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Point Sets and Dynamical Systems
In the Autocorrelation Topology

Robert V. Moody and Nicolae Strungaru

Abstract. This paper is about the topologies arising from statistical coincidence on locally finite point

sets in locally compact Abelian groups G. The first part defines a uniform topology (autocorrelation

topology) and proves that, in effect, the set of all locally finite subsets of G is complete in this topology.

Notions of statistical relative denseness, statistical uniform discreteness, and statistical Delone sets are

introduced.

The second part looks at the consequences of mixing the original and autocorrelation topologies,

which together produce a new Abelian group, the autocorrelation group. In particular the relation

between its compactness (which leads then to a G-dynamical system) and pure point diffractivity is

considered. Finally for generic regular model sets it is shown that the autocorrelation group can be

identified with the associated compact group of the cut and project scheme that defines it. For such a

set the autocorrelation group, as a G-dynamical system, is a factor of the dynamical local hull.

1 Introduction

The use of dynamical systems in the study of the internal order of discrete point sets
in real spaces R

d has been remarkably effective. The basic idea, which probably has
its roots in statistical mechanics, was explicitly formulated by Radin and Wolff in [7].

Let Λ ⊂ R
d be a point set. We will always assume that our point sets are locally finite,

meaning that their intersections with compact subsets of R
d are finite (equivalently

they are discrete and closed). The dynamical hull X = X(Λ) of Λ is the closure of the
R

d-translation orbit of Λ in some suitable topology.

The commonly used topology, which is the one advocated in [7], declares that two
point sets, Λ1, Λ2 are close if their restrictions to some large ball around 0 are close in

the Hausdorff metric. The resulting space X is compact and (R
d, X) is a topological

dynamical system. A variation of this topology is to require instead that the restric-
tions of the two sets to some large open ball around 0 are coincident after some small
overall translation. If the sets have finite local complexity1 then the two topologies are

the same. In any case we will refer to either of these two as local topologies, since they
depend on the local structure of the point set.

The importance of the concept is that several fundamental geometrical properties
of point sets have equally fundamental interpretations in terms of their dynamical
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1A set Ω has finite local complexity if, for each compact set K in R
d , there are, up to translation, only

finitely many classes of points that can appear in the form Ω ∩ (a + K) as a runs over R
d.
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hulls, notably repetitivity↔ minimality and uniform cluster frequencies↔ unique er-

godicity. Some of the deepest results in the study of point sets and also in tiling theory

have come by utilizing the machinery of dynamical systems through this connection.
One of the most interesting and diagnostic manifestations of the long-range in-

ternal order of a point set Λ is the existence of a diffraction pattern with a prominent
component of Bragg peaks. In fact, many of the most famous examples (e.g. the

vertices of a Penrose tiling) are pure point diffractive, that is, there is nothing but
Bragg peaks. The exact definitions are not necessary for what follows, but pure point
diffraction is a result of the existence of many ε-almost-periods for every positive ε,
that is, translations t that almost perfectly match up Λ with itself in an average or

statistical sense:

(1) lim
R→∞

]
(

(t + Λ)4 Λ
)
∩ BR(0)

vol
(

BR(0)
) < ε,

where4 is the symmetric difference operator.
Now this suggests quite a different notion of closeness which reflects a low average

discrepancy between the two sets or, to put it another way, high statistical coinci-

dence. This can be supplemented to include small translations: two point sets are
close if after a small translation they are statistically almost the same. This is the au-

tocorrelation topology. We can again form the dynamical hull of a point set Λ, say
A = A(Λ).

There is no reason to expect X and A to be in any way related, and indeed this is in
general what happens. But it is a striking fact that it is the local topology that captures
the fundamental geometric properties of the set and the autocorrelation that holds
the keys to the diffractive properties. Since most of the famous examples of aperiodic

point sets have very beautiful local structure and are also pure point diffractive, it
comes as no surprise that for these examples X and A are related, namely A is a factor
of X. In fact, this result holds for all Λ which are regular generic model sets. In the
final section of the paper we prove that for a regular model set, A(Λ) is isomorphic to

the “torus” T of its cut and project scheme, thus laying down the connection to the
paper of Schlottmann [10] which shows the existence of a mapping X → T.

This paper is about the topologies arising by statistical coincidence. The first part
is about statistical coincidence alone (no translations included) and centres on a com-

pleteness result for locally finite sets in this topology. The second part adds in trans-
lations and leads to some results on A (which is actually an Abelian group), when it
is compact and when it is pure point diffractive.

The results of the paper do not depend very much on the special properties of R
d

other than it is a σ-compact locally compact Abelian group. Thus the paper is set in
the more general context of a σ-compact locally compact Abelian group G (written
additively) and its Haar measure ω, unique up to a positive factor. Autocorrelation
depends on averaging over something and for that purpose we fix once and for all an

averaging sequence A = {An}n∈N satisfying
(i) each An is a compact subset of G;
(ii) for all n, An ⊂ A◦

n+1;
(iii)

⋃
n∈N

An = G;

https://doi.org/10.4153/CMB-2004-010-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2004-010-8


84 Moody and Strungaru

(iv) the van Hove condition.

Intuitively the van Hove condition says that the surface to bulk ratio of the An

tends to 0 as n tends to infinity. Precisely this is written as: for all compact sets
K ⊂ G,

(2) lim sup
n→∞

ω
(
∂K (An)

)

ω(An)
= 0,

where the K-boundary ∂K(A) of any compact set A is defined by

(3) ∂K (A) =
(

(K + A) \ A◦
)
∪

(
(−K + G \ A) ∩ A

)
,

and ◦ and { } are interiors and closures respectively. 2

Since G =
⋃

n∈N
A◦

n+1, we see that for any compact subset K ⊂ G, there is a finite
cover of it by sets from A, and then K ⊂ An for some n. In particular, for any m ∈ N

there is an n ∈ N so that Am + K ⊂ An.

In this paper we shall use the words van Hove sequence to mean a sequence satis-
fying the conditions itemized above.

Definition A set is locally finite if its intersection with every compact set is finite.

2 (D, d) as a Complete Metric Space

Definition Let Λ, Λ ′ ⊂ G be two locally finite sets. Define

(4) d(Λ, Λ ′) := lim sup
n→∞

]
(

(Λ4 Λ
′) ∩ An

)

ω(An)
,

where ] means the cardinality of the set. This is a pseudometric. We obtain a metric
by defining the equivalence relation

Λ ≡ Λ
′ ⇔ d(Λ, Λ ′) = 0

and factoring d through it:

(5) D := {Λ ⊂ G | Λ locally finite}/≡ and d : D×D→ R≥0.

Proposition 2.1 (D, d) is a complete metric space.

Proof Let {Λm} be a sequence of locally finite subsets of G which form a Cauchy

sequence when regarded in D. We will construct a locally finite subset Λ of G to
which this sequence converges when considered in D.

2We do not consider here the question of the existence of such a sequence. For compactly generated
locally compact Abelian groups one can use the structure theorem to explicitly construct such sequences.
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First Case: limn→∞ ω(An) = ∞ We can pick a subsequence {Λkm
} such that

d(Λkm
, Λkm+1

) ≤ 4−m for each m ≥ 0.

Since

d(Λkm
, Λkm+1

) = lim sup
n→∞

]
(

(Λkm
4 Λkm+1

) ∩ An

)

ω(An)
≤

1

4m

there exists nm > 0 such that for all n ≥ nm we have

]
(

(Λkm
4 Λkm+1

) ∩ An

)

ω(An)
≤

1

2m
.

We may assume that the sequence nm is increasing (since we can replace each nm with

any larger natural number).

We define now

Λ
′
1 = Λn1

and inductively

Λ
′
m+1 = Λnm+1

4
(

(Λ ′
m 4 Λnm+1

) ∩ Anm

)
.

In fact,

Λ
′
m+1 ∩ Anm

= Λ
′
m ∩ Anm

and

Λ
′
m+1 ∩ (G \ Anm

) = Λnm+1
∩ (G \ Anm

).

Since limn→∞ ω(An) = ∞ we have: Λ
′
m+1 ≡ Λnm+1

. By construction we have
]
(

(Λ ′
m 4 Λ

′
m+1) ∩ An

)/
ω(An) ≤ 2−m for each m and n.

Let 1 ≤ k < l be integers and n be arbitrary. Then

(6)

]
(

(Λ ′
k 4 Λ

′
l ) ∩ An

)

ω(An)
=

](4l−1
i=k (Λ ′

i 4 Λ
′
i+1) ∩ An

)

ω(An)
≤

]
(⋃l−1

i=k (Λ ′
i 4 Λ

′
i+1) ∩ An

)

ω(An)

≤

∑l−1
i=k ]

(
(Λ ′

i 4 Λ
′
i+1) ∩ An

)

ω(An)
≤

l−1∑

i=k

1

2i
≤

1

2k−1
.

Let n be arbitrary and let l(n) := 2 + blog2 ω(An)c, where b c means the integer
part. Let m, k ≥ l(n). Then by (6):

]
(

(Λ ′
m∆Λ

′
k) ∩ An

)

ω(An)
≤

1

2min{m,k}−1
≤

1

2l(n)−1
<

1

ω(An)

since by the definition of l(n) we have 2l(n)−1 > ω(An). Hence for each m, k ≥ l(n)

we have:

(7)
]
(

(Λ ′
m 4 Λ

′
k) ∩ An

)
< 1⇒ ]

(
(Λ ′

m∆Λ
′
k) ∩ An

)
= 0

⇒ (Λ ′
m∆Λ

′
k) ∩ An = ∅⇒ Λ

′
m ∩ An = Λ

′
k ∩ An.
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We are now able to define a new set Λ by

(8) Λ ∩ An = Λ
′
l(n) ∩ An

for all n. This is well defined since for n < n ′, l(n) ≤ l(n ′) and hence by (7) we have

Λ
′
l(n) ∩ An = Λ

′
l(n ′) ∩ An = (Λ ′

l(n ′) ∩ An ′) ∩ An.

Now, Λ is our required limit. First of all we note that for any compact K ⊂ G,
K ⊂ An for some n. Now Λ ∩ An = Λ

′
l(n) ∩ An and Λ

′
l(n) is made up from subsets of

Λ1, . . . , Λl(n). In turn, each of these contains only finitely many points from K since
each Λk ∈ D. Thus Λ ∩ K is finite, showing that Λ ∈ D.

Second, we prove that d(Λ, Λ ′
m) ≤ 2−(m−1) for each m. Let n ∈ N be arbitrary,

and let k ≥ max{m, l(n)}. Then by (7)

Λ ∩ An = Λ
′
l(n) ∩ An = Λ

′
k ∩ An.

Hence
]
(

(Λ ′
m∆Λ) ∩ An

)

ω(An)
=

]
(

(Λ ′
m∆Λ

′
k) ∩ An

)

ω(An)
≤

1

2m−1

because of (6) and

d(Λ, Λ ′
m) = lim sup

n→∞

]
(

(Λ∆Λ
′
m) ∩ An

)

ω(An)
≤ lim sup

n→∞

1

2m−1
=

1

2m−1
,

showing that
lim

m→∞
Λ

′
m = Λ.

However, Λ ′
m ≡ Λkm

by construction. Hence:

lim
m→∞

Λkm
= Λ.

So we started with an arbitrary Cauchy sequence and we proved that this has a
converging subsequence. This proves that our space is complete.

Second Case: limn→∞ ω(An) = c < ∞ Let {Λm} be a Cauchy sequence in D.
{Λm} is a Cauchy sequence, hence there exists a m0 so that ∀m, l > m0 we have
d(Λm, Λn) < (2c)−1.

Let now m, l > m0 be arbitrary. Since

lim sup
n→∞

]
(

(Λm∆Λl) ∩ An

)

ω(An)
<

1

2c

there exists an n0 such that for all n > n0 we have :

]
(

(Λm∆Λl) ∩ An

)

ω(An)
<

1

c
.
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But the sequence {ω(An)} is increasing and convergent to c, hence ω(An) ≤ c for
all n. This implies that:

]
(

(Λm∆Λl) ∩ An

)

c
≤

]
(

(Λm∆Λl) ∩ An

)

ω(An)
<

1

c
.

It follows that ]
(

(Λm∆Λl) ∩ An

)
< 1, so

Λm ∩ An = Λl ∩ An, ∀n > n0.

Finally Λm = Λl so Λm ≡ Λl, the sequence is constant from m0 on, and hence it is
convergent.

Remark 2.2 Note that if we have n ′
m an increasing sequence of natural numbers

with the property that n ′
m ≥ nm ∀m, then in the previous proof we can replace {nm}m

by {n ′
m}m. We will use this fact in the following results.

Remark 2.3 In the second case of the proof of Proposition 2.1 (when the measure
of G is finite, so G is compact), we have proved that in fact d induces the discrete
topology on D. In this case all the results of the next section become trivial.

Remark 2.4 Since nm is increasing we have the following description of Λ
′
m:

Λ
′
m ∩ An1

= Λk1
∩ An1

Λ
′
m ∩ (Ani

\ Ani−1
) = Λki

∩ (Ani
\ Ani−1

), 2 ≤ i ≤ m

Λ
′
m ∩ (G \ Anm

) = Λkm
∩ (G \ Anm

)

and hence the following description of Λ:

Λ ∩ An1
= Λk1

∩ An1

Λ ∩ (Ani
\ Ani−1

) = Λki
∩ (Ani

\ Ani−1
), i ≥ 2.

Remark 2.5 Neither the pseudometric d nor the metric d inherited from it is nec-

essarily G-invariant. Invariance has to be derived from the van Hove property of our
sequence. However, the van Hove property is a statement about boundary to bulk
ratios in terms of measure, whereas the metric is involved with actual counting of
points. Only when the points actually “eat up volume” is it possible to link the two

ideas. Later, when we introduce uniform discreteness we will be able to do this and
then obtain G-invariance on the smaller spaces DV (see Corollary 3.10).

With the notation from the proof of Proposition 2.1 we have limn→∞ Λ
′
n = Λ

in the local topology. However, in general there is no connection between these two
topologies, as the following example shows.
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Example 2.6 Let Λm = Z \ {−m,−m + 1, . . . , m} and let An := [−n, n]. Then in
the local topology

lim
n→∞

Λn = ∅,

whereas in the autocorrelation topology we have

lim
n→∞

Λn = Z.

More generally let {Λm} be any sequence of locally finite subsets of G and Λ any
other locally finite set subset of G. Let An be any van Hove sequence with the property
that

lim
n→∞

ω(An) =∞,

⋃

n∈N

An = G.

Define {Λ ′
m} by

Λ
′
m ∩ Am := Λ ∩ Am

Λ
′
m ∩ (G \ Am) := Λm ∩ (G \ Am).

(so we replace the points Λm which inside Am by those of Λ). Then we have
lim{Λ ′

m} = lim{Λm} in the autocorrelation topology (assuming that the limit ex-
ists), but in the local topology lim{Λ ′

m} = Λ.

3 Stable Geometric Properties Under Convergence

As above, G is a σ-compact locally compact abelian group, A = {An} is a fixed
van Hove sequence, and d is the metric defined by this van Hove sequence on D.

If ω(G) <∞ all the results in this section are trivial since, as we have pointed out
above, the metric then induces the discrete topology. For this reason in all the proofs
we study only the case ω(G) =∞. In particular

lim
n→∞

ω(An) =∞.

Definition 3.1 Let Λ ⊂ G be a locally finite set.
• For K ⊂ G a compact set, Λ is K-relatively dense if for all x ∈ G, (x+K)∩Λ 6= ∅.
• For a neighborhood V of {0}, Λ is V -uniformly discrete if for all x ∈ G we have

(x + V ) ∩ (Λ \ {x}) = ∅.
• Λ is weakly-uniformly discrete if for every compact K in G there exists a constant

cK such that for any t ∈ G

]
(
Λ ∩ (t + K)

)
≤ cK .

• For K a compact set and V a neighborhood of 0, Λ is a (K,V )-Delone set if Λ is
K-relatively dense and V -uniformly discrete.
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Remark 3.2 When we don’t need the parameters we say only uniformly discrete,
relatively dense or Delone set.

Definition 3.3 Let {Λα}α ⊂ G be a family of locally finite sets. We say that this
family is:

(i) equi-uniformly discrete if there exists a neighborhood V of {0} such that Λα is

V -uniformly discrete for all α.
(ii) equi-relatively dense if there exists a compact set K such that Λα is K-relatively

dense for all α.
(iii) equi-weakly-uniformly discrete if for any compact K in G there exists a con-

stant cK such that for all α and for all t ∈ G, ]
(
Λα ∩ (t + K)

)
≤ cK

(iv) equi-Delone if the family is equi-relatively dense and equi-uniformly discrete.

Remark 3.4 If a family is V -uniformly discrete then it is W -uniformly discrete for

some neighborhood W of {0} with compact closure. If we have a family of V -equi-
uniformly discrete sets then we can chose the same W for the entire family.

Definition 3.5 We say that a set Λ has a certain A-statistical property if we can find

a set Λ
′ which has that property and d(Λ, Λ ′) = 0.

Lemma 3.6 Let A, K ⊂ G with 0 ∈ K and K compact. Let V be a compact neighbor-

hood of 0 in G with V = −V . Then

V + ∂K (A) ⊂ ∂V +K (A).

Proof Let x ∈ ∂K (A), v ∈ V . We need to show that v + x ∈ ∂V +K (A).

Suppose that x ∈ (K + A) \ A◦. Then v + x ∈ V + K + A, and if v + x /∈ A◦, we
have what we wish. If v + x ∈ A◦ ⊂ A, then from x ∈ G \ A◦

= G \ A,

v + x ∈ (V + G \ A) ∩ A ⊂ ∂V +K (A),

as required.
On the other hand, if x ∈ (−K + G \ A) ∩ A then v + x ∈ V − K + G \ A,

and if v + x ∈ A we have what we need. If v + x /∈ A then from x ∈ A we have

v + x ∈ V + A ⊂ V + K + A, so

v + x ∈ (V + K + A) \ A◦ ⊂ ∂V +K (A).

Proposition 3.7 Let Λ ⊂ G be statistically relatively dense and statistically uniformly

discrete. Then Λ is a statistically Delone set.

Proof Λ is statistically relatively dense means that there exists B ⊂ G and a compact

K such that B is K-relatively dense and d(Λ, B) = 0. Λ is statistically uniformly
discrete means that there exists C ⊂ G and a neighborhood of zero V such that C is
V -uniformly discrete and d(Λ,C) = 0. Without loss of generality we may assume
that V has compact closure.
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Let P = {E | C ⊂ E ⊂ B ∪ C and E is V -uniformly discrete} and order it by
inclusion. Since C ∈ P, P 6= ∅.

Let T ⊂ P be non-empty and totally ordered. Let M = ∪{E | E ∈ T}. Obviously

C ⊂ M ⊂ B∪C . Suppose by contradiction that M is not V -uniformly discrete. Then
there exists x ∈ M so that

(x + V ) ∩ (M \ {x}) 6= ∅.

Let y ∈ (x + V ) ∩ (M \ {x}). Since x, y ∈ M, there exists E1, E2 ∈ T such that
x ∈ E1 and y ∈ E2. But T is totally ordered, so E1 ⊂ E2 or E2 ⊂ E1. So we can find
E ∈ T such that x, y ∈ E and y ∈ (x + V ) ∩ (E \ {x}). Hence E is not V -uniformly

discrete, contradicting the fact that E ∈ T.

By Zorn’s Lemma we know that there exists a maximal element Z ∈ P. In par-
ticular Z is V -uniformly discrete. We prove that Z is K ′-relatively dense, where
K ′

= K + V̄ is compact.

Suppose by contradiction that Z is not K ′-relatively dense. Then there exists x ∈ G

such that

(x + K ′) ∩ Z = ∅.

Since B is K-relatively dense, there exists y ∈ (x + K) ∩ B.

Let N = Z ∪ {y}. Then y /∈ Z and Z is maximal in P implies that N /∈ P. But

C ⊂ Z ⊂ N ⊂ B ∪C and N /∈ P implies that N is not V -uniformly discrete.

Hence there exists z ∈ (y +V )∩(N \{y}), from which z ∈ Z; and also z ∈ (y +V )
and y ∈ (x+K) from which z ∈ (x+K+V )∩Z ⊂ (x+K ′)∩Z = ∅. This contradiction
proves that Z is K ′ relatively discrete.

Now

C ⊂ Z ⊂ B ∪C ⇒ 0 = d(C, Λ) ≤ d(Z, Λ) ≤ d(B ∪C, Λ) ≤ d(B, Λ) + d(C, Λ) = 0

Hence d(Z, Λ) = 0.

Lemma 3.8 Given an arbitrary compact set K, we can construct {nm} in Proposi-

tion 2.1 such that:

lim
k→∞

∑k
m=1 ω

(
∂K (Anm

)
)

ω(Ank
)

= 0.

Proof For this to be true is enough to have:

ω
(
∂K (Anm

)
)

< ω(Anm
) for all m,

and

k2ω(Anm
) < ω(Ank

) for all m < k.

We have to prove two things:

(i) the two conditions imply the result of the lemma;
(ii) we can chose mn in the proof of 2.1 to satisfy these conditions.
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(i):

(9)

∑k
m=1 ω

(
∂K (Anm

)
)

ω(Ank
)

=
ω
(
∂K (Ank

)
)

+
∑k−1

m=1 ω
(
∂K(Anm

)
)

ω(Ank
)

≤
ω
(
∂K (Ank

)
)

+
∑k−1

m=1 ω
(

(Anm
)
)

ω(Ank
)

≤
ω
(
∂K (Ank

)
)

ω(Ank
)

+

∑k−1
m=1(1/k2)ω

(
(Ank

)
)

ω(Ank
)

≤
ω
(
∂K (Ank

)
)

ω(Ank
)

+
k− 1

k2
.

Since both terms on the right side of the inequality go to zero we get the result.

(ii): The key for this is the fact that in the proof of Proposition 2.1, as long as

nm > nm−1, we can replace each nm by any larger number. Since

lim
n→∞

ω
(
∂K(An)

)

ω(An)
= 0,

there exists a j such that ω
(
∂K (An)

)
< ω(An) for all n > j. By taking n1 > j the

first condition is satisfied.

Proceeding inductively, let C(k) := max1≤m≤k−1 m2ω(Anm
). At the beginning of

the section we showed that we can assume limn→∞ ω(An) = ∞. Find n(k) so that
n ≥ n(k) implies ω(An) > C(k). Choose any nk ≥ n(k). Then for all m < k,
ω(Ank

) > C(k) ≥ k2ω(Anm
). The second condition is satisfied.

Proposition 3.9 Let {Λm} be a convergent sequence of locally finite sets.

(a) If Λn are equi-uniformly discrete then the limit is statistically uniformly discrete.

(b) If all Λn are equi-Delone sets then the limit is statistically Delone set.

(c) If all Λn are equi-relatively dense then the limit is statistically relatively dense.

Proof (a) Choose V in the definition of the uniform discreteness so that its closure
is compact and V = −V . Let K = V + V and let {nm} be as in the previous lemma.

We may also assume that Anm
+ K + K ⊂ Anm+1

. Let K ′
= V̄ . Let Λ be the set

constructed in Proposition 2.1 with this {nm} and let

B := Λ ∩
⋃

m∈N

∂K ′

(Anm
).

We prove that Λ \ B is V -uniformly discrete and B has density zero.

If x ∈ Λ \ B then there exists some m such that x ∈ Anm
\ Anm−1

. Then from the
construction of B, (x+V )∩Λ ⊂ (Anm

\Anm−1
)∩Λ ⊂ Λnm

, which itself is V -uniformly
discrete. This shows that Λ \ B is V -uniformly discrete.
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On the other hand, for x ∈ Λ∩∂K ′

(Anm
) we have, by Lemma 3.6, x+V ⊂ ∂K (Anm

).
We show now that each set x + V contains at most two points from Λ.

Let r be minimal such that (x+V )∩(Anr
\Anr−1

) 6= ∅. Let y ∈ (x+V )∩(Anr
\Anr−1

).
Then y ∈ x + V . Since V = −V we get x ∈ y + V , so

x + V ⊂ y + V + V ⊂ y + K ⊂ Anr
+ K ⊂ Anr+1

.

Thus x + V ⊂ Anr+1
.

We show now that (x + V ) ∩ Anr−1
= ∅.

Suppose by contradiction that (x + V ) ∩ Anr−1
6= ∅. From the minimality of r we

get that
(x + V ) ∩ (Anr−1

\ Anr−2
) = ∅.

Thus (x + V ) ∩ Anr−1
⊂ (x + V ) ∩ Anr−2

, so (x + V ) ∩ Anr−2
6= ∅.

Let y ∈ (x + V ) ∩ Anr−2
. As above,

x + V ⊂ y + K ⊂ Anr−2
+ K ⊂ Anr−1

,

contrary to x + V ∩ (Anr
\ Anr−1

) 6= ∅.
Now, since x + V ⊂ Anm+1

and (x + V ) ∩ Anm−1
= ∅ we get that x + V ⊂

(Anm+1
\ Anm−1

), thus x + V can meet only (Anm+1
\ Anm

) and Anm
\ Anm−1

.
Since each set x + V contains at most two points from Λ we get

ω(V )]
(
Λ ∩ ∂K ′

(Anm
)
)
≤ 2ω

(
∂K (Anm

)
)
.

Now the previous lemma gives d(B, ∅) = 0.

(b) We know from (a) that Λ is statistically uniformly discrete. We prove now
that it is statistically relatively dense. Let K be given by the equi-relative density. We
can assume that 0 ∈ K and K = −K.

Let {nm} be as in the previous lemma. We can also ask that Anm
+ K + K ⊂ Anm+1

.

Let Λ be the set constructed in Proposition 2.1 with this {nm} and set

B :=

∞⋃

m=1

(Λnm
∪ Λnm+1

) ∩ ∂K ′′

(Anm
).

In the same way as above we can prove that Λ ∪ B is K-relatively dense and B has
density zero.

(c) Let K be defined by the relative density. Let V be a compact neighborhood of
{0}. Let K ′ := K + V̄ . We make the same construction as in (b). The only problem

is that B may not have density zero.
As in Proposition 3.7 we construct B ′ a maximal V -uniformly discrete subset of

B. Then B ′ has density zero and, exactly as in Proposition 3.7, Λ ∪ B ′ is K ′-relatively
dense.

We let dV denote the restriction of the d both to the set of V -uniformly discrete
subsets of G and to their equivalence classes DV . Restriction to DV brings with it the
property of G-invariance which we will need in the next section.
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Corollary 3.10 Let V = −V be a compact symmetric neighborhood of {0} in G.

Then

(a) dV is a G-invariant on the set of V -uniformly discrete subsets of G;

(b) DV is complete and G-invariant.

Proof (a) Let Λ, Λ
′ be V -uniformly discrete sets and let t ∈ G. Let W = −W be

a compact symmetric neighborhood of {0} satisfying W + W ⊂ V . Then for all
x, y ∈ Λ with x 6= y, (x + W ) ∩ (y + W ) = ∅. Now

d(t + Λ, t + Λ
′) = lim sup

n→∞

]
(

((t + Λ)4 (t + Λ
′)) ∩ An

)

ω(An)

= lim sup
n→∞

]
(

(Λ4 Λ
′) ∩ (−t + An)

)

ω(An)
.

Comparing this with d(Λ, Λ ′) we see that the difference is due to (−t + An) \ An and

An \ (−t + An) both of which are in ∂K (An) for K := {0, t,−t}; and in magnitude
the difference is bounded by the sum of

lim sup
n→∞

]
(
Λ ∩ ∂K (An)

)

ω(An)

and the corresponding value for Λ
′. However, for each x ∈ Λ ∩ ∂K (An), x + W ⊂

∂W +K (An), by Lemma 3.6, and so, taking into account the V -uniformness of Λ,

]
(
Λ ∩ ∂K (An)

)
≤

ω
(
∂W +K (An)

)

ω(W )
.

There is a similar expression for Λ
′. Now the van Hove property shows that the limits

are 0, and so dV (Λ, Λ ′) = dV (t + Λ, t + Λ
′) as required.

(b) The set of V -uniformly discrete subsets of G is G-invariant, and by (a) so is
the pseudo-metric dV on it. Thus dV induces a G-invariant metric on DV . Proposi-
tion 3.9 (and its proof) show that DV is complete.

Remark 3.11 (i) Let Λ = Z \
⋃∞

n=1{2
n, 2n + 1, . . . , 2n + n}. Then Λ is not relatively

dense, but d(Λ, Z) = 0.

(ii) Let Λ
′
= Z ∪

⋃∞
n=1{2

n + 1
n
}. Then Λ

′ is not uniformly discrete, but d(Λ ′, Z)

= 0.

(iii) Let now Λ
′ ′

= Λ
′ \

⋃∞
n=1{2

n + 1, . . . , 2n + n}. Then Λ
′ ′ is neither relatively

dense or uniformly discrete, but d(Λ ′ ′, Z) = 0.

4 The Autocorrelation Group A(Λ)

Let Λ ⊂ G be any Delone set.
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Definition 4.1 We define a pseudo-metric on G: dΛ(t, t ′) = d(t + Λ, t ′ + Λ).

dΛ is a G-invariant pseudo-metric (see Corollary 3.10). The interest in this
pseudo-metric stems from its connection with the autocorrelation of a Meyer set
Λ. For t ∈ G,

η(t) := lim
n→∞

]
(
Λ ∩ (t + Λ) ∩ An

)

ω(An)

is the t-autocorrelation coefficient of Λ, and

η :=
∑

η(t)δt

is the autocorrelation (measure). If the autocorrelation exists, then in fact for all t ∈ G,

dΛ(t, 0) = 2
(
η(0)− η(t)

)
.

For more on this, see [2].

Note that dΛ is not in general a metric on G: for t, t ′ ∈ G,

dΛ(t, t ′) = 0⇔ dΛ(t − t ′, 0) = 0⇔ d(t − t ′ + Λ, +Λ) = 0

that is, t − t ′ is a statistical period of Λ.

Definition 4.2 For each open neighborhood V of 0 and each ε > 0 define

U (V, ε) := {(x, y) ∈ G× G | ∃v ∈ V such that dΛ(−v + x, y) < ε}.

The set of all of these U (V, ε) form a fundamental set of entourages for a uniformity
U on G. Moreover, since each U (V, ε) is G-invariant, we obtain in this way a new
topological group structure on G, called the mixed topology of G.

Let A = A(Λ) denote the completion of G in this new topology, which is a new
topological group called the autocorrelation completion of G.

For each y ∈ G and each U ∈ U define U [y] := {x ∈ G | (x, y) ∈ U}.

Definition 4.3 For each ε > 0, define the ε-almost periods of Λ:

Pε := {t ∈ G | dΛ(t, 0) < ε}.

For each ε > 0 and V a neighborhood of {0} we have:

U (V, ε)[0] = Pε + V.

Remark 4.4 Let ε0 := 2d(Λ, ∅). Then for all ε > ε0, Pε = G, and if V is a neigh-
borhood of {0} then U (V, ε)[0] = G.

Recall that a uniform space X is said to be precompact if and only if its Hausdorff
completion X̂ is compact or, equivalently, for each entourage U of X there exists a
finite cover of X with U -small sets [3, Theorem 4.2.3].
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Lemma 4.5 Let V be an open neighborhood of {0} with compact closure in the stan-

dard topology of G and let ε > 0. Then the following are equivalent:

(a) U (V, ε)[0] is precompact in the mixed topology.

(b) For all 0 < ε ′ < ε there exists K a compact set in G with the standard topology so

that

Pε ⊂ Pε ′ + K.

Proof Suppose that U (V, ε)[0] is precompact and let 0 < ε ′ < ε. Cover U (V, ε)[0]
by finitely many translations of U (V, ε ′)[0]. Then using the previous remark there

exist t1, . . . , tn such that:

Pε + V ⊂

n⋃

i=1

(ti + Pε ′ + V ).

Since V has compact closure, K :=
⋃n

i=1 ti + V is compact. Hence:

Pε ⊂ Pε + V ⊂
n⋃

i=1

(ti + Pε ′ + V ) ⊂ Pε ′ + K.

Conversely, let U ′ be an open neighborhood of {0} for G in the mixed topology.
We need to cover U (V, ε)[0] with finitely many translates of U ′. For this purpose
we can assume that U ′

= U (V ′, ε ′)[0] for some open neighborhood V ′ of {0} and
some ε ′ < ε. By assumption there exists compact K in the standard topology so that

Pε ⊂ Pε ′ + K. Then

U (V, ε)[0] = Pε + V ⊂ Pε ′ + K + V ⊂ Pε ′ + K + V̄ .

Since K + V̄ is compact there exist t1, . . . , tn such that K + V̄ ⊂
⋃n

i=1(ti + V ′), so
we obtain

U (V, ε)[0] ⊂ Pε ′ +K +V̄ ⊂
n⋃

i=1

(ti +Pε ′ +V ′) =

n⋃

i=1

(
ti +U (V ′, ε ′)[0]

)
⊂

n⋃

i=1

(ti +U ′).

This proves that U (V, ε)[0] is precompact.

Proposition 4.6 A is compact if and only if for all ε > 0, Pε is relatively dense in G (in

the standard topology).

Proof Suppose that A is compact. Let ε > 0. Choose ε ′ > max{ε, ε0}. Since A is
compact, G is precompact. Let V be an arbitrary open neighborhood of {0} with

compact closure. Then U (V, ε ′)[0] = G is precompact hence there exists K, compact
in G such that

G = Pε ′ ⊂ Pε + K.

Hence Pε is relatively dense.

Conversely, fix any ε > ε0. Let 0 < ε ′ < ε. Since Pε ′ is relatively dense in G then
exists K compact such that Pε ⊂ Pε ′ + K. Hence for any V open neighborhood of
{0} with compact closure we have by Lemma 4.5 that G = U (V, ε)[0] is precompact.
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Corollary 4.7 Let G be a σ-compact locally compact Abelian group. Let Λ ⊂ G be a

locally finite with a well-defined A-autocorrelation. Assume that Λ − Λ is uniformly

discrete. Then the following are equivalent:

(a) Pε is relatively dense for all ε > 0.

(b) Λ is pure point diffractive.

(c) A(Λ) is compact.

Proof See [2, Theorem 5].

Proposition 4.8 Let Λ be a Delone subset of the locally compact Abelian group G. The

following are equivalent:

(a) A is locally compact.

(b) There exists an ε > 0 such that for all 0 < ε ′ < ε there exists compact K with

Pε ⊂ Pε ′ + K.

Proof Suppose that A is locally compact. Let ϕ : G→ A be the uniformly continuous
map which defines the completion.

Let U ′ be a compact neighborhood of {0} in A. Then we can find ε > 0 and V an
open neighborhood of {0} in G such that ϕ

(
U (V, ε)

)
[0] ⊂ U ′. Then U (V, ε)[0] is

precompact, so we can apply Lemma 4.5.
Conversely, let V be an open neighborhood of {0} ∈ G with compact closure.

Again by Lemma 4.5, U (V, ε) is precompact.

Remark 4.9 The completion mapping ϕ : G→ A provides a natural G-action on A.

If A is compact we have a dynamical system, both topologically and measure theoret-
ically (using Haar measures). Compact or not, the action of G on A is minimal in the
sense that every G-orbit is dense in A.

As pointed out in the introduction, Λ has an associated local dynamical hull ob-
tained from the closure of its G-orbit in the local topology. In general, one should
not expect any nice relationship between X and A. However, for model sets, there is

a strong connection between the two, as we shall see in Section 5.

In the case that G is a real space R
d, the use of the Hausdorff metric dH on subsets

of R
d allows simple reformulations of some of the results above. Note that for A ⊂

B ⊂ R
d,

dH(A, B) <∞⇔ B ⊂ A + K for some compact set K ⊂ R
d.

Now the following are obvious:

Corollary 4.10 The following are equivalent in R
d:

(a) A is locally compact.

(b) There exists an ε > 0 so that for all 0 < ε ′ < ε, dH(Pε, Pε ′) <∞.

(c) There exists an ε > 0 such that for all 0 < ε ′, ε ′ ′ < ε, dH(Pε ′ , Pε ′′) <∞.
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Corollary 4.11 The following are equivalent in R
d:

(a) A is compact.

(b) For all ε > 0, dH(Pε, R
d) <∞.

(c) For all 0 < ε, ε ′, dH(Pε, Pε ′) <∞.

5 Regular Model Sets

A cut and project scheme is a triple (G, H, L̃) of locally compact Abelian groups in
which L̃ is a lattice in G×H and for which the natural projections π1, π2 satisfy π1|L̃
is injective, and π2(L̃) is dense in H:

(10)

G
π1←− G×

⊂
L̃

H
π2−→ H.

We let L := π1(L̃) and ∗ : L → H be the mapping π2 ◦ (π1)−1|L. By hypothesis, the
group T := (G × H)/L̃ = {(t, t∗) | t ∈ L} is compact. The obvious G-action on T

makes it into a (minimal, see below) dynamical system.

A regular model set (defined by the cut and project scheme (10)) is a non-empty
set of the form Λ = x + {t ∈ L | t∗ ∈W} where W ⊂ H is compact and satisfies the
conditions

W = W ◦ and θH(∂W ) = 0

where θH is Haar measure on H. It is possible to replace the cut and project scheme
by one with a smaller H if necessary, so that for u ∈ H, u + W = W if and only if
u = 0 [9]. We will assume that this condition holds in what follows. The regular
model set Λ is generic if ∂W ∩ L∗

= ∅.3

Regular model sets are always Delone sets [5, 6] and have well-defined autocorre-
lations. In particular we can consider the autocorrelation group A(Λ). A key point is
that A and T are isomorphic, so in fact, T(Λ) for a regular model set has a very natural

interpretation—namely the completion of the orbit of Λ under the autocorrelation
topology.

Proposition 5.1 Let G be a compactly generated locally compact Abelian group and let

Λ be a regular model set of the cut and project scheme (10). Then A(Λ) ' T(Λ), and

the isomorphism is also a G-mapping.

Proof There is no loss in assuming that Λ = {t ∈ L | t∗ ∈W}. The action of G on
T = (G × H)/L̃ is defined by x + (t + L̃) = x + t + L̃, and it is easy to see that the
image of G in T under this map is dense. So T and A are the completions of G under
the respective topologies on G induced by the G-orbits of {0} in these two groups.

It suffices to show that these topologies on G coincide. For the T-topology, x ∈ G

is close to zero if and only if there is a small open neighborhood V of G and a pair
(t, t∗), where t ∈ L so that x − t ∈ V and t∗ close to {0} ∈ H.

3Model sets were introduced by Y. Meyer [4] in his study of harmonious sets.

https://doi.org/10.4153/CMB-2004-010-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2004-010-8


98 Moody and Strungaru

On the other hand, x ∈ G is close to zero in the A-topology if and only if there is
a small open neighborhood V of G, and a small ε > 0, and a t ∈ G so that x− t ∈ V

and t ∈ Pε. Such a t necessarily lies in Λ−Λ ⊂ L. So we need to show that for t ∈ L,
t∗ is close to zero in H if and only if t ∈ Pε for some small ε.

By uniform distribution (see [6, 9])

dΛ(t, 0) = lim
n→∞

1

ω(An)

∑

x∈(Λ\(t+Λ))∩An

1 + lim
n→∞

1

ω(An)

∑

x∈((t+Λ)\Λ)∩An

1

= θH

(
W \ (t∗ + W )

)
+ θH

(
(t∗ + W ) \W

)

= θH

(
W \ (t∗ + W )

)
+ θH

(
W \ (−t∗ + W )

)
,

since the second term converges to the autocorrelation d(t + Λ, Λ) = dΛ(t, 0). It
remains to prove that θH

(
W \ (t∗ + W )

)
converges to 0 if and only if t∗ converges to

0.

Now, for all u ∈ H,

θH

(
W \ (u + W )

)
= θH(W )− (1W ∗ 1̃W)(u),

where 1W is the indicator function for the set W and {̃ } changes the sign of the
argument. This is uniformly continuous in u (for this result on convolutions see [8],
Chapter 1), and so disposes of the ‘if ’ part.

Conversely, let {ui} be a net in H for which {θH

(
W \ (ui + W )

)
} converges to 0.

The ui eventually lie in W −W which is compact, so we may assume that in fact the

ui converge, say to u0. Then θH

( ◦

W \ (u0 + W )
)

= 0 and
◦

W \ (u0 + W ) is open, so
◦

W \ (u0 + W ) = ∅. Thus
◦

W ⊂ u0 + W , so W ⊂ u0 + W . A similar argument leads

to the reverse inclusion. Then, by our assumptions above, u0 = 0.

Corollary 5.2 For any regular generic model set there is a G-invariant surjective con-

tinuous mapping X(Λ) → A(Λ). Furthermore, this mapping is 1–1 almost everywhere

with respect to the Haar measure on A(Λ).

Proof By [10] there is a unique G-invariant continuous surjective mapping X(Λ)→
T(Λ) which maps Λ to {0} in T, and it is 1–1 T-almost everywhere.

Remark 5.3 Corollary 5.2 in effect characterizes the regular model sets amongst
the relatively dense sets Λ satisfying the Meyer property that Λ − Λ is uniformly

discrete [1].
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