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ABSTRACT

This year we celebrate the 300th anniversary of Jakob Bernoulli’s path-breaking
workArs conjectandi,which appeared in 1713, eight years after his death. In Part
IV of his masterpiece, Bernoulli proves the law of large numbers which is one of
the fundamental theorems in probability theory, statistics and actuarial science.
We review and comment on his original proof.
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1. INTRODUCTION

In a correspondence, Jakob Bernoulli writes to Gottfried Wilhelm Leibniz in
October 1703 [5]: “Obwohl aber seltsamerweise durch einen sonderbaren Na-
turinstinkt auch jederDümmste ohne irgend eine vorherigeUnterweisungweiss,
dass jemehrBeobachtungen gemachtwerden, umsoweniger dieGefahr besteht,
dass man das Ziel verfehlt, ist es doch ganz und gar nicht Sache einer Laienun-
tersuchung, dieses genau und geometrisch zu beweisen”, saying that anyone
would guess that the more observations we have the less we can miss the target;
however, a rigorous analysis and proof of this conjecture is not trivial at all. This
extract refers to the law of large numbers. Furthermore, Bernoulli expresses that
such thoughts are not new, but he is proud of being the first one who has given
a rigorous mathematical proof to the statement of the law of large numbers.
Bernoulli’s results are the foundations of the estimation and prediction theory
that allows one to apply probability theory well beyond combinatorics. The law
of large numbers is derived in Part IV of his centennial work Ars conjectandi,
which appeared in 1713, eight years after his death (published by his nephew
Nicolaus Bernoulli), see [1].

Jakob Bernoulli (1655–1705) was one of the many prominent Swiss mathe-
maticians of the Bernoulli family. Following his father’s wish, he studied phi-
losophy and theology and he received a lic. theol. degree in 1676 from the
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University of Basel. He discovered mathematics almost auto-didactically and
between 1676 and 1682 he served as a private teacher. During this period, he
also traveled through France, Germany, the Netherlands and the UK, where he
got into contact with many mathematicians and their work. Back in Basel in
1682 he started to teach private lectures in physics at university, and in 1687 he
was appointed as professor in mathematics at the University of Basel. During
this time, he started to apply Leibniz’s infinitesimal calculus and he started to
examine the law of large numbers.

The law of large numbers states that (independent) repetitions of an experi-
ment average over long time horizons in an arithmetic mean which is obviously
not generated randomly but is a well-specified deterministic value. This exactly
reflects the intuition that a random experiment averages if it is repeated suffi-
ciently often. For instance, if we toss a coin very often we expect about as many
heads as tails, which means that we expect about 50% (deterministic value) of
each possible outcomes.

The law of large numbers formulated in modern mathematical language
reads as follows: assume that X1, X2, . . . is a sequence of uncorrelated and
identically distributed random variables having finite mean μ = E[X1]. Define
SN = ∑N

i=1 Xi . For every ε > 0, we have

lim
N→∞

P

(∣∣∣∣SNN − μ

∣∣∣∣ ≥ ε

)
= 0. (1)

Bernoulli has proved (1) for i.i.d. Bernoulli random variables X1, X2, . . . tak-
ing only values in {0, 1} with probability p = P(X1 = 1). We call the latter a
Bernoulli experiment and in this case we have μ = p. We will discuss Bernoulli’s
proof below, the general formulation (1) is taken from Khinchin [4]. In intro-
ductory courses on probability theory and statistics, one often proves (1) under
the more restrictive assumption of X1 having finite variance. In this latter case,
the proof easily follows from Chebychev’s inequality.
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Today, Bernoulli’s law of large numbers (1) is also known as the weak law of
large numbers. The strong law of large numbers says that

P

(
lim
N→∞

SN
N

= μ

)
= 1. (2)

The strong law of large numbers requires that an infinite sequence of random
variables is well defined on the underlying probability space. The existence of
these objects however has only been proved in the 20th century. In contrary,
Bernoulli’s law of large numbers only requires probabilities of finite sequences.
For instance, for the Bernoulli experiment they are described by the binomial
distribution given by

P (SN = k) =
(
N
k

)
pk (1 − p)N−k, for k = 0, . . . , N.

This allows a direct evaluation of the limit in (1).

2. BERNOULLI’S PROOF

Bernoulli proves the result in a slightly more restricted situation. He considers
an urn containing r red and b black balls. The probability of choosing a red
ball is given by p = r/(r + b). Bernoulli chooses ε = 1/(r + b) and then he
investigates N = n(r + b) drawings with replacement as n → ∞. For instance,
the choices r = 3 and b = 2 provide p = 0.6 and ε = 0.2 in this set-up. For the
same experiment, he can also choose multiples of 3 and 2 which provides results
for smaller ε’s. His restriction leads to simpler calculations; however, we believe
that Bernoulli has been aware of the fact that this restriction on ε is irrelevant
for the deeper philosophy of the proof.

For simplicity, we only give Bernoulli’s proof in the symmetric Bernoulli case
p = 0.5 considering N drawings with replacement, however, with no further
restriction on ε ∈ (0, 1/2). Thus, denote by SN the total number of successes
in N i.i.d. Bernoulli experiments having success probability p = 0.5. For ε ∈
(0, 1/2), we examine, see also (1),

P

(∣∣∣∣SNN − 1
2

∣∣∣∣ ≥ ε

)
= 2 P

(
SN ≥

(
1
2

+ ε

)
N

)
, (3)

where we have used symmetry. We introduce the following notation for k =
0, . . . , N :

bN(k) = P (SN = k) =
(
N
k

)
2−N.

By considering the following quotients for k < N, Bernoulli obtains

bN(k)
bN(k+ 1)

= N!
k!(N − k)!

(k+ 1)!(N− k− 1)!
N!

= k+ 1
N− k

, (4)
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from which he concludes that maxk bN(k) = bN(�N/2	). For simplicity, we
choose N to be even, then the latter statement tells us that themaximumof bN(k)
is taken in the middle of {0, . . . , N}. Observe that from deMoivre’s central limit
theorem (1733), we know that bN(N/2) behaves asymptotically as

√
2/

√
πN,

but this result has not been known to Bernoulli. Also, Stirling’s formula has
only been discovered later in 1730. For j ≥ 0, Bernoulli furthermore looks at
the quotients

bN(N/2 + j)
bN(N/2 + �Nε	 + j)

= N/2 + j + 1
N/2 − j

N/2 + j + 2
N/2 − j − 1

· . . . · N/2 + j + �Nε	
N/2 − j − �Nε	 + 1

. (5)

This representation implies for j = 0

lim
N→∞

bN(N/2)
bN(N/2 + �Nε	) = lim

N→∞
N/2 + 1
N/2

N/2 + 2
N/2 − 1

· · · N/2 + �Nε	
N/2 − �Nε	 + 1

= ∞;

indeed the products under the limit are successively multiplied with additional
terms that converge to a constant bigger than 1 as N → ∞. Moreover, the
quotients on the right-hand side of (5) are monotonically increasing in j . This
implies uniform convergence in j to ∞, which in turn implies

lim
N→∞

∑�Nε	−1
j=0 bN(N/2 + j)∑Jε,1(N)

j=0 bN(N/2 + �Nε	 + j)

≥ lim
N→∞

∑Jε,1(N)

j=0 bN(N/2 + j)∑Jε,1(N)

j=0 bN(N/2 + �Nε	 + j)
= ∞, (6)

where we have set Jε,k(N) = min{�Nε	 − 1, N/2 − k�Nε	} for k ∈ N. Using
monotonicity once more we obtain similarly to above

lim
N→∞

∑�Nε	−1
j=0 bN(N/2 + j)∑Jε,k(N)

j=0 bN(N/2 + k�Nε	 + j)
= ∞, for k ≥ 1. (7)

Choose 1 ≤ k ≤ N/(2�Nε	) fixed, then the denominator in (7) provides

Jε,k(N)∑
j=0

bN(N/2 + k�Nε	 + j)

= P

(
N/2 + k�Nε	 ≤ SN ≤ min{N/2 + (k+ 1)�Nε	 − 1, N}

)
.
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This implies that for large N we need at most �1/(2ε)	 such events to cover the
entire event {SN ≥ N/2 + �Nε	}. This and (7) provide

lim
N→∞

P (N/2 ≤ SN < N/2 + �Nε	)
P (SN ≥ N/2 + �Nε	) = lim

N→∞

∑�Nε	−1
j=0 bN(N/2 + j)∑N/2
j=�Nε	 bN(N/2 + j)

= ∞.

This and symmetry immediately prove the statement

lim
N→∞

P (SN ≥ N/2 + �Nε	) = 0,

which in view of (3) proves Bernoulli’s law of large numbers for the symmetric
Bernoulli experiment.

The argument of Bernoulli to obtain (6) is interesting because at that time
the notion of uniform convergence was not known. He says that those who are
not familiar with considerations at infinity may argue that

lim
N→∞

bN(N/2 + j)
bN(N/2 + �Nε	 + j)

= ∞, for every j ,

does not imply (6). To dispel this criticism, he argues by calculations for finite
N’s and, in fact, he provides an explicit exponential bound for the rate of con-
vergence which today is known as a “large deviation principle”. Specifically,
Bernoulli derives

P

(∣∣∣∣SNN − 1
2

∣∣∣∣ ≥ ε

)
≤ 1

ε
exp

{
−

[
ε + 2ε2

2(1 + ε)
log(1 + 2ε)

]
N

}
. (8)

He obtains this bound by evaluating the terms (4) in a clever way; for details see
Bolthausen [3]. Though the bound (8) is not optimal, it nevertheless is remark-
able. The optimal bound is given by, see Bolthausen [3],

2 exp
{
−

[(
1
2

+ ε

)
log(1 + 2ε) +

(
1
2

− ε

)
log(1 − 2ε)

]
N

}
. (9)

The calculations leading to (8) are somewhat hidden in Bernoulli’s manuscript,
and at the end he calculates an explicit example for which he receives the result
that he needs about 25,000 Bernoulli simulations to obtain sufficiently small
deviations from the mean (the correct answer in his example using the optimal
bound (9) would have been 6,520). Stigler [7] mentions in his book that perhaps
Bernoulli was a little disappointed by that bad rate of convergence and for that
reason did not publish these results during his lifetime.

3. IMPORTANCE OF BERNOULLI’S RESULT

The reason for the delayed publication of Ars conjectandi is found in the corre-
spondence to Leibniz already mentioned above. Bernoulli writes that due to his
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bad health situation, it is difficult to complete the work and that the main part
of his book is already written. But he then continues by stressing that the most
important part, where he demonstrates how to apply the theory of uncertainty
to society, ethics and economy, is still missing. Bernoulli then briefly explains
that he has started to think about the question how unknown probabilities can
be approximated by samples, i.e. how a priori unknowns can be determined by a
posteriori observables of a large number of similar experiments. That is, he has
started to think about a scientific analysis of questions of public interest using
rigorous statistical methods. Of course, this opens the whole field of statistics
and raises questions that are still heavily debated by statisticians today. It seems
that Leibniz has not been too enthusiastic about Bernoulli’s intention and he
argued that the urn model is much too simple to answer real-world questions.

Many of the ideas which Jakob Bernoulli no longer was able to complete
during his lifetime were taken up by his nephew Nicolaus Bernoulli in his thesis
1709 [2]. It is clear that Nicolaus was familiar with the thoughts of his uncle
and he freely used whole passages from the Ars conjectandi. He writes that he
is “the more eager to present this material as he sees that many very important
questions on legal issues can be decided with the help of the art of conjecturing
(i.e. probability theory)”. A particularly important topic he addresses are life
annuities and their correct valuation. For that he relies on mortality tables by
Huygens, Hudde, de Witt and Halley, and he made a clear distinction between
the expected and the median lifetime. He realizes that he cannot base the value
of a life annuity on the expected survival time, but that one has to take the
expected value under the distribution of the remaining life span, because “the
price does not grow proportional with time”, as he writes. Of course, the law of
large numbers is crucial for the applicability of these probabilistic computations.
For detailed comments on the thesis of Nicolaus Bernoulli and its relation with
the Ars conjectandi, see [6]

From an actuarial point of view, Bernoulli’s law of large numbers is consid-
ered to be the cornerstone and explains why and how insurance works. Themain
argument being that a pooling of similar uncorrelated risks X1, X2, . . . in an in-
surance portfolio SN provides an equal balance within the portfolio that makes
the outcome the more “predictable” the larger the portfolio size N is. Basically
what this says is that for sufficiently large N there is only a small probability that
the total claim SN exceeds the threshold (μ+ε)N, see (1), and thus, the bigger the
portfolio the smaller the required security margin ε (per risk Xi ) so that the total
claim SN remains below (μ + ε)N with sufficiently high probability. This is the
foundation of the functioning of insurance; it is the aim of every insurance com-
pany to build sufficiently large and sufficiently homogeneous portfolios which
makes the claim “predictable” up to a small shortfall probability.
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MARIO V. WÜTHRICH† (Corresponding author)
†ETH Zurich, RiskLab
Department of Mathematics
8092 Zurich
Switzerland
mario.wuethrich@math.ethz.ch

https://doi.org/10.1017/asb.2013.11 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2013.11

