows from the fact that S S D

n ⊂ SOS
n . �

LEMMA A.8. The set SR
n defined in the statement of Lemma A.7 satisfies

P

⎛⎝ max
s∈Sn\S R

n

∑
1�i�n

wi (s)Yi

(V̂ (s))1/2
� 0

⎞⎠� 1−γn +o(1).

Proof. The asserted claim follows from

P
(

max
s∈Sn\S R

n

∑
1�i�nwi (s)Yi/(V̂ (s))1/2 � 0

)
= P
(

maxs∈Sn\S R
n

∑
1�i�nwi (s)Yi/(V (s))1/2 � 0

)
�(1) P

(
max

s∈Sn\S R
n

∑
1�i�nwi (s)εi/(V (s))1/2 � cP I,0

1−γn −ψn

)
=(2) P

(
maxs∈Sn ε(s)� cP I,0

1−γn −ψn

)
=(3) P

(
max
s∈Sn

ε(s)� cSn ,0
1−γn −ψn

)
=(4) 1−γn −ψn +o(1)=(5) 1−γn +o(1),

where (1) is by the definition of SR
n , (2) is by the definition of ε(s)’s, (3) is by the fact that

cP I,0
1−γn−ψn

= cSn ,0
1−γn−ψn

, (4) is by Lemma A.5, and (5) is by the definition of ψn ; see the
statement of Lemma A.6. �

A.2. Proofs of Theorems

Proof of Theorem 3.1. Let {ψn}n�1 be the sequence of positive numbers converging to
zero defined in the statement of Lemma A.6, and let SR

n be the subset of Sn defined in the
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statement of Lemma A.7. Also, recall the random variable Vn defined in the beginning of
this appendix and define

Vn = min
s∈Sn

(V (s)/V̂ (s))1/2.

Then as in the proof of Lemma A.7, there exists a sequence of {wn}n�1 of positive numbers
converging to zero such that uniformly over M ∈ MH,

log p/nκ � ωnψn , (A.11)

and, in addition,

PM

(∣∣∣cS R
n ,0

1−α−ψn
(1/Vn −1)

∣∣∣ > (log p)1/2/nκ
)

= o(1), (A.12)

and

PM

(∣∣∣cSn,0
1−α+ψn

(1/Vn −1)
∣∣∣ > (log p)1/2/nκ

)
= o(1). (A.13)

Furthermore, by Lemma A.5, uniformly over M ∈ MH and η ∈ (0,1),

PM

(
max
s∈S R

n

ε(s)� c
S R

n ,0
η

)
= η+o(1) and PM

(
max
s∈Sn

ε(s)� cSn,0
η

)
= η+o(1). (A.14)

Finally, by Lemma A.6, uniformly over M ∈ MH,

PM (c
S R

n
1−α < c

S R
n ,0

1−α−ψm
)= o(1) and PM (c

Sn
1−α > cSn ,0

1−α+ψn
)= o(1). (A.15)

Hence, uniformly over M ∈ M0,H,

PM (T � cP
1−α)= PM

(
max
s∈Sn

∑
1�i�nwi (s)Yi/(V̂ (s))

1/2 � cP
1−α

)
�(1) PM

(
max
s∈S R

n

∑
1�i�nwi (s)Yi/(V̂ (s))

1/2 � cP
1−α

)
−γn +o(1)

�(2) PM

(
max
s∈S R

n

∑
1�i�nwi (s)Yi/(V̂ (s))

1/2 � c
S R

n
1−α

)
−2γn +o(1)

�(3) PM

(
max
s∈S R

n

∑
1�i�nwi (s)εi/(V̂ (s))

1/2 � c
S R

n
1−α

)
−2γn +o(1)

�(4) PM

(
Vn max

s∈S R
n

ε(s)� c
S R

n
1−α

)
−2γn +o(1)

�(5) PM

(
Vn max

s∈S R
n

ε(s)� c
S R

n ,0
1−α−ψn

)
−2γn +o(1),

where (1) is by Lemma A.8 and the fact that cP
1−α � 0 for α < 1/2, (2) is by Lemma A.7,

(3) is by the fact that
∑

1�i�nwi (s) f (Xi ) � 0 for all s ∈ SR
n under H0, (4) is by the

definition of Vn and the fact that c
S R

n
1−α � 0 for α < 1/2, and (5) is by (A.15). Furthermore,
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uniformly over M ∈ M0,H, for some constant C ′ > 0, the right-hand side of (5) is equal
to

PM

(
max
s∈S R

n

ε(s)� c
S R

n ,0
1−α−ψn

+c
S R

n ,0
1−α−ψn

(1/Vn −1)
)

−2γn +o(1)

�(6) PM

(
max
s∈S R

n

ε(s)� c
S R

n ,0
1−α−ψn

− (log p)1/2/nκ
)

−2γn +o(1)

�(7) PM

(
max
s∈S R

n

ε(s)� c
S R

n ,0
1−α−ψn−C ′ log p/nκ

)
−2γn +o(1)

�(8) PM

(
max
s∈S R

n

ε(s)� c
S R

n ,0
1−α−ψn−C ′ωnψn

)
−2γn +o(1)

=(9) 1−α−ψn −C ′ωnψn −2γn +o(1)=(10) 1−α+o(1),

where (6) is by (A.12), (7) is by Lemma A.2, (8) is by (A.11), (9) is by (A.14), and (10) is
by the definitions of ψn , ωn , and γn . The first asserted claim follows.

To prove the second asserted claim, note that uniformly over M ∈ M00,H,

P(T � cP
1−α)=(11) P

(
max
s∈Sn

∑
1�i�nwi (s)εi/(V̂ (s))

1/2 � cP
1−α

)
�(12) P

(
max
s∈Sn

∑
1�i�nwi (s)εi/(V̂ (s))

1/2 � cSn
1−α

)
�(13) P

(
Vn max

s∈Sn
ε(s)� cSn

1−α
)

+o(1)

�(14) P
(
Vn max

s∈Sn
ε(s)� cSn ,0

1−α+ψn

)
+o(1),

where (11) is by the fact that
∑

1�i�nwi (s) f (Xi ) = 0 for all s ∈ Sn whenever f (·)≡ C

for some constant C , (12) is by the fact that cS D
1−α � cOS

1−α � cP I
1−α = cSn

1−α , (13) is by the

definition of Vn and the fact that cSn
1−α � 0 for α < 1/2, and (14) is by (A.15). Furthermore,

uniformly over M ∈ M00,H, the right-hand side of (14) is equal to

P
(

max
s∈Sn

ε(s)� cSn ,0
1−α+ψn

+cSn ,0
1−α+ψn

(1/Vn −1)
)

+o(1)

�(15) P
(

max
s∈Sn

ε(s)� cSn ,0
1−α+ψn

+ (log p)1/2/nκ
)

+o(1)

�(16) P
(

max
s∈Sn

ε(s)� cSn ,0
1−α+ψn+C ′ log p/nκ

)
+o(1)

�(17) P
(

max
s∈Sn

ε(s)� cSn ,0
1−α+ψn+C ′ωnψn

)
+o(1)

=(18) 1−α+ψn +C ′ωnψn +o(1) �(19) 1−α+o(1),

where (15) is by (A.13), (16) is by Lemma A.2, (17) is by (A.11), (18) is by (A.14), and
(19) is by the definition of ψn and ωn . The second asserted claim follows. �

Proof of Theorem 3.2. Let {ψn}n�1 be the sequence of positive numbers converging to
zero defined in the statement of Lemma A.6. Also, recall the random variables wi (s) and
ε(s) defined in the beginning of this appendix.
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Let x1, x2 ∈ X be such that x1 < x2 but f (x1) > f (x2). By the mean value theorem,
there exists x0 ∈ (x1, x2) such that

f ′(x0)(x2 − x1)= f (x2)− f (x1) < 0.

Therefore, f ′(x0) < 0, and since f ′(·) is continuous, it follows that there exists �x > 0
such that f ′(x) < f ′(x0)/2 for all x ∈ [x0 −�x , x0 +�x ]. Next, applying Assumption H4
to the interval [x0 −�x , x0 +�x ] shows that there exists an event An such that PM (An)=
1 − o(1) and whenever An holds, there exists s ∈ Sn that satisfies conditions (i)–(iii) of
Assumption H4. Let s̄n be an element of Sn that satisfies these conditions when An holds
and that is defined arbitrarily when An does not hold. Then on An , by Assumption L1 and
condition (ii) of Assumption H4,

V (s̄n)=
∑

1�i�n

σ 2
i

⎛⎝ ∑
1� j�n

sign(Xj − Xi )Q(Xi , Xj , s̄n)

⎞⎠2

� Cn3 (A.16)

for some constant C > 0. In addition, by Assumption L2 and Lemma C.1 in Appendix A.2,
there exists an event Bn such that PM (Bn) = 1−o(1) and on Bn , for all x1, x2 ∈ X with
x2 − x1 � hn ,

(c3/2)n(x2 − x1)�
∣∣∣{i = 1, . . . ,n : Xi ∈ [x1, x2]}

∣∣∣� (3C3/2)n(x2 − x1).

Hence, for some constant c > 0, on An ∩Bn , for the intervals [xl1, xr1] and [xl2, xr2]
appearing in condition (iii) of Assumption H4 and corresponding to s̄n ,∣∣∣{i = 1, . . . ,n : Xi ∈ [xl1, xr1]}

∣∣∣� cn and
∣∣∣{i = 1, . . . ,n : Xi ∈ [xl2, xr2]}

∣∣∣� cn.

Then on An ∩Bn , by conditions (i) and (iii) of Assumption H4,

∑
1�i�n

wi (s̄n) f (Xi )= 1

2

∑
1�i, j�n

( f (Xi )− f (Xj ))sign(Xj − Xi )Q(Xi , Xj , s̄n)� cn2

(A.17)

for some constant c > 0. Combining (A.16) and (A.17) shows that on An ∩Bn ,∑
1�i�n

wi (s̄n) f (Xi )

(V (s̄n))1/2
� cn1/2 (A.18)

for some constant c> 0. On the other hand, log p = o(n) by Assumption H3. Hence, given
that PM (An ∩Bn) = 1−o(1), it follows that there exists a sequence {ωn}n�1 of positive
numbers such that ωn → ∞ as n → ∞ and

PM

⎛⎝ωn(log p)1/2 >
∑

1�i�n

wi (s̄n) f (Xi )

(V (s̄n))1/2

⎞⎠= o(1). (A.19)

Furthermore, let ηn = 1 − 2C/ωn where C is the same constant as that in (A.2) in the

statement of Lemma A.3. Then by Lemma A.3, cSn ,0
ηn � (ωn/2)(log p)1/2 and by Lemma

A.5,
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PM

(
max
s∈Sn

(−ε(s)) > (ωn/2)(log p)1/2
)
�PM

(
max
s∈Sn

(−ε(s)) > cSn ,0
ηn

)
= 1−ηn +o(1)= o(1).

(A.20)

Finally, by Lemma A.6,

PM (c
Sn
1−α > cSn ,0

1−α+ψn
)= o(1). (A.21)

Hence,

PM (T � cP
1−α)�(1) PM (T � cSn

1−α)

�(2) PM

(∑
1�i�nwi (s̄n)Yi/(V̂ (s̄n))

1/2 � cSn
1−α

)
=(3) PM

(∑
1�i�nwi (s̄n)Yi/(V (s̄n))

1/2 � cSn
1−α(V̂ (s̄n)/V (s̄n))

1/2
)

�(4) PM

(∑
1�i�nwi (s̄n)Yi/(V (s̄n))

1/2 � 2cSn
1−α

)
+o(1)

�(5) PM

(∑
1�i�nwi (s̄n)Yi/(V (s̄n))

1/2 � 2cSn ,0
1−α+ψn

)
+o(1),

where (1) is by the fact that cS D
1−α � cOS

1−α � cP I
1−α = cSn

1−α , (2) is by the definition of the
test statistic T , (3) is by a rearrangement, (4) is by Assumption H2, and (5) is by (A.21).
Furthermore, by Lemma A.3, for some constant C > 0, possibly depending on α, the right-
hand side of (5) is bounded from above by

PM

(∑
1�i�nwi (s̄n)Yi/(V (s̄n))

1/2 � C(log p)1/2
)

+o(1)

�(6) PM

(
ε(s̄n)+∑1�i�nwi (s̄n) f (Xi )/(V (s̄n))

1/2 � C(log p)1/2
)

+o(1)

�(7) PM

(∑
1�i�nwi (s̄n) f (Xi )/(V (s̄n))

1/2 � (C +ωn/2)(log p)1/2
)

+o(1)

�(8) PM

(
ωn(log p)1/2 � (C +ωn/2)(log p)1/2

)
+o(1)=(9) o(1),

where (6) is by the definition of ε(s̄n), (7) by (A.20), (8) is by (A.19), and (9) is by the fact
that ωn → ∞ as n → ∞. The asserted claim follows. �

Proof of Theorem 3.3. The proof is closely related to that of Theorem 3.2 with PM (·)
replaced by PMn (·). Note that since the sequence {Mn}n�1 is such that Mn ∈ MH for
all n � 1, the results of Lemmas A.3, A.5, and A.6, which were used in the proof of
Theorem 3.2, hold under the sequence of models {Mn}n�1. Then, it follows from the same
arguments as those used in the proof of Theorem 3.2 that the bounds (A.17) and (A.18)
become∑
1�i�n

wi (s̄n) f (Xi )= 1

2

∑
1�i, j�n

( f (Xi )− f (Xj ))sign(Xj − Xi )Q(Xi , Xj , s̄n)� C�nn2

and∑
1�i�n

wi (s̄n) f (Xi )

(V (s̄n))1/2
� c�nn1/2,
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respectively, and so (A.19) continues to hold for some sequence {ωn}n�1 of positive num-
bers such that ωn → ∞ as n → ∞ as long as (log p/n)1/2 = o(ln). The rest of the proof
is the same as that in the proof of Theorem 3.2. �

Proof of Theorem 3.4. The asserted claim follows if

PMn (T � cP
1−α)→ 0 for any {Mn}n�1 ⊂ MH such that Mn ∈ MH,ln for all n � 1.

(A.22)

To prove (A.22), take any sequence {Mn}n�1 ⊂ MH of models such that Mn ∈ MH,ln
for all n � 1 and apply arguments similar to those used in the proof of Theorem 3.2.

Specifically, since infx∈X f ′
Mn
(x) <−ln and hβn = (log p/n)β/(2β+3) = o(ln), it follows

from Assumption L3 that for all sufficiently large n, there exists an interval [xn,1, xn,2] ⊂
X such that |xn,2 − xn,1| = hn and f ′(x) <−ln/2 for all x ∈ [xn,1, xn,2]. Next, using the
same arguments as those in the proof of Theorem 3.2 but applying Assumption H4 to the
interval [xn,1, xn,2] instead of the interval [x0 −�x , x0 +�x ], it follows that there exist
events An and Bn and a weighting function s̄n ∈ Sn such that PMn (An ∩Bn) = 1−o(1)
and on An ∩Bn ,

cnhn �
∣∣∣{i = 1, . . . ,n : Xi ∈ [xn,1, xn,2]}

∣∣∣� Cnhn,

V (s̄n)=
∑

1�i�n

σ 2
i

⎛⎝ ∑
1� j�n

sign(Xj − Xi )Q(Xi , Xj , s̄n)

⎞⎠2

� C ′(nhn)
3h2k

n ,

∑
1�i�n

wi (s̄n) f (Xi )= 1

2

∑
1�i, j�n

( f (Xi )− f (X j ))sign(X j − Xi )Q(Xi , X j , s̄n)� c′(lnhn)(nhn)
2hk

n,

and∑
1�i�n

wi (s̄n) f (Xi )

(V (s̄n))1/2
� c′′(lnhn)(nhn)

1/2 = c′′lnn1/2h3/2
n = c′′lnn1/2

(
log p

n

)3/(4β+6)

for some strictly positive constants c, C , c′, C ′, and c′′. Hence, (A.19) continues to hold
for some sequence {ωn}n�1 of positive numbers such that ωn → ∞ as n → ∞ as long
as (log p/n)β/(2β+3) = o(ln). The rest of the proof is the same as that in the proof of
Theorem 3.2. �

Proof of Theorem 3.5. Without loss of generality, I can and will assume that c2 = 0
and C2 = 1, so that X = [0,1]. Also, let h̄n = (c2 logn/n)1/(2β+3) for sufficiently small
constant c> 0. In addition, let Ln = [1/(4h̄n)] where [x] is the largest integer smaller than
or equal to x . Moreover, for l = 1, . . . ,Ln , let xn,l = 4h̄n(l −1) and define fn,l : X → R

by fn,l (0)= 0 and

f ′
n,l (x)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x � xn,l ,

−L(x − xn,l )
β if x ∈ (xn,l , xn,l + h̄n],

−L(xn,l +2h̄n − x)β if x ∈ (xn,l + h̄n , xn,l +2h̄n],

L(x − xn,l −2h̄n)
β if x ∈ (xn,l +2h̄n , xn,l +3h̄n ],

L(xn,l +4h̄n − x)β if x ∈ (xn,l +3h̄n , xn,l +4h̄n ],

0 if x > xn,l +4h̄n .
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Finally, let fn,0 : X → R be the function given by fn,0(·)≡ 0.
Now, for l = 0, . . . ,Ln , consider the model Mn,l with the regression function fl (·),

X distributed uniformly over [0,1], and ε distributed as a N(0,1) random variable in-
dependently of X . Note that Mn,0 belongs to ML and satisfies H0. In addition, for
l = 1, . . . ,Ln , the model Mn,l belongs to ML, does not satisfy H0, and, moreover, has

infx∈X f ′
n,l (x)= −Lh̄βn = −L(c2 logn/n)β/(2β+3).

Next, consider any test ψ = ψ({Xi ,Yi }1�i�n) such that EMn,0 [ψ] � α+ o(1). Then
following the argument from Dumbgen and Spokoiny (2001) gives

inf
M∈ML

EM [ψ]−α � min
1�l�Ln

EMn,l [ψ]−EMn,0 [ψ]+o(1)

�
∑

1�l�Ln
EMn,l [ψ]/Ln −EMn,0 [ψ]+o(1)

=∑1�l�Ln
EMn,0 [ψρn,l]/Ln −EMn,0 [ψ]+o(1)

=∑1�l�Ln
EMn,0 [ψ(ρn,l −1)]/Ln +o(1)

� EMn,0

[
ψ
∣∣∣∑1�l�Ln

ρn,l/Ln −1
∣∣∣]+o(1)

� EMn,0

[∣∣∣∑1�l�Ln
ρn,l/Ln −1

∣∣∣]+o(1),

where ρn,l is the likelihood ratio of observing {Xi ,Yi }1�i�n under the models Mn,l and
Mn,0. Furthermore,

ρn,l = exp

⎛⎝ ∑
1�i�n

Yi fl (Xi )−
∑

1�i�n

fl(Xi )
2/2

⎞⎠= exp(ωn,lξn,l −ω2
n,l/2),

where

ωn,l =
⎛⎝ ∑

1�i�n

fl (Xi )
2

⎞⎠1/2

and ξn,l =
∑

1�i�n

Yi fl (Xi )/ωn,l .

Note that in the model Mn,0, conditional on {Xi }1�i�n , each ξn,l is a N(0,1) random
variable, so that

EMn,0

[
|ρn,l ||{Xi }1�i�n

]
= EMn,0

[
ρn,l |{Xi }1�i�n

]
= 1

for all l = 1, . . . ,Ln , and so

EMn,0

⎡⎣∣∣∣∣∣∣ 1

Ln

∑
1�l�Ln

ρn,l −1

∣∣∣∣∣∣ |{Xi }1�i�n

⎤⎦= 1

Ln

∑
1�l�Ln

EMn,0

[
|ρn,l ||{Xi }1�i�n

]
+1 � 2.

(A.23)

In addition, by construction of the functions fn,l (·) and Lemma C.1, in the model Mn,0,

ωn,l � C(nh̄n)
1/2h̄1+β

n = Cn1/2h̄3/2+β
n = Cn1/2

(
c2 logn

n

)1/2

= cC(log n)1/2
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for all l = 1, . . . ,Ln with probability 1−o(1) for some constant C > 0 where c is the same
constant as that in the definition of h̄n . Let An denote the event that ωn,l � cC(log n)1/2

for all l = 1, . . . ,Ln . Then PMn,0 (An)→ 1 and by (A.23),

EMn,0

⎡⎣∣∣∣∣∣∣ 1

Ln

∑
1�l�Ln

ρn,l −1

∣∣∣∣∣∣
⎤⎦�EMn,0

⎡⎣∣∣∣∣∣∣ 1

Ln

∑
1�l�Ln

ρn,l −1

∣∣∣∣∣∣ |An

⎤⎦+2(1−PMn,0 (An)).

(A.24)

Furthermore, on An , since in the model Mn,0, conditional on {Xi }1�i�n , {ξn,l}1�l�Ln
are independent N(0,1) random variables,

EMn,0

[∣∣∣∑1�l�Ln
ρn,l/Ln −1

∣∣∣|{Xi }1�i�n

]2

� EMn,0

[(∑
1�l�Ln

ρn,l/Ln −1
)2|{Xi }1�i�n

]
�
∑

1�l�Ln
EMn,0

[
ρ2

n,l/L2
n |{Xi }1�i�n

]
�
∑

1�l�Ln
EMn,0

[
exp(2ωn,lξn,l −ω2

n,l )/L2
n |{Xi }1�i�n

]
�
∑

1�l�Ln
exp(ω2

n,l )/L2
n � max1�l�Ln exp(ω2

n,l )/Ln

� exp
(

c2C2 logn − log Ln

)
= o(1)

because the constant c in the last line is arbitrarily small and logn � C log Ln for some
constant C > 0. Combining the last bound with (A.24) gives infM∈ML EM [ψ]� α+o(1),
and completes the proof of the theorem. �

APPENDIX B: Proofs for Section 4

Proof of Theorem 4.1. Throughout the proof, I will assume that the observations
(Xi ,Yi ) are ordered so that Xi � Xj whenever i < j . Since all the arguments are con-
ditional on {Xi }1�i�n , this assumption is without loss of generality. In addition, I will use
C to denote a strictly positive constant that can change from place to place.

Note that since σi � c1 for all i = 1, . . . ,n by Assumption L1, it follows that

|̂σi −σi | =
∣∣∣∣∣ σ̂ 2

i −σ 2
i

σ̂i +σi

∣∣∣∣∣� |̂σ 2
i −σ 2

i |
c1

, for all i = 1, . . . ,n,

and so it suffices to bound max1�i�n |̂σ 2
i −σ 2

i |. In addition, note that by Assumptions L1
and L3,

|σ 2
j −σ 2

i | = |σj +σi | · |σj −σi | � 2C1L |Xj − Xi |, for all i, j = 1, . . . ,n.

Moreover, note that

σ̂ 2
i −σ 2

i = 1

2|J (i)|
∑

j∈J (i)′
(Yj+1 −Yj )

2 −σ 2
i , for all i = 1, . . . ,n
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where J (i)′ = {j ∈ J (i) : j +1 ∈ J (i)}. Therefore,∣∣∣(̂σ 2
i −σ 2

i )− (pi,1 + pi,2 + pi,3 − pi,4)
∣∣∣� 2C1 Lbn + (Lbn)

2

2
+ C2

1

|J (i)| , for all i = 1, . . . ,n

by Assumptions L1 and L3 where

pi,1 = 1

2|J (i)|
∑

j∈J (i)′
(ε2

j+1 −σ 2
j+1), pi,2 = 1

2|J (i)|
∑

j∈J (i)′
(ε2

j −σ 2
j ),

pi,3 = 1

|J (i)|
∑

j∈J (i)′
( f (Xj+1)− f (Xj ))(εj+1 −εj ), pi,4 = 1

|J (i)|
∑

j∈J (i)′
εj εj+1.

In the rest of the proof, I derive bounds on J (i), pi,1, pi,2, pi,3, and pi,4 that hold uni-
formly over i = 1, . . . ,n.

Since bn = Cb(logn)1/2/n1/4, by Assumption L2 and Lemma C.1 in Appendix A.2,
the event An that

c3bnn � |J (i)| � 3C3bnn, for all i = 1, . . . ,n

satisfies PM (An)= 1−o(1) uniformly over M ∈ ML. Note also that J (i)’s depend only
on {Xi }1�i�n . Therefore, applying Lemma C.2 conditional on {Xi }1�i�n shows that on
An ,

EM

[
max

1�i�n
|pi,1 ||{Xi }1�i�n

]
� C

(√
bnn logn

bnn
+ n1/2 logn

bnn

)

= C

(√
logn

bnn
+ logn

bnn1/2

)
� C logn

bnn1/2

uniformly over M ∈ ML since

max
1�l�n

∑
j∈J (l)′

EM

[
ε4

j+1|{Xi }1�i�n

]
� 3C4

1C3bnn

and

(
EM

[
max

1�l�n
ε4

l |{Xi }1�i�n

])1/2
�

⎛⎝EM

⎡⎣ ∑
1�l�n

ε4
l |{Xi }1�i�n

⎤⎦⎞⎠1/2

� C2
1n1/2

for all M ∈ ML by Assumption L1. Similarly, on An ,

EM

[
max

1�i�n
|pi,2 ||{Xi }1�i�n

]
� C logn

bnn1/2

uniformly over M ∈ ML. Furthermore, applying Lemma C.2 conditional on {Xi }1�i�n
again and using similar calculations shows that on An ,

EM

⎡⎣ 1

|J (i)|

∣∣∣∣∣∣
∑

j∈J (i)′: j odd

εj εj+1

∣∣∣∣∣∣{Xi }1�i�n

⎤⎦ � C logn

bnn1/2
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and

EM

⎡⎣ 1

|J (i)|

∣∣∣∣∣∣
∑

j∈J (i)′: j even

εj εj+1

∣∣∣∣∣∣{Xi }1�i�n

⎤⎦ � C logn

bnn1/2

so that

EM

[
max

1�i�n
|pi,4 ||{Xi }1�i�n

]
� C logn

bnn1/2

uniformly over M ∈ ML. Moreover, applying Lemma C.2 conditional on {Xi }1�i�n one
more time shows that on An ,

EM

⎡⎣ 1

|J (i)|

∣∣∣∣∣∣
∑

j∈J (i)′
( f (Xj+1)− f (Xj ))εj+1

∣∣∣∣∣∣{Xi }1�i�n

⎤⎦
� C

(
bn(bnn)1/2(logn)1/2

bnn
+ bnn1/4 logn

bnn

)
� C logn

bnn1/2

uniformly over M ∈ ML since

max
1�l�n

∑
j∈J (l)′

EM

[
( f (Xj+1)− f (Xj ))

2ε2
j+1|{Xi }1�i�n

]
� C2

1 · (Lbn)
2 · (3C3bnn)

and(
EM

[
max

1�l�n
max

j∈J (l)′
( f (Xj+1 − f (Xj ))

2ε2
j+1|{Xi }1�i�n

])1/2

� (Lbn) ·
(

EM

[
max

1�i�n
ε2

i |{Xi }1�i�n

])1/2
� (Lbn) · (C1n1/4)

for all M ∈ ML by Assumption L1. Similarly,

EM

⎡⎣ 1

|J (i)|

∣∣∣∣∣∣
∑

j∈J (i)′
( f (Xj+1 − f (Xj ))εj

∣∣∣∣∣∣ |{Xi }1�i�n

⎤⎦� C logn

bnn1/2
,

and so

EM

[
max

1�i�n
|pi,3 ||{Xi }1�i�n

]
� C logn

bnn1/2

uniformly over M ∈ ML. Combining presented bounds shows that on An ,

EM

[
max

1�i�n
|̂σ 2

i −σ 2
i ||{Xi }1�i�n

]
� C

(
bn + 1

bnn
+ logn

bnn1/2

)
� C(logn)1/2

n1/4

uniformly over M ∈ML. The asserted claim now follows from Markov’s inequality since
PM (An)= 1−o(1) uniformly over M ∈ ML. �
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Proof of Theorem 4.2. Fix κ ∈ (0,1/4) and note that by Theorem 4.1, Assumption H1
holds uniformly over M ∈ ML for this κ . In this proof, I will verify Assumptions H2 and
H3 with this κ (and Assumption H4 does not depend on κ).

I first verify Assumption H3. Note that since Sn is the basic set of weighting functions,
p = |Sn | satisfies log p � Cp logn for a universal constant Cp , and so the second part
of Assumption H3 holds for given κ uniformly over M ∈ ML. Furthermore, to prove
the first part of Assumption H3, note that by Assumption L2, the event An that hmax =
max1�i, j�n |Xi − Xj |/2 � (C2 −c2)/4 satisfies PM (An)= 1−o(1) uniformly over M ∈
ML. Also, on An , hmin = Chhmax(logn/n)1/3 � ch/n1/3 for some constant ch > 0.
Next, note that for any s = (x,h) ∈ Sn , since

h � hmax = max
1�i, j�n

|Xi − Xj |/2 � (C2 −c2)/2,

either c2 + h � x or x + h � C2 holds. Let Sn,1 and Sn,2 denote the subsets of those
elements of Sn that satisfy the former and the latter inequalities, respectively, so that Sn =
Sn,1 ∪Sn,2. Furthermore, let CK ∈ (0,1) be some constant. Since the kernel function K (·)
is continuous and strictly positive on the interior of its support, mint∈[−CK ,0] K (t) > 0. In
addition, since K (·) is continuous and has a bounded support, K (·) is bounded, and so it is
possible to find a constant cK ∈ (0,1) such that and cK +CK � 1 and

6ck+1
K C3 max

t∈[−1,−1+cK ]
K (t)� c3(1−cK −CK )

kCK min
t∈[−CK ,0]

K (t), (B.1)

where the constant k appears in the definition of the kernel weighting functions in Section
2.2.

Now, denote

Mn,1(x,h)=
{

i = 1, . . . ,n : Xi ∈ [x −CK h, x]
}
,

Mn,2(x,h)=
{

i = 1, . . . ,n : Xi ∈ [x −h, x − (1−cK )h]
}
,

Mn,3(x,h)=
{

i = 1, . . . ,n : Xi ∈ [x − (1−cK /2)h, x − (1−cK )h]
}
,

Mn,4(x,h)=
{

i = 1, . . . ,n : Xi ∈ [x −h, x +h]
}
,

and let Bn be the event that

(1/2)c3CK nh � |Mn,1(x,h)| � (3/2)C3CK nh, for all (x,h) ∈ Sn,1,

(1/2)c3cK nh � |Mn,2(x,h)| � (3/2)C3cK nh, for all (x,h) ∈ Sn,1,

(1/2)c3(cK /2)nh � |Mn,3(x,h)| � (3/2)C3(cK /2)nh, for all (x,h) ∈ Sn,1,

(1/2)c3nh � |Mn,4(x,h)| � (3/2)C32nh, for all (x,h) ∈ Sn . (B.2)

By Assumption 2 and Lemma C.1 in Appendix A.2, PM (Bn) = 1 − o(1) uniformly over
M ∈ML since hmin � ch/n1/3 on An and PM (An)= 1−o(1) uniformly over M ∈ML.
In addition, for the constant

c = (1−cK −CK )
kc3CK min

t∈[−CK ,0]
K (t)/4
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and for all s = (x,h) ∈ Sn,1 and i ∈ Mn,3(x,h), on Bn ,∑
1� j�n

sign(X j − Xi )|X j − Xi |k K
( X j − x

h

)
�

∑
j∈Mn,1(x,h)

(1− cK −CK )
k hk K

( X j − x

h

)
−

∑
j∈Mn,2(x,h)

ck
K hk K

( X j − x

h

)
� (1− cK −CK )

khk (1/2)c3CK nh min
t∈[−CK ,0]

K (t)− ck
K hk(3/2)C3cK nh max

t∈[−1,−1+ck]
K (t)

� (1− cK −CK )
khk c3CK nh min

t∈[−CK ,0]
K (t)/4 = cnhk+1,

where the inequality preceding the last one follows from (B.1). Hence, since for all s =
(x,h) ∈ Sn,1,

V (s)=
∑

1�i�n

σ 2
i

⎛⎝ ∑
1� j�n

sign(Xj − Xi )Q(Xi , Xj ,s)

⎞⎠2

=
∑

1�i�n

σ 2
i K
( Xi − x

h

)2

⎛⎝ ∑
1� j�n

sign(Xj − Xi )|Xj − Xi |k K
( Xj − x

h

)⎞⎠2

�
∑

i∈Mn,3(x,h)

σ 2
i K
( Xi − x

h

)2
⎛⎝ ∑

1� j�n

sign(Xj − Xi )|Xj − Xi |k K
( Xj − x

h

)⎞⎠2

,

it follows that there exists a constant cV ,1> 0 such that on Bn , V (s)� cV ,1(nh)3h2k for all
s = (x,h) ∈ Sn , and similar arguments also show that there exists a constant cV ,2 > 0 such
that the event Cn that V (s)� cV ,2(nh)3h2k for all s = (x,h) ∈Sn,2 satisfies PM (Cn)= 1−
o(1) uniformly over M ∈ ML. Then for the constant cV = min(cV ,1,cV ,2), on Bn ∩Cn ,

V (s)� cV (nh)3h2k, for all s = (x,h) ∈ Sn . (B.3)

Moreover, for the constant

C = 3 ·2k ·C3

(
max

t∈[−1,+1]
K (t)

)2
,

on Bn , by (B.2),∣∣∣∣∣∣
∑

1� j�n

sign(Xj − Xi )Q(Xi , Xj ,s)

∣∣∣∣∣∣� (2h)k |Mn,4(x,h)|
(

max
t∈[−1,+1]

K (t)

)2
= Cnhk+1

(B.4)

for all i = 1, . . . ,n and s = (x,h) ∈ Sn . Combining (B.4) with (B.3) shows that there exists
a constant CA > 0 such that on Bn ∩Cn ,

An = max
s∈Sn

max
1�i�n

∣∣∣∣∣∣
∑

1� j�n

sign(Xj − Xi )Q(Xi , Xj ,s)

(V (s))1/2

∣∣∣∣∣∣� CA

(nhmin)
1/2

,
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and so

n A4
n log7(pn)�

C4
A(Cp +1)7 log7 n

nh2
min

�
C4

A(Cp +1)7 log7 n

c2
hn1/3

= o(1).

Hence, given that PM (Bn ∩Cn) = 1 − o(1) uniformly over M ∈ ML, it follows that the
first part of Assumption H3 holds uniformly over M ∈ ML.

Second, I verify Assumption H2. To do so, note that for the constant

CD = 33 ·22k ·C3
3

(
max

t∈[−1,+1]
K (t)

)4

and all s ∈ (x,h) ∈ Sn , on Bn , by (B.2),

∑
1�i�n

⎛⎝ ∑
1� j�n

sign(Xj − Xi )Q(Xi , Xj ,s)

⎞⎠2

� (2h)2k |Mn,4(x,h)|3
(

max
t∈[−1,+1]

K (t)

)4

= CD(nh)3h2k,

and so

|V̂ (s)− V (s)| � max
1�i�n

|̂σ 2
i −σ 2

i |×
∑

1�i�n

⎛⎝ ∑
1� j�n

sign(Xj − Xi )Q(Xi , Xj ,s)

⎞⎠2

� CD(nh)3h2k × max
1�i�n

|̂σ 2
i −σ 2

i |.

Combining this bound with (B.3) shows that on Bn ∩Cn ,

|V̂ (s)/V (s)−1| = |V̂ (s)− V (s)|
V (s)

� (CD/cV ) max
1�i�n

|̂σ 2
i −σ 2

i |

for all s = (x,h) ∈ Sn . Hence, given that max1�i�n |̂σ 2
i −σ 2

i | = op(n−κ ) and PM (Bn ∩
Cn) = 1−o(1) uniformly over M ∈ ML, it follows that Assumption H2 holds uniformly
over M ∈ ML.

Finally, I verify Assumption H4. Recall that hn = (log p/n)1/(2β+3) and that log p �
Cp logn. Also recall that on An , hmax � (C2 − c2)/4 and hmin � ch/n1/3. Hence, the
event Dn that there exists h̃ ∈ Hn such that h̃ ∈ (hn/6,hn/3] satisfies PM (Dn)= 1−o(1)
uniformly over M ∈ ML since PM (An) = 1 − o(1) uniformly over M ∈ ML. In addi-
tion, the event En that for any x1, x2 ∈ X such that x2 − x1 � hn , there exists ix1,x2 =
1, . . . ,n such that Xi ∈ [x1 +hn/3, x2 −hn/3] satisfies PM (En)= 1−o(1) uniformly over
M ∈ ML. But on Dn ∩ En , the pair (ix1,x2 , h̃) satisfies conditions (i)–(iii) of Assump-
tion H4. Hence, given that PM (Dn ∩ En) = 1 − o(1) uniformly over M ∈ ML, it fol-
lows that Assumption H4 holds uniformly over M ∈ ML. This completes the proof of the
theorem. �

Proof of Corollary 4.1. By Theorems 4.1 and 4.2, Assumptions H1–H4 hold uniformly
over models M ∈ML. Hence, all the results of Theorems 3.1–3.4 hold with MH =ML.
Moreover, log p in those results can be replaced by logn since, as in the proof of Theorem
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4.2, log p � Cp logn for some constant Cp > 0. This gives all the asserted claims of the
corollary. �

APPENDIX C: Useful Lemmas

LEMMA C.1. Let W1, . . . ,Wn be an i.i.d. sequence of random variables with the sup-
port [sl ,sr ] such that c1(x2 − x1) � P(W1 ∈ [x1, x2])� C1(x2 − x1) for some c1,C1 > 0
and all [x1, x2] ⊂ [sl ,sr ]. Then for any c2 > 0, with probability 1−o(1),

(c1/2)n(x2 − x1)�
∣∣∣{i = 1, . . . ,n : Wi ∈ [x1, x2]}

∣∣∣� (3C1/2)n(x2 − x1) (C.1)

simultaneously for all intervals [x1, x2] ⊂ [sl ,sr ] satisfying x2 −x1 � c2(logn)2/n. More-
over, the result holds uniformly over distributions of Wi ’s satisfying assumptions of the
lemma with the same constants sl , sr , c1, and C1.

Proof. Let Kn = [2(sr − sl )/(c2(logn)2/n)] where [x] denotes the largest integer
smaller than or equal to x . Denote �n = (sr − sl )/Kn . For k = 0, . . . ,Km , denote yn,k =
sl +k�n . It suffices to show that (C.1) holds simultaneously for all intervals [x1, x2] of the
form [yn,k−1, yn,k] for k = 1, . . . ,Kn .

Let Ii,k,n = 1{Wi ∈ [yn,k−1, yn,k ]} for i = 1, . . . ,n and k = 1, . . . ,Kn . Then∑
1�i�n

Ii,k,n =
∣∣∣{i = 1, . . . ,n : Wi ∈ [yn,k−1, yn,k ]}

∣∣∣, k = 1, . . . ,Kn .

In addition,

E[Ii,k,n ] = E[I 2
i,k,n ] = P(Wi ∈ [yn,k−1, yn,k ]), i = 1, . . . ,n and k = 1, . . . ,Kn,

so that

c1n�n � E

⎡⎣ ∑
1�i�n

Ii,k,n

⎤⎦� C1n�n, k = 1, . . . ,Kn,

and

Var

⎛⎝ ∑
1�i�n

Ii,k,n

⎞⎠� nE[I 2
i,k,n ] � C1n�n , k = 1, . . . ,Kn .

Hence, by Bernstein’s inequality (see Lemma 2.2.9 in van der Vaart and Wellner, 1996),

P

⎛⎝ ∑
1�i�n

Ii,k,n > (3/2)C1n�n

⎞⎠� exp
(

−C(log n)2
)
,

P

⎛⎝ ∑
1�i�n

Ii,k,n < (1/2)c1n�n

⎞⎠� exp
(

−C(logn)2
)
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for some constant C > 0 that depends only on sl , sr , c1, C1, and c2. Therefore, by the
union bound,

P

⎛⎝ ∑
1�i�n

Ii,k,n > (3/2)C1n�n or
∑

1�i�n

Ii,k,n < (1/2)c1n�n for some k = 1, . . . ,Kn

⎞⎠
� 2Kn exp

(
−C(log n)2

)
= o(1),

where the last conclusion follows from the fact that Kn � Cn for some constant C > 0.
This gives the first asserted claim. The second asserted claim follows by noting that both
the sequence {Kn}n�1 and the constant C depend only on sl , sr , c1, C1, and c2. �

LEMMA C.2. Let W1, . . . ,Wn be independent random vectors in R
p with p � 2.

Let Wi j denote the j th component of Wi , that is Wi = (Wi1, . . . ,Wip)
T . Define M =

max1�i�n max1� j�p |Wij | and σ 2 = max1� j�p
∑

1�i�n E[W 2
i j ]. Then

E

⎡⎣ max
1� j�p

∣∣∣∣∣∣
∑

1�i�n

(Wij −E[Wij ])

∣∣∣∣∣∣
⎤⎦� C

(
σ
√

log p +
√

E[M2] log p

)

for some universal C > 0.

Proof. See Lemma 8 in Chernozhukov et al. (2015). �

LEMMA C.3. Let x1, . . . , xn be a sequence of independent zero-mean vectors in R
p

with xi j denoting the j th component of xi , that is xi = (xi1, . . . , xip )
T . Let y1, . . . , yn

be a sequence of independent zero-mean Gaussian vectors in R
p with yi j denoting the

j th component of yi , that is yi = (yi1, . . . , yip)
T . Assume that E[xi xT

i ] = E[yi yT
i ] for all

i = 1,n. Furthermore, assume that for all i and j , xi j = zi j ui where zi j ’s are nonstochastic

with |zi j | � Bn and
∑

1�i�n z2
i j /n = 1 where {Bn} is a sequence of positive constants.

Finally, assume that for some constants c1,C1,c2,C2 > 0 the following conditions hold:
E[u2

i ]� c1, E[u4
i ]�C1, and B4

n log7(pn)/n �C2n−c2 . Then there exist constants c,C > 0
depending only on c1,C1,c2,C2 such that

sup
t∈R

∣∣∣∣∣∣P
⎛⎝ max

1� j�p

1√
n

∑
1�i�n

xi j � t

⎞⎠−P

⎛⎝ max
1� j�p

1√
n

∑
1�i�n

yi j � t

⎞⎠∣∣∣∣∣∣� Cn−c (C.2)

for all n. In addition, if the terms C2n−c2 above are replaced by ηn where {ηn} is a se-
quence of positive numbers converging to zero, then there exists another sequence {η′

n} of
positive numbers converging to zero and depending only on {ηn} such that

sup
t∈R

∣∣∣∣∣∣P
⎛⎝ max

1� j�p

1√
n

∑
1�i�n

xi j � t

⎞⎠−P

⎛⎝ max
1� j�p

1√
n

∑
1�i�n

yi j � t

⎞⎠∣∣∣∣∣∣� η′
n (C.3)

for all n.
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Proof. The result in (C.2) is proven in Corollary 2.1 of Chernozhukov et al. (2013).
Furthermore, inspecting the proof of Corollary 2.1 of Chernozhukov et al. (2013) shows
that the sequences C2n−c2 and Cn−c in (C.2) can be replaced by general sequences
{ηn} and {η′

n} of positive numbers converging to zero, and so the result in (C.3) holds as
well. �
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