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TIME LAGS AND DENSITY DEPENDENCE IN
AGE DEPENDENT TWO SPECIES COMPETITION

K, GOPALSAMY

Sufficient conditions are obtained for the existence and linear
stability of time independent age distributions in two species
competition with age and time lagged density dependent mortality

and fertility functions.

1. Introduction
Let Pl(t) and P2(t) denote the total population sizes (or

biomasses) at time ¢ 2 0 of two interacting species living in a common
habitat and competing for a common pool of resources. The competition for
resources will be implicit in our model similar to that in the two species
Lotka-Volterra competition system., Assuming constant sex ratios in the two

species we can consider Pl(t) and Pz(t) to be the population of females

only; immigration, emigration and internal dispersion in the habitat are

assumed to play no significant role in the dynamics of the community.
We suppose that the two species contain respectively pl(a, t)da and
p2(a, t)da individuals with ages between a and a +da (a = 0) at time

t so that we have
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(1.1) Pl(t) = j: pl(a, t)da , P2(t) = E p2(a, tdda , t=20.

The rates of change of the two species densities are by definition

Dpl(a, t) and Dpz(a, t) where

pi(a+h,t+h)-pi(a,t)
(1.2) Dp,(a, t) = lim = , =1, 2.
h+0

Assuming the existence of the limits in (1.2) we consider the following

time lagged model system

Dpl(a, t) + fi(a, Pl(t), Pé(t-r))pl(a, t) =

(1.3) a>0, t>0,
Doy(a, t) + fé[a, P (t-1), Pe(t))pz(a, t)y =0,

|
o
-

p, (0, ) Jm bl(a, P (t), P2(t-T))pl(a, t)da ,
(1.4) 0 t>0,
0,(0, t) f: bz(a, Pl(t—r), Pz(t))pg(a, t)da ,

(1.5) pi(a, s)=q>i(a, s), a>0, s €[-1,0], Z2=1,2,

(1.6) Pi(s) = I: ¢i(a, s)da , s € [-1, 0] ,

where T 1is some fixed nonnegative constant; fi and fé denote the age
and density dependent mortality rates with time lags in interspecific
interactions, bl and b2 denote the age and density dependent fertility
functions again having time lags in the interspecific interactions; 21
and ¢y denote the initial age distributions needed for the formulation of
the model.

The model system (1.1)-(1.6) will be meaningful only if ?1s Pos f
Fs bl’ b2 are nonnegative functions of the respective arguments. Also

since the total initial populations have to be finite, wi(', s) should

+
belong to Ll(R ) for each s € [-1, 0] . We have specifically assumed
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that f% and bi (2 = 1, 2) are independent of ¢ explicitly and this

assumption can be interpreted to represent the temporal uniformity of the

environment.

One of the fundamental questions for (1.1)-(1.6) is the following;

under what conditions on f;, bi and T does the system (1.1)-(1.L) have

time independent nontrivial solutions, and when such solutions exist, are
they stable with respect to some suitable stability criterion? When such
stable time invariant solutions exist for (1.1)-(1.4) we say that the two
species community has a stable age distribution. Existence of a stable age
distribution is the analogue of the existence of a stable steady state for

the corresponding age independent system.

In this article we investigate the above question for the case of a
competitive interaction with some additional constraints on the vital rates

f; and bi (£ =1, 2) . Age dependent population systems without time

delays have been considered by several authors (Gurtin and MacCamy [3, 4,
5], Gurtin and Levine [6], Haimovici [7] and Rotenberg [8]). The question
of the relation between an age independent system and a corresponding age
dependent system has been considered by Gurtin and MacCamy [4] and Gurtin
and Levine [6] who have established an asymptotic (as ¢ + @ ) relation
between such models by constructing a higher dimensional lumped parameter
gystem (in terms of ordinary differential equations) to represent the age
dependent distributed parameter system. Assuming the existence of
stationary age distributions Haimovici [7] considers their stability in a
system of two interacting populations explicitly taking into consideration

the dynamical nature of the habitat's resources and pollution.

In this article we add another realistic feature namely time lags in
the age dependent models and obtain sufficient conditions for the existence
of stationary age distributions in (1.1)-(1.4) and show that the time lags
in interspecific interactions have no effect on the linear stability of the
age distributions although the decay rates of perturbations will depend on
the magnitudes of the time delays. Such "harmless" nature of time lags in
interspecific interactions have been noted by the author for the age

independent models in [J, Z].
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2. Existence and uniqueness of solutions
We first narrate our assumptions on the vital rates of fi and bi

(2 = 1, 2) so that the system (1.1)-(1.6) will denote a competition
system. Let BC[0, ®) denote the linear space of bounded continuous real

functions on [0, ®) with the norm defined by
Ifll = fmax|£(£) [, t € [0, =)} .

Let Ki be the cone of nonnegative functions of BC[0, ) . Let

C[-T, 0] denote the space of real continuous functions with a norm defined

by ligll = {max|g(s)|, s € [-1, 0]} ; let K., be the nonnegative cone of

2
functions in C[-T, 0] . We present our first set of assumptions on
fi, bi and ¢, for 7 =1, 2.
+ + +
x X > 4* % X
Ay flec(R K Ke,R), fizdf on R xK xK,,

+

+ +
fZGC(R xxgxxl,R), fozdj on R XK, xK ,

2
[d*, d; are positive constants);

f. and f, are Lipschitzian with respect to their last
1 2

+
two arguments uniformly in a € R ; that is, for
i=l’29

|f1:(a’ P!, pé)_fi (a, PY, Pé’)| =d, [IIPl'-Pi’I|+IIPé—Pé'||]

(d

1 d2 are positive constants),

+
of | /3P, , 3f /P, €Cc(R” x K %Ky,

X

+ +
3f ,/3P , ¥f,/3P, ¢ c(R Ky x K , R ) .

+ + +
Az. blec(R XK1XK2’R)’ b =B} on R xK xK

+ + +
b, € C(R XK2><K1,R), b,=B8} on R xK, xK ,

(8%, B; are positive constants);
bl’ b2 are Lipschitzian with respect to their last two

. . + . .
arguments uniformly in a € R ; that is, for < =1, 2 ,

by @, B}, P3)-by(as 27, 2R)| = 8, [12]-P]I+124-P2I]
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are positive constants],
o, 4 + A i
bi('a P, Fb) €L (R, R) for fixed P,P,, i=1,2,

=5 3= € CR x kK x K, K) ,

o 55 € C(R x K, x K, R} .

Q)]
[
N

As. 9 (+, 8) € MR, R) n C(R*, R') for each s € [-t, 0] ,
=1, 2.

a solution of (1.1)-(1.6) on [0, T] we mean
x [-1, T] » R (7 = 1, 2) with the following properties:

o s]
%, &

S1. p;(-, t) € Ll(R+, R") for each t € [-T, T] ;
s2. p;la, *) € C([-1, T), R") for each a €R'

Ss3. Dpi exists along the characteristics ¢ - a = constant
on R" x {R* n [0, T]} and is continuous (% =1, 2) ;
Ss. P, satisfies the system (1.1)-(1.6) for
(a, t) €RY x [-1, T] .

Let us first convert the system (1.1)-(1.6) into an equivalent system

of integral equations. For brevity we denote by P the pair (Pl, P2)
If we let

pi(a+x, t+x) = 5i(x) , T=1,2,

then (1.3) considered st (a+r, t+xr) becomes

dp,;(x) .
-+ fi(a+x, P(t+x))pi(:c) =0

which has a solution of the form

~

X
p;(x) = 5i(0)exp - ! f;(a+s, P(t+g))ds
0
and hence
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X

(2.1) p;(avz, t+x) = p.(a, t)expl:- [
0

For a =2t we choose (a, t) = (a-t, 0) in (1.3) and

that
¢
(2.2) op.(a, t) = ¢ (a-t, O)exp|- fo fi(a-t+s, Pi(s))ds
0=
with
P (s) = (P (), Py(s-T)) ,
P (s) = (P (s-1), Py(s)) .

For 0 <a <t we choose (a, t) = (0, t-a} in (1.3) and =«

(2.1) so that

f; (ats, P(t+s) ]dsjl .

z=¢ in (2.1) so

’

t<a,

az0,

a
(2.3) pi(a, t) = Bi(t—a)explz- JO fi(S, Pi(t—a+s))ds:] s
t >
where
(2.4) B’l:(t) = p‘l:(o’ t) ’ = 1,2, ¢t >_0 .

Define M. and L. (2 =1, 2) as follows:

—

t-a
exp|- f fi(s, Pi(a+s)]

Mi(a, t, Pi(t)} .

1}

(2.5)

I}

Li(a, t, P;I:(t))

It will now follow from (1.1), (1.3), (2.2)-(2.5) that

(2.6) P.(¢)
v 0 0

(2.7) Pi(s) <I>7:(s) = Ja<pi(a, sdda , s € [-t, 0}, %

0
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t
(2.8) B,(¢) = jo Bi(a)bi[t—a, Pi(t))Mi(a, t, Pi(;)]da

+ f:bi(aw, P,(t))e;(a, 0)L;(a, ¢, P;(t))da ,

i=1,2, t>0.

The equivalence of (2.6)-(2.8) with (1.1)-(1.6) is established by the
following whose proof is identical to a similar result of Gurtin and

MacCamy [4]; hence we omit the details of the proof of the following.

THEOREM 1. Suppose the system (1.1)-(1.6) satisfies the conditions
A1, Aa, As. If (pl, p2) i8 a solution of (1.1)-(1.6) then the total

populations P., P, and the birth rates Bl’ B, satisfy the integral

2 2
equations (2.6)-(2.8). Conversely if P., P,, B/, B, are nonnegative
continuous solutions of (2.6)-(2.8) on [0, T] and if py» P, are defined
by (2.2)-(2.4) on R" x (0, T) then such P15 Py provide a solution of
(1.1)-(1.6) on R" x [0, T] .

The following g priori estimates are useful to prove our existence

theorem below. It will immediately follow from the bounds for fé and bi
that

M,(a, t, P) < exp[-d_;:*(t—a)] <1,1if t=2a,
(2.9)

A

Li(a, t, P) = exp[—dgt] .

From (2.7)-(2.8) we derive that
t
B,(t) = JO B;Bi(a)exp[.dg(t-aﬂda + 838, (0)exp[-d3t] , i =1,2,

and hence by Gronwall's inequality,

(2.10) B,(t) = e;@i(o)exP[cit] , 8, =8} -d}.

(2.5), (2.6) and (2.10) 1ead to
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IA

t
(2.11) lPi(t)-éi(O)I J B;@i(o)exp[6ia-d§(t-a)]da

0]
+ Iw ¢i(a, 0)|l—exp(-d£t)|da
0
l—exp[}(d£+82)t]
= 852, (0)exp(8}¢) 5] + & (0)dit

IA

[B}2;(0)exp(B3t)+2,(0)d}]t for t >0 .
We can now prove the following result on the existence and uniqueness
of solutions of the integral equations (2.6)-(2.8).

THEOREM 2. Assume that the system (1.1)-(1.6) satisfies the
hypotheses A1, Az, As. Then there exists a unique set of continuous

functions (Pl, P,, B, 32) such that

P, : R" R, Bi:R++R+ (i =1, 2),

which satisfy the integral equations (2.6)-(2.8).

Proof. We will first show the existence of local solutions on some

(possibly small) interval [0, T] c RY such that
P, ec(lo, 1), R") , B ec(lo, 7, R), i=1,2,
satisfying (2.6)-(2.8) and then show the Pi and Bi can be continued as
solutions for any finite interval in R+ .
For some fixed positive number T we let
ctl-t, 71 = {f ec([-t, T),R) | F =0} .
Let ”‘"T denote the supremum norm in C+[—T, T} . Then for any
(z, y) € C'[-1, T) x C'[-T, T] we define

I(zy g = Nzl + llylly »

¢p=Cl-t, 1), c,_’f, = ¢*[-1, 7] x C*[-1, T] .

Members of CT will be denoted by zt with the meaning that

z(t+s) = zt(s) for s € [-1, 0] and t € [0, T] . Now for any fixed
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P, = (Plt’ Pzt) € Ci , (2.8) is a linear system of uncoupled Volterra

integral equations in B = (Bl, 82) and hence (2.8) will have a unique

continuous solution under the assumptions Aj;-A3. Let us denote such a

solution by
i
B(t) = B (Pt) , t€fo, T},

or

T
1

10 Pog) o Bolt) =B§(P P.), telo,T].

B (¢) =B 1t ‘ot
If we supply this solution (Bl, 32) in (2.6) we find that (2.6) will be

satisfied if and only if (Plt’ P2t)

H(Pt) = {Hl(Plt’ Pzt)’ n2(Plt’ Pzt)}

is a fixed point of the opersator

where H1 and H2 respectively denote the right sides of (2.6) for

2 =1, 2 . It is not difficult to see from the nature of Mi’ Li and the

hypotheses on fé, bi’ ®; that
2
B:Co+Co ana 1:0Co»C

(which guarantees the nonnegativity of Pi and Bi ). We will first show

that there exist positive constants r*, t* such that I is a mapping of

a sphere
Spx(®, 2%) = {Pt = (Pyyr Poy) € Cou | 1,204 = r*}

into itself and also is a contraction where @t is defined on [-T, t*]

by the following:

2y = (Brps )

4

(2.12)

fm ¢.(la, s)da for s € [-1, 0] ,
ot

it

Jw ¢.(a, 0)dda for & € [0, t%] .
o ¢t

\
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We note that similar to (2.11) one gets the estimates

In.(P)(£)-2,(0)| = {832, (0)exp[B}¢]+2,(0)d}}t

which together with (2.7) and (2.12) lead to

2
(2.13) Im(e,)-2,ll, . < j§1 I2;,1l, 4 (83 exp(B3t)+df] |¢*

Thus if we choose

et zl Ie:.ll, (82 exp(837)+d]
then I is a mapping of St*(é, r*) into itself for all t* =T , We
then will have to show that for small ¢* >0, II 1is a contraction.

Let Pil) and Piz) be arbitrarily chosen in St*(‘:” r*) and

consider tﬂl [P(l)]—ﬂl [P( 2)]

" " for t =< t* ., Corresponding to the chosen
(1) ,(2)
Pt . Pt

we let B(l)(a) = B[Pil)] and B(z)(a) = B[P‘(te)] . Then from

(2.6),

IA

|, BV ), (6220

[ sl fo 0 ) fo o0 72 Jan
+ J [u)(a)-B(z)(a):I [a t, P(e))
+ IZ (a, O)I: [a t, P(l)] l[a, t, Pie)]]da'

= Jl + J2 + J3 (say).

Using the elementary inequality

|e®-eY| = |z-y| for z,y=o0

we derive from (2.5) that
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|Ml[a, t, Pil)]_Ml[a, t, Pff’”

IA

t-a
[0 ,fi[s, Pél)(a+3)]_fi[s, Piz)(a+s)]lds

IA

dl”P£l)fP£2)"t* (using Ai).

Now, using (2.10),

t 6.afrt-a
< 1 (1) »{2)
LA Jo B1®, (0)e UO d1“Pt Py

ds]da
+*

< a8 (0)¢2p) 2] /2

In a similar way

t
|J3| = I: wl(a, 0)[]0 ‘fi[a+s, Pil)(s)]_fi(a+s, Pig)(s)]ld%]da

t .
t*

< dlél(o)“Pil)-Pff)

Now we have to estimate IBil)(a)-Biz)(a)l in order to estimate J2 3

from (2.8),

8N (a) - 5% (a)
a : .
= Io I}il)(c)-aiz)(o):lbl[a-o, P£1)(a)]Ml[g, a, 15,7(51)((1)‘(10Y . Jo Bia)(o)

x E;l[a-o, Pg;l)(a)]Ml[o, a, pftl)(a)]_bl[a_o, Pie)(a):Ml[o, a, PiQ)(a)Hdo
. f:¢l(o, 0)E>l[o+a, Pil)(a)]-bl[cﬂa, pff)(a)]:r,l[o, a, pil)(a)]do

+ rq;]‘(o, o)bl[o+a, pf)(a)]l}l[o, a, Pil)(a)]-Ll[o, a, Piz)(a)]:ldo
0

= Rl + R2 + R3 + Rh (say).

By the uniform Lipschitz continuity of bl in A; we get

£(2)

Ibl[a+o, Pil)(a)]-bl[om, Piz)(a)” = Bl|IPil)- + for a € [0, t*]

t*
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and hence we have

(2)

t a

< (1) _,(2)
|R3(a)+Rh(a)| < Blél(o)upt -P, y

(1)
L él(o)Bldl“Pt P

|R2(a)| = l]: EBJ(.e)(o){bl[a-o, Pf(;l)(a)]-bl[a-o, Piz)(a):}Ml[c, a, Pil)(a)]

+b1[a-o, P£2)(a)]{Ml[o, a, Pf(;l)(a)]-Ml :o, a, Pf(:z)(a)]Hdo:l

a S.a
1 (1) (2)
[ 0",

1A

e

0 t

Slal

1A

(1) ,(2)
B2 (0)e |Pt Py

2
t*{81a+dla /2} .
Thus

Bil)(a)—Bia)(a)‘

1A

a
(1) (2)
J’O lBl (o)-Bl (0)

Bi‘dd

8,a
+ 2 (0)|p)-p{?) t*{81+82dla+8{[82a+dla2/2]e 1
a
= B2 [0 |21 ()-8 (0)|do + (rvte ) [Pl -2 e

where gl(a) > Bl as a * 0 . By Gronwall's inequality it will follow

that

IBil)(a)—B§2)(a)

s (e*+l2,), ) pil)_p£2)”t*{gl(a)+0(a)} .

Using this estimate for Rl(a) we get

1A

EXEN |fa [%il)(a)-Bie)(ci]bl[a-o, Pil)(a)]Ml[o, a, Pél)(a)]dol

0

1A

(1)_p(2)
P, -P,

B2 (r*+lle, I, 4) P,

O(a) as a~>0 .
t*

Thus
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|5 ()82 @) = (rrelie ) 2202 o) e a0
and hence
Inl[Pil)]'Hl[Pv(cz)]l = (vl [PEH -2, JiE) as 220

t

which together with a similar bound for |H2[P(l)]-H2[P(2)]| leads to

t t
2]+ et 0] e

as t* + 0 showing that if ¢* 1is small enough, the mapping I on

St*(é, r*) 1is a contraction, Hence the system (2.6)-(2.8) has a unique
solution for 0 < ¢t = t* for ¢* sufficiently small and positive.

Now if [0, T] is any finite interval on R+ , we can consider
[0, 7] as a finite union of intervals of length less than or equal to
t* . Since the estimate (2.11) is valid for any finite interval we can
extend the solution of {2.6)-(2.8) from [0, t*] to [0, T] and this

completes the proof.

3. Stationary age distributions and their linear stability

We will now establish the existence of time independent solutions

pI, p; of {1.1)-(1.6); such solutions satisfy

dp(a) _
(3.1) ——-d—a-—+fi(,Pi*,P§)p§(a)=o, i=1,2, a>0,
(3.2) P} = f: pjla)da , i =1, 2,
(3.3) pg(o) = I: bi[a, P#, Pé)pg(a)da , =1, 2,

A1l solutions of (3.1) are of the form
a

(3.%) pg(a) = pg(o)exp - [ f;(e, P*, Fg]db , ©=1,2, a=o0
0

which together with (3.3) lead to
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bl(a, P}, Ps)exp - JO fl(s, P*, P’e‘]da da ,

— -

Q

o 3

(3.5)

1= [ by(a 2, 2enl- [ 1,6 57, B)aelan

e -

o ®

Thus the existence of stationary solutions of (1.1)-(1.6) reduces to the

existence of a pair of positive constants PI, PE satisfying (3.5). We
can now prove the following.

THEOREM 3. Assume that fi and bi satisfy (A,) and (A;) and let

a
(3.6) F, (P, P2] = f: bi(a, P, P2]exp[} Jo fi(s, P, Pz]d%}da s
ti=1,2, P 20, P,.z20,
and suppose the following hold:

(3.7) As. Fi(0,0)>1, i=1,2;

As. there exists a positive constant C for which
F (¢, 0) < Fylc, 0) ,
(3.8) )
F (0, €) > F,(0, C) .
Then there exists a unique pair (PI, Pé) of real numbers Pi >-0 ,

PE > 0 such that

(3.9) F, (P}, P3) = 1 = F, (P, P})

and the unique nonnegative solution of (3.1)-(3.3) is given by

P} expl:_ fz fi(s, P*, Pé)d{l]/[g exp[— J: fi(e, P, p;]ds da] ,
A 0.

Proof. Consider the elements of the surfaces defined by

(3.10)

pg(a) =

z = Fl(Pl, P2] , 2z = F2(Pl, Pé) ., P,z0, P,20,

https://doi.org/10.1017/50004972700005281 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700005281

Two species competition 285

in the (Pl’ P2, z) space. By hypothesis (A1) we have BFi/Bej < 0 and,

by (A2), abi/aPJ.so for all P, 20, P,20, i=1,2,

J =1, 2 . Hence by (Ay) the intersections of these surfaces with the
plane 2z = 1 define two curves on the 2 = 1 plane connecting the lines

{z =1, Pl = 0, P2 >0} and {z =1, P2 = 0, Pl > 0} . These two curves

are defined by

F (P, P,) =1 end F,(P,P))=1, P,P,20,

which by (As) will intersect at a unique point say (P*, Pé) with

Pf >0, PS > 0 (see figure). The uniqueness of the point (P%, PE) is
a consequence of the smoothness of the surfaces 3z = Fl(Pl, Pe) and

z =F,(P, P,) .

Fl(O, 0)

F2(0, 0)

‘Lz

Py

z = 1 P9, 0) F (0, C)
F.(c, 0
Sl (Pi’, P‘Eﬁ)
0

2 ?

Crhe figure corresponds to the case Fl(O, 0) > F2(O, 0) > 1 . The other

possibility 1 < Fl(O, 0) = F2(O, 0) is treated similarly.) It will now
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follow that for such a pair (P;, Pg] the unique nonnegative solution of
(3.1)-(3.3) is given by (3.10).

Now to examine the linear stability of the stationary age

distributions p{, pg ve let

p;la, t) = pXa) + u.la, t) ,
Pi(t)=P;$+pi(t), i=1,2, a>0, t>0,
(3.11) 3
pi(t) = jw ui(a, t)da ,
L 0

in (1.1)-(1.5) and derive the following variational system after neglecting

the nonlinear terms in the perturbations u, and p, (z =1, 2) . (Such

a procedure of linear stability analysis can be justified as has been done
in Gurtin and MacCamy [4].)

2 af.
Du(a, t) -f%(a, P¥, Pé]ui(a, t) - p}a) iZ; gﬁg-pij(t)} s
(3.12)

ui(O, t)

2 3b.
. pP*. pAly. t)da * == p. .t
J: bt(a, s 2)u,l’(a, Yda + I: pt(a){jZi ap; th( ) tda

vhere 4 =1, 2 and

(¢)

(t) =p (¢), py(t-1) ,

P11 Pio
(3.13)

pel(t) = pl(t—T) s p22(t) = pz(t) .

To consider the asymptotic behaviour as t =+ © of solutions of (3.12) we

let
ui(a, t) = gi(a)exp[kt] . Ei(a) >0 as aqa+®,
p;(t) = p} exp(At] ,
(3.14) ] i=1,2, a>0, t>o0,
p} = I: g;(a)da .

Using (3.14) in (3.12)-(3.13),
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p*(a) ==z PX.
7 = BPJ. 1J

|
N

2 ob.

1
2 3% Pl
=1 ©g

dg.
Tt My = ~f;as P, PR (a) -
(3.15)
£;(0) = r . (a, P¥, P*)g (a)da + r p}(a)
0 0
vhere 4 =1, 2 , and
p}, =Py » p}, = p3 expl-at},
pél = pi‘ exp{-A1} , 2

If we integrate the first of (3.15) and use

a +® we can derive that pi‘ and pj are

ob,  of) 9B,
(3.16) pf - f:"f(a) [ap* - aP*]pl [apé*

= b_la
| B
b
(3.17) Apg-r (a)[[—P%
0

= [b (a’
[ e,
From the first of (3.15) we get

(3.18) E;(a@) = {£,(0)03(a)/p}(0)explral}

2
- D,E(a)exp[-)\a] f i/:

which by the second of (3.15) becomes,

(3.29) gz(a) = [pf(a)/p(0)e; exp(ia)] Hm
0

35 At (2
3P7 pye 3P -

= pé .
the fact that gi(a) + 0 as

governed by

3f, -
aP*]pe da

PX, Pé‘)-fl(a, P¥, Pé‘)]gl(a)da R

sz
'a?sg]l’é‘ da

P*, Pé*)-fz(a, Pi*, Pé‘)]ge(a)da .

8b2

3
555 P =1, 2,

J} Mis , 4
Jd

e

2 Bb
> —TP"

*(a){

f;
- [:bi (a, P}, Pg)pz(a)e'xa{Jo [ P* p} ]eksds}dail

a

- pj@)e™ fo
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where

(3.20) e. =1 - —= b.{(a, P? P*)p*(a)e')\ada i=1, 2
: i w30y ), Pi\%e P FR)P ’ ' 2

Now supplying El(a) and Ez(a) from (3.19) in (3.16)-(3.17) we derive

that
(A-All)pi - Alzps exp(-AT) = gll(l)p{ + glz(A)pé exp(-At) ,
(3.21)
-Aalpi exp(-AT) + (A-Aze)pg = gzl(k)pi exp(-AT) + gzz(k)ps ,
where

, b, df;
(3.22) Aij j: pi(a) gﬁg - 3¢?-da s

(3.23) g;;(N) = [p£<°>°’i]'l{r oi<a)pg(a)e'“da}
0
b _ 3f -
x {I: l:pz(a) =% - b; (a, P*, P3)pX(a)e M[ 5};} e)‘sdsﬂda}
J 07y
a of.
_ J: oi(a)pg(a)e'A“[Jo 55? eksds]da , i, 4=1,2,

(3.24) o,(a) = b,(a, P}, Pg) - fla, Pr, P2, i=1,2.

To solve the linear perturbational system (3.12) it is enough to find the
constants A, pI, ps satisfying (3.21) since one can then use (3.19) to
find the perturbations from (3.14). A nontrivial solution {, pé) for
(3.21) will exist if and only if A is a root of the equation

A-(4, +g. (V) -4, +g )e-AT

11 ¥11 12 912
det =0
-AT

~(Ay%9,, Je A= (A55%G,55(1))

or equivalently
2

(3.25) A< - A(Allﬁlzz) + A AL, - A A, exp[-2ht] = A5 (A) + 5,(A, 1)

where
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1

5,(0) = g, (M) + g,,(0)

5,(%, 1) = EAzlgle(A)+A12921(A)+g12(k)921(k)]exp[-zkr]
- A11955(A) = Ayp9,; (M) - gy, (M)gyn(R)

The following result establishes the linear local asymptotic
stability of the stationary age distributions p{(a) and oé(a) .

THEOREM 4, Assume the following:

Ae. 0 <Br<gr (i=1,2) (see (A1) and (A2)) ;
Z i

A7, {All+,422+ll.<5l(0)ll}2 < h{(AllAzz-Alezl)-llsa(o)ll} s

s (o)l = g, (@) + g, (00|,
Isy(0)ll = la 19, ,(0) | + 14;,9,,(0)] + lg;,(0)g,, (0) |
+ 1411955000 | + a9, (0)] + gy, (0)g,, (0] .

Then all the roots of (3.25) have negative real parts and hence the
perturbations ui(a, t) = Ei(a)exp[kt] >0 as t>® for 1=1,2 and

azo0.
7/

Proof. Define Fi(k, T) and Fé(%, T) as follows:

N2 oA, +A ) + A A - A A exp(-2)T) ;

EOL O 117%22 11722 ~ ‘1221

Fy(A, 1) = AS (M) + 5,(A, 1) .

Using (A¢) one can show that for A with Re(A) =20 , ¢, end ¢, are

positive and bounded away from zero. Now since Aij >0 and T =20 we
find from the nature of the dependence of gij on A that for all
A=ptiw with H20 and ® =0 we have

(3.26) |F (1, %)_Fz(x, )|

v

IF,(x, o) - |70, D

W

2
I - A{ay #4408, (o)} + {4, ,4,,-4, 4, -lIS,(0, D)}

[(1A]-p)2+q]?

v
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where

p=1{4 +ls (o)li}/2

11400

2
q {hl(A11A22-A12A21)—I|82<o, D14, +4,,+ s, (0) ] }/2 :

It will now follow, from (A ) and (3.26), Fl(k, T) = Fz(k, T) cannot have

roots with zero or positive real parts and this completes the proof.

In conclusion we remark that the condition (3.7) means that the net
reproduction rates of eacéh species is greater than unity; a condition of
this type is well known in age dependent populations. (3.8) can be
interpreted to mean that the intraspecific competitive inhibition is higher
than that of the interspecific interaction. The conditions of Theorem L
are analytical and do not lend themselves for any worthwhile interpretation

in terms of the model parameters.
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