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Abstract

In an extrapolation argument, we prove certain Lp (1 < p <∞) estimates for nonisotropic Marcinkiewicz
operators associated to surfaces under the integral kernels given by the elliptic sphere functions
Ω ∈ L(log+ L)α(Σ) and the radial function h ∈ Nβ(R+). As applications, the corresponding results for
parametric Marcinkiewicz integral operators related to area integrals and Littlewood–Paley g∗λ-functions
are given.
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1. Introduction

As is well known, Marcinkiewicz integral operators belong to a broad class of
Littlewood–Paley g-functions and Lp bounds regarding them are useful in the study
of smoothness properties of functions and behavior of integral transformations, such
as Poisson integrals, singular integrals and, more generally, singular Radon transforms.
In this paper we focus on the Lp mapping properties for a class of nonisotropic
Marcinkiewicz integral operators associated to surfaces.

Before establishing our main results, let us recall and introduce some notation.
Let n ≥ 2 and Rn be the n-dimensional Euclidean space with a nonisotropic dilation.
Precisely, let P be an n × n real matrix whose eigenvalues have positive real parts and
let α = tracP. Define a dilation group {At}t>0 on Rn by At = tP = exp((log t)P). There
is a nonnegative function r on Rn associated with {At}t>0. The function r is continuous
on Rn and infinitely differentiable in Rn\{0}; furthermore, it satisfies:

(i) r(At x) = tr(x) for all t > 0 and x ∈ Rn;
(ii) r(x + y) ≤ C(r(x) + r(y)) for some C > 0;
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(iii) if Σ = {x ∈ Rn|r(x) = 1}, then Σ = {θ ∈ Rn|〈Bθ, θ〉 = 1} for a positive symmetric
matrix B, where 〈·, ·〉 denotes the inner product in Rn: then, the Lebesgue
measure can be written as dx = tα−1 dσ dt, that is,∫

Rn
f (x) dx =

∫ ∞

0

∫
Σ

f (Atθ)tα−1 dσ(θ) dt

for appropriate functions f , where dσ is a C∞ measure on Σ;
(iv) there are positive constants c1, c2, c3, c4, α1, α2, β1 and β2 such that

c1|x|α1 ≤ r(x) ≤ c2|x|α2 if r(x) ≥ 1,
c3|x|β1 ≤ r(x) ≤ c4|x|β2 if r(x) ≤ 1.

See [5, 16, 19] for more details.

Let Ω be a locally integrable function and homogeneous of degree 0 with respect to
the dilation group {At}, that is, Ω(At x) = Ω(x) for x , 0. We assume that∫

Σ

Ω(θ) dσ(θ) = 0. (1.1)

For a suitable mapping Φ : (0,∞)→ (0,∞), we define the parametric Marcinkiewicz
integral operator along the surfaces {AΦ(r(y))y′; y ∈ Rn} by

Mh,Ω,Φ,%( f )(x) :=
(∫ ∞

0

∣∣∣∣∣ 1
t%

∫
r(y)≤t

h(r(y))Ω(y)
r(y)α−%

f (x − AΦ(r(y))y′) dy
∣∣∣∣∣2 dt

t

)1/2
, x ∈ Rn,

(1.2)
where % = σ + iτ (σ, τ ∈ R with σ > 0), y′ = Ar(y)−1 y, f ∈ S(Rn) (the Schwartz class)
and h ∈ ∆1(R+). Here ∆γ(R+)(γ ≥ 1) denotes the collection of measurable functions h
on R+ := (0,∞) satisfying

‖h‖∆γ(R+) = sup
j∈Z

(∫ 2 j+1

2 j
|h(t)|γ

dt
t

)1/γ
<∞.

It is easy to check that L∞(R+) = ∆∞(R+) ( ∆γ1 (R+) ( ∆γ2 (R+) for any 1 ≤ γ2 <
γ1 <∞. Let Nδ(R+) (δ > 0) be the set of all measurable functions h on R+ satisfying

Nδ(h) =
∑
m=1

mδ2mdm(h) <∞ with dm(h) = sup
k∈Z

2−k|E(k,m)|,

where E(k, 1) = {t ∈ (2k, 2k+1] : |h(t)| ≤ 2} and

E(k,m) = {t ∈ (2k, 2k+1] : 2m−1 < |h(t)| ≤ 2m} for m ≥ 2.

It follows from [18] that

∆γ(R+) ( Nδ1 (R+) ( Nδ2 (R+), ∀δ1 > δ2 > 0 and 1 < γ <∞. (1.3)

We denote by L(log+ L)β(Σ) (β > 0) the space of all those functions Ω on Σ which
satisfy ∫

Σ

|Ω(θ)|logβ(2 + |Ω(θ)|) dσ(θ) <∞.
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Also, we consider the Lq(Σ) spaces and write ‖Ω‖q = (
∫

Σ
|Ω(θ)|q dσ(θ))1/q for

Ω ∈ Lq(Σ). Note that

Lq(Σ) ( L(log+ L)β1 (Σ) ( L(log+ L)β2 (Σ), q > 1 and β2 < β1. (1.4)

When Φ(t) = t, we denote Mh,Ω,Φ,% by Mh,Ω,%. When At = tE with E being the
identity matrix and r(x) = |x| (the Euclidean norm), Σ recovers the unit sphere in
Rn denoted by S n−1, and the operator Mh,Ω,% reduces to the classical parametric
Marcinkiewicz integral operator, which has been studied by many authors. For
example, see [4, 20] for the case h(t) = % = 1 and Ω ∈ L(log+ L)1/2(S n−1), [8, 9] for
the case % ≡ 1, h(t) ∈ ∆∞(R+) and Ω ∈ H1(S n−1), [1] for the case h(t) ∈ ∆γ(R+) and Ω ∈

L(log+ L)1/2(S n−1) and [1, 13] for the case h ∈ N1/2(R+) and Ω ∈ L(log+ L)1/2(S n−1).
When At x = (tα1 x1, tα2 x2, . . . , tαn xn) with α1, . . . , αn being integers greater than one
and r(x) = ρ(x) with ρ(x) being the solution to the equation

∑n
j=1 x2

jρ(x)−2α j = 1, the
operator Mh,Ω,% recovers the parabolic parametric Marcinkiewicz integral operators
denoted by µh,Ω,%, and then Σ recovers S n−1. The Lp mapping properties of µh,Ω,%

have been discussed extensively by many authors. Xue et al. [21] proved that µh,Ω,%

is bounded on Lp(Rn) for 1 < p < ∞, provided that h(t) = % = 1 and Ω ∈ Lq(S n−1)
for some q > 1. Chen and Ding [6] (respectively, [7]) extended the above result to
the case Ω ∈ L(log+ L)1/2(S n−1) (respectively, Ω ∈ H1(S n−1)). The investigation of the
parabolic parametric Marcinkiewicz integral operators µh,Ω,% with additional roughness
in the radial direction has also received a large amount of attention by many authors
(see [14, 15] for example).

On the other hand, to study further the singular integral operator with rough kernel
both on the unit sphere and in the radial direction, Sato [17] first introduced the radial
condition Nβ(R+) and proved the following result.

Theorem A. Let Ω ∈ L log+ L(Σ) satisfy (1.1) and h ∈ N1(R+); then the nonisotropic
singular integral operator Th,Ω defined by

Th,Ω( f )(x) = p.v.
∫
Rn

h(r(y))Ω(y)
r(y)α

f (x − y) dy, x ∈ Rn,

is bounded on Lp(Rn) for all 1 < p <∞.

Based on the above, a natural question is the following.

Question. Is Mh,Ω,% bounded on Lp(Rn) for 1 < p < ∞ under the condition that
Ω ∈ L(log+ L)α(Σ) and h ∈ Nβ(R+)?

In this paper, we will give an affirmative answer to this question by considering a
class of operators broader than Mh,Ω,%. More precisely, we denote by F the set of all
functions ϕ satisfying the following conditions (a) or (b):

(a) ϕ : R+ → R+ is a increasing C1 function such that tϕ′(t) ≥ Cϕϕ(t) and ϕ(2t) ≤
cϕϕ(t) for all t > 0, where Cϕ and cϕ are independent of t. Moreover, ϕ′ is
monotonic.
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(b) ϕ : R+ → R+ is a decreasing C1 function such that tϕ′(t) ≤ −Cϕϕ(t) and ϕ(t) ≤
cϕϕ(2t) for all t > 0, where Cϕ and cϕ are independent of t. Moreover, ϕ′ is
monotonic.

Remark 1.1. There are some model examples on the class F satisfying (a), such as
tβ (β > 0), tβ(ln(1 + t))γ (β, γ > 0), t ln ln(e + t), real-valued polynomials P on R with
positive coefficients and P(0) = 0 and so on. The model example of functions φ ∈ F
which satisfy (b) are tδ (δ < 0), t−1 ln(1 + 1/t). It should be pointed out that there are
two important facts, as follows.

(i) If ϕ(t) ∈ C1(R+) is nonnegative and increasing (respectively, decreasing) on
R+ and ϕ(t)/(tϕ′(t)) is bounded on R+, then limt→0 ϕ(t) = 0 (respectively,
limt→0 ϕ(t) = +∞) and limt→+∞ ϕ(t) = +∞ (respectively, limt→+∞ ϕ(t) = 0) (see
[11]).

(ii) If ϕ ∈ F and satisfies (a), there exists a constant Bϕ > 1 such that ϕ(2t) ≥ Bϕϕ(t)
(see [2, 3] for example). Similarly, one can easily check that if ϕ ∈ F and satisfies
(b), then there exists a constant Bϕ > 1 such that ϕ(t) ≥ Bϕϕ(2t).

Our main results can be stated as follows.

Theorem 1.2. Let Mh,Ω,Φ,% be as in (1.2) and Φ ∈ F. Suppose that Ω ∈ Lq(Σ) for some
q ∈ (1, 2] satisfying (1.1) and h ∈ ∆γ(R+) for some γ ∈ (1, 2]. Then:

(i) for 2 ≤ p <∞,

‖Mh,Ω,Φ,%( f )‖Lp(Rn) ≤ Cp(γ − 1)−1/2(q − 1)−1/2‖h‖∆γ(R+)‖Ω‖Lq(Σ)‖ f ‖Lp(Rn);

(ii) for 1 < p < 2,

‖Mh,Ω,Φ,%( f )‖Lp(Rn) ≤ Cp(γ − 1)−1(q − 1)−1‖h‖∆γ(R+)‖Ω‖Lq(Σ)‖ f ‖Lp(Rn).

The constants Cp > 0 are independent of h,Ω, q and γ, but depend on Φ.

Theorem 1.3. Let Mh,Ω,Φ,% be as in (1.2) and Φ ∈ F. Suppose that Ω satisfies (1.1).

(i) If Ω ∈ L(log+ L)1/2(Σ) and h ∈ N1/2(R+), then, for 2 ≤ p <∞,

‖Mh,Ω,Φ,%( f )‖Lp(Rn) ≤ C(1 + ‖Ω‖L(log+ L)1/2(Σ))(1 + N1/2(h))‖ f ‖Lp(Rn).

(ii) If Ω ∈ L log+ L(Σ) and h ∈ N1(R+), then, for 1 < p < 2,

‖Mh,Ω,Φ,%( f )‖Lp(Rn) ≤ C(1 + ‖Ω‖L log+ L(Σ))(1 + N1(h))‖ f ‖Lp(Rn).

The constants Cp > 0 depend on Φ.

Remark 1.4. When At = tE with E being the identity matrix and r(x) = |x| (the
Euclidean norm), Theorem 1.3 was shown by Liu and Wu in more general
form (see [13, Theorem 1.6]) (also see [1] for the case Φ(t) = t). When At x =

(tα1 x1, tα2 x2, . . . , tαn xn) with α1, . . . , αn being integers greater than one and r(x) = ρ(x)
with ρ(x) being the solution to the equation

∑n
j=1 x2

jρ(x)−2α j = 1, Theorem 1.3 was
proved by Liu and Zhang in more general form (see [15, Theorem 1]). It should be
pointed out that our main results are also new, even in the special case Φ(t) = t and
% = 1.
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The rest of this paper is organized as follows. In Section 2 we present some
preliminary lemmas. The proofs of main results will be given in Section 3. Finally,
we consider the Lp bounds of the corresponding parametric Marcinkiewicz integral
operators related to area integrals and Littlewood–Paley g∗λ-functions in Section 4.
We remark that the proof of Theorem 1.2 is based on the method of [1], but we add
some new techniques. The main ingredients of our proofs in Theorem 1.2 are to give
two sharp estimates for two maximal operators (see Lemma 2.3). As a consequence
of Theorem 1.2, we can prove Theorem 1.3 via an extrapolation method which was
originally by Yano (see [22]) and developed by Sato (see [17]).

Throughout the paper, we let p′ denote the conjugate index of p which satisfies
1/p + 1/p′ = 1. For x ∈ R, we set [x] = max{k ∈ Z : k ≤ x}. The letter C will stand
for positive constants that are not necessarily the same at each occurrence but that are
independent of the essential variables.

2. Preliminary lemmas

Following the notation in [17], let P∗ denote the adjoint of the matrix P. Then
A∗t = exp((log t)P∗). We can define a nonnegative function s from {A∗t } in exactly the
same way as we define r from {At}.

We will use the following estimates (see [19]):

d1|ξ|
a1 < s(ξ) < d2|ξ|

a2 if s(ξ) ≥ 1, (2.1)
d3|ξ|

b1 < s(ξ) < d4|ξ|
b2 if 0 < s(ξ) ≤ 1, (2.2)

where d j ( j = 1, 2, 3, 4), ak, bk (k = 1, 2) are positive constants. It follows from
(2.1)–(2.2) that

|ξ| ≤ C1(s(ξ)1/a1 + s(ξ)1/b1 ), (2.3)
|ξ|−1 ≤ C2(s(ξ)−1/a2 + s(ξ)−1/b2 ). (2.4)

First we give the following estimate, which follows from [17, Corollary 4.2] via an
integration by parts argument.

Lemma 2.1. Let L be the degree of the minimal polynomial of P and Ψ ∈ C1([a, b]) with
0 < a < b. Then, for ξ, η ∈ Rn\{0},∣∣∣∣∣∫ b

a
exp(iη · Atξ)Ψ(t) dt

∣∣∣∣∣ ≤ C|η · Pξ|−1/L
(

sup
t∈[a,b]

|Ψ(t)| +
∫ b

a
|Ψ′(t)| dt

)
for some positive constant C independent of ξ, η and Ψ. Applying Lemma 2.1, we shall
establish the following result.

Lemma 2.2. Let L be as in Lemma 2.1 and Φ ∈ F. Then, for ξ, η ∈ Rn\{0} and t > 0,
there exists a constant C > 0 such that∣∣∣∣∣∫ t

t/2
exp(iη · AΦ(u)ξ)

du
u

∣∣∣∣∣ ≤ C|η · PAΦ(t)ξ|
−1/L.

The constant C is independent of ξ, η, but depends on Φ.
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Proof. We only consider the case Φ ∈ F satisfying the condition (a), since the other
case can be proved similarly. By a change of variables,∫ t

t/2
exp(iη · AΦ(u)ξ)

du
u

=

∫ Φ(t)

Φ(t/2)
exp(iη · Auξ)

du
Φ−1(u)Φ′(Φ−1(u))

= Φ(t)
∫ 1

ς

exp(iA∗Φ(t)η · Auξ)φ(u)g(u) dt,

where ς = Φ(t/2)/Φ(t), φ(u) = 1/Φ−1(Φ(t)u) and g(u) = (Φ′(Φ−1(Φ(t)u)))−1. Let

I(u) =

∫ u

ς

exp(iA∗Φ(t)η · Avξ)φ(v) dv, ς ≤ u ≤ 1.

By Lemma 2.1 and the fact that PAu = AuP for any u > 0, there exists C > 0 which is
independent of ξ, η such that for ς ≤ u ≤ 1,

|I(u)| ≤ C|A∗Φ(t)η · Pξ|
−1/L

(
sup

s∈[ς,u]
|φ(s)| +

∫ u

ς

|φ′(v)| dv
)

≤
C
t
|η · PAΦ(t)ξ|

−1/L.

Thus, by integration by parts and the properties of Φ,∣∣∣∣∣∫ t

t/2
exp(iη · AΦ(u)ξ)

du
u

∣∣∣∣∣ = Φ(t)
∣∣∣∣∣∫ 1

ς

g(u) dI(u)
∣∣∣∣∣

≤ Φ(t)
(
|I(1)g(1)| +

∫ 1

ς

|I(u)| |g′(u)| du
)

≤ CΦ(t)|η · PAΦ(t)ξ|
−1/L((tΦ′(t))−1 + (tΦ(t/2))−1)

≤
C(1 + 2cΦ)

CΦ

|η · PAΦ(t)ξ|
−1/L

≤ C(Φ)|η · PAΦ(t)ξ|
−1/L.

This proves Lemma 2.2. �

For q, γ ∈ (1,∞) and t > 0, we define the family of measures {σh,t}t>0 and the related
maximal operators σ∗h and Mh,q,γ on Rn by

σ̂h,t(ξ) =
1
t%

∫
t/2<r(y)≤t

exp(−2πiξ · AΦ(r(y))y′)
h(r(y))Ω(y′)

r(y)α−%
dy,

σ∗h( f )(x) = sup
t∈R+

| |σh,t | ∗ f (x)|,

Mh,q,γ( f )(x) = sup
k∈Z

∫ 2q′γ′(k+1)

2q′γ′k
| |σh,t | ∗ f (x)|

dt
t
,

where |σh,t | is defined in the same way asσh,t, but with Ω replaced by |Ω| and h replaced
by |h|.

In what follows, we will establish some lemmas, which will play key roles in the
proofs of our main results.
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Lemma 2.3. Let Ω ∈ Lq(Σ) for some 1 < q < ∞ and satisfy (1.1). Suppose that h ∈
∆γ(R+) for some γ > 1 and Φ ∈ F. Then, for any t > 0 and ξ ∈ Rn, there exists C > 0
such that

max{|σ̂h,t(ξ)|, | |σ̂h,t |(ξ)|} ≤ C‖h‖∆γ(R+)‖Ω‖Lq(Σ) max{1, |A∗Φ(t)ξ|
−1/(4q′γ′L)}, (2.5)

max{|σ̂h,t(ξ)|, | |σ̂h,t |(ξ) − |σ̂h,t |(0)|} ≤ C‖h‖∆γ(R+)‖Ω‖Lq(Σ)|A∗Φ(t)ξ|
1/(4q′γ′L). (2.6)

The constant C is independent of h, Ω, q, γ, but depends on Φ.

Proof. We only consider the case Φ ∈ F satisfying the condition (a), since the other
case can be proved similarly. By a change of variable and Hölder’s inequality,

|σ̂h,t(ξ)| =
∣∣∣∣∣ 1
t%

∫ t

t/2

∫
Σ

exp(−2πiξ · AΦ(u)θ)Ω(θ) dσ(θ)
h(u)
u1−% du

∣∣∣∣∣
≤ C‖h‖∆γ(R+)‖Ω‖Lq(Σ). (2.7)

Similarly,
| |σ̂h,t |(ξ)| ≤ C‖h‖∆γ(R+)‖Ω‖Lq(Σ). (2.8)

On the other hand, by a change of variable and Hölder’s inequality,

|σ̂h,t(ξ)| =
∣∣∣∣∣ 1
t%

∫ t

t/2

∫
Σ

exp(−2πiξ · AΦ(u)θ)Ω(θ) dσ(θ)
h(u)
u1−% du

∣∣∣∣∣
≤

∫ t

t/2

∣∣∣∣∣∫
Σ

exp(−2πiξ · AΦ(u)θ)Ω(θ) dσ(θ)
∣∣∣∣∣|h(u)|

du
u

≤ C‖h‖∆γ(R+)

(∫ t

t/2

∣∣∣∣∣∫
Σ

exp(−2πiξ · AΦ(u)θ)Ω(θ) dσ(θ)
∣∣∣∣∣γ′ du

u

)1/γ′

≤ C‖h‖∆γ(R+)‖Ω‖
max{0,1−2/γ′}
Lq(Σ)

×

(∫ t

t/2

∣∣∣∣∣∫
Σ

exp(−2πiξ · AΦ(u)θ)Ω(θ) dσ(θ)
∣∣∣∣∣2 du

u

)1/max{2,γ′}
. (2.9)

By Lemma 2.1 and Hölder’s inequality, for any 0 < ε < min{1/(2q′), 1/L},∫ t

t/2

∣∣∣∣∣∫
Σ

exp(−2πiξ · AΦ(u)θ)Ω(θ) dσ(θ)
∣∣∣∣∣2 du

u

=

∫ t

t/2

"
Σ×Σ

exp(−2πiA∗Φ(u)ξ · (θ − w))Ω(θ)Ω(w) dσ(θ) dσ(w)
du
u

≤

"
Σ×Σ

∣∣∣∣∣∫ t

t/2
exp(−2πiξ · AΦ(u)(θ − w))

du
u

∣∣∣∣∣|Ω(θ)Ω(w)| dσ(θ) dσ(w)

≤ C
"

Σ×Σ

|ξ · (AΦ(t)P(θ − w))|−ε |Ω(θ)Ω(w)| dσ(θ) dσ(w)

≤ C‖Ω‖2Lq(Σ)

("
Σ×Σ

|P∗A∗Φ(t)ξ · (θ − w)|−εq
′

dσ(θ) dσ(w)
)1/q′

≤ C‖Ω‖2Lq(Σ)|A
∗
Φ(t)ξ|

−ε , (2.10)
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where the last inequality follows from [12, page 533] (also see [17, proof of
Lemma 1]). If follows from (2.9) and (2.10) that

|σ̂h,t(ξ)| ≤ C‖h‖∆γ(R+)‖Ω‖Lq(Σ)|A∗Φ(t)ξ|
−1/(2q′ max{2,γ′}L), (2.11)

where we take ε = 1/(2q′L). Similarly,

| |σ̂h,t |(ξ)| ≤ C‖h‖∆γ(R+)‖Ω‖Lq(Σ)|A∗Φ(t)ξ|
−1/(2q′ max{2,γ′}L).

This, together with (2.7), (2.8) and (2.11), implies (2.5). On the other hand, by a
change of variables, (1.1) and Hölder’s inequality,

|σ̂h,t(ξ)| =
∣∣∣∣∣ 1
t%

∫ t

t/2

∫
Σ

(exp(−2πiξ · AΦ(u)θ) − 1)Ω(θ) dσ(θ)
h(u)
u1−% du

∣∣∣∣∣
≤ C

∫ t

t/2

∫
Σ

|Ω(θ)| |ξ · AΦ(u)θ| dσ(θ)|h(u)|
du
u

≤ C‖h‖∆γ(R+)

(∫ t

t/2

∣∣∣∣∣∫
Σ

|Ω(θ)| |ξ · AΦ(u)θ| dσ(θ)
∣∣∣∣∣γ′ du

u

)1/γ′

≤ C‖h‖∆γ(R+)

(∫ Φ(t)

Φ(t/2)

∣∣∣∣∣∫
Σ

|Ω(θ)| |ξ · Auθ| dσ(θ)
∣∣∣∣∣γ′ du

Φ′(Φ−1(u))Φ−1(u)

)1/γ′

≤ C−1/γ′

Φ
‖h‖∆γ(R+)

(∫ Φ(t)

Φ(t/2)

∣∣∣∣∣∫
Σ

|Ω(θ)| |ξ · Auθ| dσ(θ)
∣∣∣∣∣γ′ du

u

)1/γ′

≤ C−1/γ′

Φ
‖h‖∆γ(R+)

(∫ 1

ς

∣∣∣∣∣∫
Σ

|Ω(θ)| |A∗Φ(t)ξ · Auθ| dσ(θ)
∣∣∣∣∣γ′ du

u

)1/γ′

,

where ς is as in Lemma 2.2. Note that ς ≥ c−1
Φ

and |Auθ| ≤ C for u ∈ [ς, 1] and θ ∈ Σ.
Thus,

|σ̂h,t(ξ)| ≤ C‖h‖∆γ(R+)‖Ω‖Lq(Σ)|A∗Φ(t)ξ|. (2.12)

It follows from (2.7) and (2.12) that

|σ̂h,t(ξ)| ≤ C‖h‖∆γ(R+)‖Ω‖Lq(Σ)|A∗Φ(t)ξ|
1/(4q′γ′L). (2.13)

Similarly, we can prove that

| |σ̂h,t |(ξ) − |σ̂h,t |(0)| ≤ C‖h‖∆γ(R+)‖Ω‖Lq(Σ)|A∗Φ(t)ξ|
1/(4q′γ′L),

which, combined with (2.13), implies (2.6). This proves Lemma 2.3. �

Lemma 2.4. Let h,Ω,Φ be as in Lemma 2.3. Then, for any 1 < p < ∞, there exists a
constant C > 0 such that

‖σ∗h( f )‖Lp(Rn) ≤ Cq′γ′‖h‖∆γ(R+)‖Ω‖Lq(Σ)‖ f ‖Lp(Rn), (2.14)
‖Mh,q,γ( f )‖Lp(Rn) ≤ Cq′γ′‖h‖∆γ(R+)‖Ω‖Lq(Σ)‖ f ‖Lp(Rn). (2.15)

The constant C is independent of h,Ω, q, γ, but depends on Φ.
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Proof. We only prove the case Φ ∈ F satisfying the condition (a); the other case can be
obtained similarly. By Remark 1.1, there exists BΦ > 1 such that Φ(2t) ≥ BΦΦ(t) for
any t > 0. For convenience, we set Nq,γ = q′γ′‖h‖∆γ(R+)‖Ω‖Lq(Σ). For k ∈ Z, we define
the family of measures {µk}k∈Z and a maximal operator µ∗ on Rn by∫

Rn
f (x) dµk(x) =

∫
2q′γ′k<r(y)≤2q′γ′(k+1)

h(r(y))Ω(y′)
ρ(y)α

f (AΦ(r(y))y′) dy,

µ∗( f )(x) = sup
k∈Z
| |µk| ∗ f (x)|,

where |µk| is defined in the same way as µk, but with Ω replaced by |Ω| and h replaced
by |h|. One can easily check that

σ∗h( f ) ≤ µ∗(| f |).

Therefore, to prove (2.14), it suffices to prove that

‖µ∗( f )‖Lp(Rn) ≤ CpNq,γ‖ f ‖Lp(Rn), 1 < p <∞. (2.16)

Below we estimate |µ̂k(ξ)|. By a change of variable, (2.3) and the same argument as in
getting (2.12),

| |µ̂k|(ξ) − |µ̂k|(0)| =
∣∣∣∣∣∫ 2q′γ′(k+1)

2q′γ′k

∫
Σ

(exp(−2πiξ · AΦ(u)θ) − 1)|Ω(θ)| dσ(θ)|h(u)|
du
u

∣∣∣∣∣
≤

[q′γ′]∑
i=0

∫ 2q′γ′k+i+1

2q′γ′k+i

∫
Σ

|Ω(θ)| |ξ · AΦ(u)θ| dσ(θ)|h(u)|
du
u

≤

[q′γ′]∑
i=0

‖h‖∆γ(R+)‖Ω‖Lq(Σ)|A∗Φ(2q′γ′k+i+1)ξ|

≤ ([q′γ′] + 1)‖h‖∆γ(R+)‖Ω‖Lq(Σ)((Φ(2q′γ′k+[q′γ′]+1)s(ξ))1/a1

+ (Φ(2q′γ′k+[q′γ′]+1)s(ξ))1/b1 )

≤ CNq,γ(c
([q′γ′]+1)/a1
Φ

(Φ(2q′γ′k)s(ξ))1/a1

+ c([q′γ′]+1)/b1
Φ

(Φ(2q′γ′k)s(ξ))1/b1 ). (2.17)

One can easily check that

| |µ̂k|(ξ)| ≤ CNq,γ, ∀ ξ ∈ Rn. (2.18)

Interpolating between (2.17) and (2.18) leads to

| |µ̂k|(ξ) − |µ̂k|(0)| ≤ CNq,γ((Φ(2q′γ′k)s(ξ))1/(4q′γ′a1L) + (Φ(2q′γ′k)s(ξ))1/(4q′γ′b1L)).(2.19)
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On the other hand, by a change of variable, Hölder’s inequality and (2.10), for any
0 < ε < min{1/(2q′), 1/L},

| |µ̂k|(ξ)| =
∣∣∣∣∣∫ 2q′γ′(k+1)

2q′γ′k

∫
Σ

exp(−2πiξ · AΦ(u)θ)|Ω(θ)| dσ(θ)|h(u)|
du
u

∣∣∣∣∣
≤

(∫ 2q′γ′(k+1)

2q′γ′k
|h(u)|γ

du
u

)1/γ

×

(∫ 2q′γ′(k+1)

2q′γ′k

∣∣∣∣∣∫
Σ

exp(−2πiξ · AΦ(u)θ)|Ω(θ)| dσ(θ)
∣∣∣∣∣γ′ du

u

)1/γ′

≤ C(q′γ′)1/γ‖h‖∆γ(R+)

×

([q′γ′]∑
i=0

∫ 2q′γ′k+i+1

2q′γ′k+i

∣∣∣∣∣∫
Σ

exp(−2πiξ · AΦ(u)θ)|Ω(θ)| dσ(θ)
∣∣∣∣∣γ′ du

u

)1/γ′

≤ C(q′γ′)1/γ‖h‖∆γ(R+)‖Ω‖
max{0,1−2/γ′}
L1(Σ)

×

([q′γ′]∑
i=0

(∫ 2q′γ′k+i+1

2q′γ′k+i

∣∣∣∣∣∫
Σ

exp(−2πiξ · AΦ(u)θ)Ω(θ) dσ(θ)
∣∣∣∣∣2 du

u

)γ′/max{2,γ′})1/γ′

≤ C(q′γ′)1/γ‖h‖∆γ(R+)‖Ω‖
max{0,1−2/γ′}
Lq(Σ)

×

([q′γ′]∑
i=0

(‖Ω‖2Lq(Σ)|A
∗

Φ(2q′γ′k+i+1)ξ|
−ε)γ

′/max{2,γ′}
)1/γ′

≤ C(q′γ′)1/γ‖h‖∆γ(R+)‖Ω‖Lq(Σ)

([q′γ′]∑
i=0

|A∗
Φ(2q′γ′k+i+1)ξ|

−εγ′/max{2,γ′}
)1/γ′

.

This, together with (2.4) and (2.18), leads to

| |µ̂k|(ξ)| ≤ CNq,γ((Φ(2q′γ′k)s(ξ))−1/(4q′γ′a2L) + (Φ(2q′γ′k)s(ξ))−1/(4q′γ′b2L)). (2.20)

We can choose a nonnegative C∞0 (Rn) function ψ such that ψ̂(0) = 1 and supp(ψ) ⊂
{x ∈ Rn : r(x) ≤ 1}. Define the family of measures {νk}k∈Z on Rn by

νk(ξ) = |µk|(ξ) − ψk(ξ)|µ̂k|(0), (2.21)

where ψk(x) = Φ(2q′γ′k)−αψ(AΦ(2q′γ′k)−1 x). Let Ψk = |µ̂k|(0)ψk. One can easily check that

µ∗( f ) ≤ G( f ) + Ψ∗(| f |), (2.22)
ν∗( f ) ≤ µ∗( f ) + Ψ∗(| f |), (2.23)

where ν∗( f ) = supk∈Z | |νk| ∗ f |, Ψ∗( f ) = supk∈Z | |Ψk| ∗ f | and G( f ) = (
∑

k∈Z |νk ∗ f |2)1/2.
By the Lp boundedness of the Hardy–Littlewood maximal function on Rn with respect
to the function r(·),∥∥∥∥∥sup

k∈Z
|ψk ∗ f |

∥∥∥∥∥
Lp(Rn)

≤ C‖ f ‖Lp(Rn), 1 < p <∞, (2.24)
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where positive C is independent of γ and q. Thus, by (2.18),

‖Ψ∗( f )‖Lp(Rn) ≤ CNq,γ‖ f ‖Lp(Rn), 1 < p <∞, (2.25)

where C is independent of γ and q. By (2.22) and (2.25), to prove (2.16), it suffices to
prove that

‖G( f )‖Lp(Rn) ≤ CNq,γ‖ f ‖Lp(Rn), 1 < p <∞, (2.26)

where C is independent of γ and q. By a well-known property of Rademacher’s
function, (2.26) follows from

‖τε( f )‖Lp(Rn) ≤ CNq,γ‖ f ‖Lp(Rn), 1 < p <∞,

where τε( f ) =
∑

k∈Z εkνk ∗ f with ε = {εk}, εk = 1 or −1 (the inequality is uniform in ε)
and C is independent of γ and q. It follows from (2.3)–(2.4) and (2.18)–(2.20) that

|ν̂k(ξ)| ≤ CNq,γ min{1, (Φ(2q′γ′k)s(ξ))−1/(4q′γ′a2L) + (Φ(2q′γ′k)s(ξ))−1/(4q′γ′b2L)}, (2.27)
|ν̂k(ξ)| ≤ CNq,γ((Φ(2q′γ′k)s(ξ))1/(4q′γ′a1L) + (Φ(2q′γ′k)s(ξ))1/(4q′γ′b1L)). (2.28)

Let {Γk}k∈Z be a sequence of nonnegative functions in C∞0 ((0,∞)) such that

supp(Γk) ⊂ [Φ(2q′γ′(k+1))−1,Φ(2q′γ′(k−1))−1],
∑
k∈Z

Γ2
k(t) = 1,

|(d/dt) jΓk(t)| ≤ C j/t j for j = 1, 2, . . . ,

where C j ( j = 1, 2, . . .) are independent of q and γ. Define the Fourier multiplier
operators S k by

Ŝ k( f )(ξ) = Γk(s(ξ)) f̂ (ξ). (2.29)

By Littlewood–Paley theory, for any 1 < p <∞, {gk} ∈ Lp(Rn, `2) and f ∈ Lp(Rn), there
exists Cp > 0 which is independent of q and γ such that∥∥∥∥∥∑

k∈Z

S k(gk)
∥∥∥∥∥

Lp(Rn)
≤ Cp

∥∥∥∥∥(∑
k∈Z

|gk|
2
)1/2∥∥∥∥∥

Lp(Rn)
, (2.30)∥∥∥∥∥(∑

k∈Z

|S k( f )|2
)1/2∥∥∥∥∥

Lp(Rn)
≤ Cp‖ f ‖Lp(Rn). (2.31)

By the definition of S k, we can write

τε( f ) =
∑
k∈Z

εkνk ∗ S j+kS j+k( f ) =
∑
j∈Z

∑
k∈Z

εkS j+k(νk ∗ S j+k( f )) :=
∑
j∈Z

τ j( f ). (2.32)

Then, by Plancherel’s theorem, (2.27)–(2.28) and (2.30)–(2.31),

‖τ j( f )‖2L2(Rn) ≤ C
∑
k∈Z

∫
{Φ(2q′γ′(k+ j+1))−1≤s(ξ)≤Φ(2q′γ′(k+ j−1))−1}

| f̂ (ξ)|2|ν̂k(ξ)|2 dξ

≤ C(Nq,γD j)2‖ f ‖2L2(Rn),
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where D j = (B−( j−1)/(8a1L)
Φ

+ B−( j−1)/(8b1L)
Φ

)χ{ j≥1}( j) + (B( j+1)/(4a2L)
Φ

+ B( j+1)/(4b2L)
Φ

)
χ{ j<1}( j). Then

‖τ j( f )‖L2(Rn) ≤ CNq,γB−c| j|
Φ
‖ f ‖L2(Rn), (2.33)

where C and c are independent of γ and q. This, together with (2.32), implies that

‖τε( f )‖L2(Rn) ≤ CNq,γ‖ f ‖L2(Rn).

We also obtain that
‖G( f )‖L2(Rn) ≤ CNq,γ‖ f ‖L2(Rn),

which, by combining (2.22) and (2.23) with (2.25), yields

‖ν∗( f )‖L2(Rn) ≤ CNq,γ‖ f ‖L2(Rn).

This, together with the trivial estimate supk∈Z ‖νk‖ ≤ CNq,γ and the proof of
[12, Lemma, page 544], implies that∥∥∥∥∥(∑

k∈Z

|νk ∗ gk|
2
)1/2∥∥∥∥∥

Lp(Rn)
≤ CNq,γ

∥∥∥∥∥(∑
k∈Z

|gk|
2
)1/2∥∥∥∥∥

Lp(Rn)

holds for arbitrary functions {gk} ∈ Lp(Rn, `2) with p = 4 or p = 4/3. This, combining
(2.30) with (2.31), implies that

‖τ j( f )‖Lp(Rn) ≤ CNq,γ‖ f ‖Lp(Rn) (2.34)

for p = 4 or p = 4/3. By (2.32) and the interpolation between (2.33) and (2.34),

‖τε( f )‖Lp(Rn) ≤ CNq,γ‖ f ‖Lp(Rn), 4/3 < p < 4.

Consequently,
‖G( f )‖Lp(Rn) ≤ CNq,γ‖ f ‖Lp(Rn), 4/3 < p < 4.

Reasoning as above, (2.22)–(2.23), (2.25), (2.30)–(2.33), the trivial estimate
supk∈Z ‖νk‖ ≤CNq,γ, the proof of [12, Lemma, page 544] and an interpolation argument
yield

‖G( f )‖Lp(Rn) ≤ CNq,γ‖ f ‖Lp(Rn), 8/7 < p < 8.

By using this argument repeatedly, we can obtain ultimately (2.26). Equation (2.14) is
proved.

It remains to prove (2.15). Let ψk be as in (2.21). Define the family of measures
{ωk}k∈Z on Rn by

ωk(ξ) =

∫ 2q′γ′(k+1)

2q′γ′k
|σ̂h,t |(ξ)

dt
t
−

∫ 2q′γ′(k+1)

2q′γ′k
|σ̂h,t |(0)

dt
t
ψk(ξ). (2.35)

By Lemma 2.3, one can easily check that

| |σ̂h,t |(ξ) − |σ̂h,t |(0)ψ̂k(ξ)|
≤ C‖h‖∆γ(R+)‖Ω‖Lq(Σ) min{1, |A∗Φ(t)ξ|

1/(4q′γ′L) + |A∗
Φ(2q′γ′k)ξ|

1/(4q′γ′L)}, (2.36)

| |σ̂h,t |(ξ) − |σ̂h,t |(0)ψ̂k(ξ)|
≤ C‖h‖∆γ(R+)‖Ω‖Lq(Σ)(|A∗Φ(t)ξ|

−1/(4q′γ′L) + |A∗
Φ(2q′γ′k)ξ|

−1/(4q′γ′L)). (2.37)
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It follows from (2.3)–(2.4) and (2.36)–(2.37) that

|ω̂k(ξ)| ≤ CNq,γ min{1, (Φ(2q′γ′k)s(ξ))1/(4q′γ′a1L) + (Φ(2q′γ′k)s(ξ))1/(4q′γ′b1L)}, (2.38)

|ω̂k(ξ)| ≤ CNq,γ((Φ(2q′γ′k)s(ξ))−1/(4q′γ′a2L) + (Φ(2q′γ′k)s(ξ))−1/(4q′γ′b2L)). (2.39)

We get from (2.35) that

Mh,q,γ( f ) ≤ g( f ) + Θ∗(| f |), (2.40)

ω∗( f ) ≤ Mh,q,γ( f ) + Θ∗(| f |), (2.41)

where ω∗( f ) = supk∈Z | |ωk| ∗ f |, g( f ) = (
∑

k∈Z |ωk ∗ f |2)1/2 and Θ∗( f ) = supk∈Z | |Θk| ∗ f |

with Θk =
∫ 2q′γ′(k+1)

2q′γ′k |σ̂h,t |(0)(dt/t)ψk. It follows from (2.5) and (2.24) that

‖Θ∗( f )‖Lp(Rn) ≤ CNq,γ‖ f ‖Lp(Rn), 1 < p <∞, (2.42)

where C is independent of q and γ. By (2.38)–(2.42), the trivial estimate supk∈Z ‖ωk‖ ≤

CNq,γ and the same arguments as in getting (2.14), we obtain (2.15). This completes
the proof of Lemma 2.4. �

Applying Lemma 2.4, we obtain the following result.

Lemma 2.5. Let Ω,Φ be as in Lemma 2.3 and h ∈ ∆γ(R+) for some γ ∈ (1, 2]. Then
there exists C > 0 such that∥∥∥∥∥(∑

k∈Z

∫ 2q′γ′(k+1)

2q′γ′k
|σh,t ∗ gk|

2 dt
t

)1/2∥∥∥∥∥
Lp(Rn)

≤ C(q′γ′)−1/2‖h‖∆γ(R+)‖Ω‖Lq(Σ)

∥∥∥∥∥(∑
k∈Z

|gk|
2
)1/2∥∥∥∥∥

Lp(Rn)
, 2 ≤ p <∞, (2.43)

∥∥∥∥∥(∑
k∈Z

∫ 2q′γ′(k+1)

2q′γ′k
|σh,t ∗ gk|

2 dt
t

)1/2∥∥∥∥∥
Lp(Rn)

≤ Cq′γ′‖h‖∆γ(R+)‖Ω‖Lq(Σ)

∥∥∥∥∥(∑
k∈Z

|gk|
2
)1/2∥∥∥∥∥

Lp(Rn)
, 1 < p < 2. (2.44)

The constant C is independent of h,Ω, q, γ, but depends on Φ.

Proof. The idea of the proof is similar to the one appearing in the proof of
[1, Lemma 3.7]. First we prove (2.43). For fixed 2 ≤ p <∞, by duality, there exists a
nonnegative function f ∈ L(p/2)′(Rn) with ‖ f ‖L(p/2)′ (Rn) ≤ 1 such that

∥∥∥∥∥(∑
k∈Z

∫ 2q′γ′(k+1)

2q′γ′k
|σh,t ∗ gk|

2 dt
t

)1/2∥∥∥∥∥2

Lp(Rn)
=

∫
Rn

∑
k∈Z

∫ 2q′γ′(k+1)

2q′γ′k
|σh,t ∗ gk|

2 dt
t

f (x) dx. (2.45)
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By a change of variable and Hölder’s inequality, we obtain

|σh,t ∗ gk(x)|2

≤

(∫
t/2<r(y)≤t

|h(r(y))Ω(y)|
r(y)α

|gk(x − AΦ(r(y))y′)| dy
)2

≤

(∫ t

t/2

∫
Σ

|gk(x − AΦ(u)y′))| |Ω(y′)| dσ(y′)|h(u)|
du
u

)2

≤ C‖h‖γ
∆γ(R+)‖Ω‖Lq(Σ)

(∫ t

t/2

∫
Σ

|gk(x − AΦ(u)y′)|2|Ω(y′)| dσ(y′)|h(u)|2−γ
du
u

)
. (2.46)

Thus, by (2.45), (2.46) and Hölder’s inequality, one can check that∥∥∥∥∥(∑
k∈Z

∫ 2q′γ′(k+1)

2q′γ′k
|σh,t ∗ gk|

2 dt
t

)1/2∥∥∥∥∥2

Lp(Rn)

≤ C‖h‖γ
∆γ(R+)‖Ω‖Lq(Σ)

∫
Rn

∑
k∈Z

|gk(x)|2M̃|h|2−γ ,q,γ( f̃ )(−x) dx

≤ C‖h‖γ
∆γ(R+)‖Ω‖Lq(Σ)

∥∥∥∥∥(∑
k∈Z

|gk|
2
)1/2∥∥∥∥∥2

Lp(Rn)
‖M̃|h|2−γ ,q,γ( f̃ )‖L(p/2)′ (Rn), (2.47)

where f̃ (x) = f (−x) and M̃|h|2−γ ,q,γ( f ) denotes M|h|2−γ ,q,γ with % = 1. It is easy to check
that |h(·)|2−γ ∈ ∆γ/(2−γ)(R+); thus, by (2.15),

‖M̃|h|2−γ ,q,γ(| f̃ |)‖L(p/2)′ (Rn) ≤ Cq′
(

γ

2 − γ

)′
‖ |h|2−γ‖∆γ/(2−γ)(R+)‖Ω‖Lq(Σ)‖ f ‖L(p/2)′ (Rn)

≤ Cq′γ′‖h‖2−γ
∆γ(R+)‖Ω‖Lq(Σ),

which, combined with (2.47), implies (2.43).
Next, we prove (2.44). Assume that 1 < p < 2; by duality, there exist functions

{ fk(x, t)} defined on Rn × R+ with ‖{ fk(·, ·)}‖Lp′ (Rn,`2(L2([2q′γ′k ,2q′γ′(k+1)],dt/t))) ≤ 1 such that∥∥∥∥∥(∑
k∈Z

∫ 2q′γ′(k+1)

2q′γ′k
|σh,t ∗ gk|

2 dt
t

)1/2∥∥∥∥∥
Lp(Rn)

≤

∫
Rn

∑
k∈Z

∫ 2q′γ′(k+1)

2q′γ′k
σh,t ∗ gk(x) fk(x, t)

dt
t

dx

≤ C(q′γ′)1/2
∥∥∥∥∥(∑

k∈Z

|gk|
2
)1/2∥∥∥∥∥

Lp(Rn)
‖H‖1/2

Lp′/2(Rn)
, (2.48)

where

H(x) =
∑
k∈Z

∫ 2q′γ′(k+1)

2q′γ′k
|σh,t ∗ f̃k(x, t)|2

dt
t

and f̃k(x, t) = f (−x, t).
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Since p′ > 2, there exists a nonnegative function u ∈ L(p′/2)′(Rn) such that

‖H‖Lp′/2(Rn) =
∑
k∈Z

∫
Rn

∫ 2q′γ′(k+1)

2q′γ′k
|σh,t ∗ f̃k(x, t)|2

dt
t

u(x) dx.

By (2.14), Hölder’s inequality and the fact that |h(·)|2−γ ∈ ∆γ/(2−γ)(R+),

‖H‖Lp′/2(Rn) ≤ C‖h‖γ
∆γ(R+)‖Ω‖Lq(Σ)

∫
Rn
σ̃∗
|h|2−γ (ũ)(−x)

(∑
k∈Z

∫ 2q′γ′(k+1)

2q′γ′k
| f̃k(x, t)|2

dt
t

)
dx

≤ C‖h‖γ
∆γ(R+)‖Ω‖Lq(Σ)‖σ̃

∗

|h|2−γ (ũ)‖L(p′/2)′ (Rn)

≤ Cq′
(

γ

2 − γ

)′
‖h‖γ

∆γ(R+)‖ |h|
2−γ‖∆γ/(2−γ)(R+)‖Ω‖

2
Lq(Σ)

≤ Cq′γ′‖h‖2∆γ(R+)‖Ω‖
2
Lq(Σ), (2.49)

where ũ(x) = u(−x) and σ̃∗
|h|2−γ (ũ) denotes σ∗

|h|2−γ (ũ) with % = 1. Equation (2.44) follows
from (2.48) and (2.49). This proves Lemma 2.5. �

3. Proof of main results

This section is devoted to the proofs of the main results.

Proof of Theorem 1.1. Let h,Ω,Φ be as in Theorem 1.2. By Minkowski’s inequality,
we can write

Mh,Ω,Φ,%( f )(x) =

(∫ ∞

0

∣∣∣∣∣ 0∑
k=−∞

1
t%

∫
2k−1t<r(y)≤2kt

Ω(y)h(r(y))
r(y)α−%

f (x − AΦ(r(y))y′) dy
∣∣∣∣∣2 dt

t

)1/2

≤

0∑
k=−∞

(∫ ∞

0

∣∣∣∣∣ 1
t%

∫
2k−1t<r(y)≤2kt

Ω(y)h(r(y))
r(y)α−%

f (x − AΦ(r(y))y′) dy
∣∣∣∣∣2 dt

t

)1/2

≤ (1 − 2−σ)−1
(∫ ∞

0
|σh,t ∗ f (x)|2

dt
t

)1/2
. (3.1)

Let

Sh,Ω,%( f )(x) :=
(∫ ∞

0
|σh,t ∗ f (x)|2

dt
t

)1/2
.

By Lemma 2.3 and (2.3)–(2.4), one can verify that(∫ 2q′γ′(k+1)

2q′γ′k
|σ̂h,t(ξ)|2

dt
t

)1/2

≤ C(γ − 1)−1/2(q − 1)−1/2‖h‖∆γ(R+)‖Ω‖Lq(Σ)

× min{1, (Φ(2q′γ′k)s(ξ))1/(4q′γ′a1L) + (Φ(2q′γ′k)s(ξ))1/(4q′γ′b1L),

(Φ(2q′γ′k)s(ξ))−1/(4q′γ′a2L) + (Φ(2q′γ′k)s(ξ))−1/(4q′γ′b2L)}. (3.2)
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Let S k be as in (2.29). Then, by Minkowski’s inequality and the definition of S k,

Sh,Ω,%( f )(x) ≤
∑
j∈Z

T j( f )(x), (3.3)

where

T j( f )(x) =

(∑
k∈Z

∫ 2q′γ′(k+1)

2q′γ′k
|σh,t ∗ S j+kS j+k f (x)|2

dt
t

)1/2
.

Using (2.30)–(2.31) and invoking Lemma 2.5,

‖T j( f )‖Lp(Rn) ≤ C(γ − 1)−1/2(q − 1)−1/2‖h‖∆γ(R+)‖Ω‖Lq(Σ)‖ f ‖Lp(Rn), 2 ≤ p <∞, (3.4)

‖T j( f )‖Lp(Rn) ≤ C(γ − 1)−1(q − 1)−1‖h‖∆γ(R+)‖Ω‖Lq(Σ)‖ f ‖Lp(Rn), 1 < p < 2. (3.5)

The constant C > 0 is independent of q and γ, but depends on Φ. On the other hand,
by Plancherel’s theorem and (3.2),

‖T j( f )‖2L2(Rn) ≤
∑
k∈Z

∫
{Φ(2q′γ′(k+ j+1))−1≤s(ξ)≤Φ(2q′γ′(k+ j−1))−1}

∫ 2q′γ′(k+1)

2q′γ′k
|σ̂h,t(ξ)|2

dt
t
| f̂ (ξ)|2 dξ

≤ CB−2| j|δ
Φ

(γ − 1)−1(q − 1)−1‖h‖2∆γ(R+)‖Ω‖
2
Lq(Σ)‖ f ‖

2
L2(Rn),

where BΦ > 1 is as in Lemma 2.4. The constants C and δ are independent of q and γ.
That is,

‖T j( f )‖L2(Rn) ≤ CB−| j|δ
Φ

(γ − 1)−1/2(q − 1)−1/2‖h‖∆γ(R+)‖Ω‖Lq(Σ)‖ f ‖L2(Rn). (3.6)

Interpolating between (3.4)–(3.5) and (3.6),

‖T j( f )‖Lp(Rn) ≤ CB−| j|δp

Φ
(γ − 1)−1/2(q − 1)−1/2‖h‖∆γ(R+)‖Ω‖Lq(Σ)‖ f ‖Lp(Rn), 2 ≤ p <∞,

(3.7)

‖T j( f )‖Lp(Rn) ≤ CB−| j|εp

Φ
(γ − 1)−1(q − 1)−1‖h‖∆γ(R+)‖Ω‖Lq(Σ)‖ f ‖Lp(Rn), 1 < p < 2.

(3.8)

The constants C, δp and εp are independent of q and γ. Theorem 1.2 follows from (3.1),
(3.3) and (3.7)–(3.8). �

Proof of Theorem 1.2. Theorem 1.3 follows directly from Theorem 1.2 and an
extrapolation argument as in the proof of [17, Theorem 1.2]) (also see [18,
Theorem 1.2]). We omit the details. �

4. Additional results

As applications of our main results, we consider the corresponding parametric
Marcinkiewicz integral operators M ∗

h,Ω,Φ,λ,% and Mh,Ω,Φ,S ,% related to the Littlewood–
Paley g∗λ-function and the area integral S , respectively, which are interesting in
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themselves. More precisely, let Φ be as in (1.2); we define the operators M ∗
h,Ω,Φ,λ,%

and Mh,Ω,Φ,S ,% by

M ∗
h,Ω,Φ,λ,%( f )(x)

:=
("

Rn+1
+

( t
t + r(x − y)

)αλ∣∣∣∣∣ 1
t%

∫
r(z)≤t

h(r(z))Ω(z)
r(z)α−%

f (y − AΦ(r(z))z′) dz
∣∣∣∣∣2 dy dt

tα+1

)1/2
,

where λ > 0 and Rn+1
+ = Rn × (0,∞);

Mh,Ω,Φ,S ,%( f )(x) :=
("

Γ(x)

∣∣∣∣∣ 1
t%

∫
r(z)≤t

h(r(z))Ω(z)
r(z)α−%

f (y − AΦ(r(z))z′) dz
∣∣∣∣∣2 dy dt

tα+1

)1/2
,

where Γ(x) = {(y, t) ∈ Rn+1
+ : r(x − y) < t}.

Theorem 4.1. Let Ω ∈ L(log+ L)1/2(Σ) satisfying (1.1) and h ∈ N1/2(R+). Suppose that
Φ ∈ F and λ > 1. Then, for 2 ≤ p <∞,

‖M ∗
h,Ω,Φ,λ,%( f )‖Lp(Rn) ≤ C(λ, α, %,Φ)(1 + ‖Ω‖L(log+ L)1/2(Σ))(1 + N1/2(h))‖ f ‖Lp(Rn), (4.1)

‖Mh,Ω,Φ,S ,%( f )‖Lp(Rn) ≤ C(α, %,Φ)(1 + ‖Ω‖L(log+ L)1/2(Σ))(1 + N1/2(h))‖ f ‖Lp(Rn). (4.2)

Remark 4.2. Because of (1.3) and (1.4), Theorem 4.1 essentially improves and
generalizes [10, Theorem 2], even in the special case r(x) = |x| and Φ(t) = t.

The proof of Theorem 4.1 is based on the following lemma.

Lemma 4.3. Let λ > 1. Then there exists a constant C(λ, α) such that for any
nonnegative locally integrable function g on Rn,∫

Rn
(M ∗

h,Ω,Φ,λ,%( f )(x))2g(x) dx ≤ C(λ, n)
∫
Rn

(Mh,Ω,Φ,%( f )(x))2M(g)(x) dx,

where M is the Hardy–Littlewood maximal operator on Rn with respect to the function
r(·).

Proof. By the definition of M ∗
h,Ω,Φ,λ,%,∫

Rn
(M ∗

h,Ω,Φ,λ,%( f )(x))2g(x) dx

=

∫
Rn

"
Rn+1

+

( t
t + r(x − y)

)αλ
×

∣∣∣∣∣ 1
t%

∫
r(z)≤t

h(r(z))Ω(z)
r(z)α−%

f (y − AΦ(r(z))z′) dz
∣∣∣∣∣2 dy dt

tα+1 g(x) dx

≤

∫
Rn

∫ ∞

0

∣∣∣∣∣ 1
t%

∫
r(z)≤t

h(r(z))Ω(z)
r(z)α−%

f (y − z) dz
∣∣∣∣∣2

×

(
sup
t>0

1
tα

∫
Rn

( t
t + r(x − y)

)αλ
g(x) dx

)dt
t

dy

≤ C(λ, α)
∫
Rn

(Mh,Ω,Φ,%( f )(y))2M(g)(y) dy

for λ > 1. This proves Lemma 4.1. �
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Proof of Theorem 4.1. First we prove (4.1). For 2 ≤ p <∞, by duality,

‖M ∗
h,Ω,Φ,λ,%( f )‖2Lp(Rn) = sup

‖g‖Lq(Rn)≤1

∫
Rn

(M ∗
h,Ω,Φ,λ,%( f )(x))2g(x) dx,

where q = (p/2)′ and the supremum is taken over all g satisfying ‖g‖Lq(Rn) ≤ 1. By the
Lp bounds of M, Hölder’s inequality, Lemma 4.3 and Theorem 1.3, t

‖M ∗
h,Ω,Φ,λ,%( f )‖2Lp(Rn) ≤ C(λ, α) sup

‖g‖Lq(Rn)≤1

∫
Rn

(Mh,Ω,%,Φ( f )(x))2M(g)(x) dx

≤ C(λ, α)‖Mh,Ω,Φ,%( f )‖2Lp(Rn)

≤ C(λ, α, %,Φ)(1 + ‖Ω‖L(log+ L)1/2(Σ))2

× (1 + N1/2(h))2‖ f ‖2Lp(Rn), 2 ≤ p <∞.

Thus, (4.1) holds. On the other hand, it is easy to check that

Mh,Ω,Φ,S ,%( f )(x) ≤ 2αλ/2M ∗
h,Ω,Φ,λ,%( f )(x),

which, combined with (4.1), implies (4.2). Theorem 4.1 is proved. �
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