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ABSTRACT. The coordinate dependence of the definition of light deflex­
ion is discussed and the concepts of "natural" and "proper" reference 
frame are introduced in order to derive astrometric observables from 
coordinate quantities. Confusion in published formulations of VLBI 
data analysis is discussed in the context of the IAU definition of the 
coordinate time scale TDB. It is pointed out that with this definition, 
the unit of TDB differs from that of TDT and it is suggested that the 
speed of light in barycentric units be adopted as a defining constant 
in the system of astronomical constants. 

1. INTRODUCTION 

It is now more than 35 years since I started working in astrometry, and 
for most of that time I have not needed to consider relativity in 
connection with optical observations. Indeed, although "observational 
relativity" may be said to have started with an astrometric experiment 
at the famous total solar eclipse of 1919 May 29, it was only since 
last year, with the introduction of the IAU 1984 reference system, that 
relativity has become firmly established in optical astrometry. It is 
of course true that the excess perihelion motions of the planets have 
been incorporated in planetary ephemerides for many years, but until 
comparatively recently these have been on an empirical basis without 
any underlying theory. 

My own interest in relativistic astrometry started at about the 
time of the centenary of the birth of Einstein, in 1979, which happened 
to coincide with the 60th anniversary of the 1919 eclipse, when my 
colleague G M Harvey (1979) remeasured those plates from the Greenwich 
expedition to Sobral in Brazil, which have survived in our plate 
archives. At about the same time it became clear that the data which 
will be obtained from the HIPPARCOS satellite, then only in the Phase A 
planning stage and as yet unnamed, would need full relativistic reduct­
ion. Therefore, as a comparative newcomer to this field, I hope the 
specialist relativists in the audience will forgive me if I address this 
short review to those who, like me, are primarily concerned with the 
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practical applications of relativity to the reduction and interpretation 
of astrometric observations. 

I take as ray starting point the formulation of General Relativity 
in Euclidean Terms by the late Robert Atkinson (1963). In that paper 
he wrote:-

"There is a very real gap between those who appreciate the beauty 
and symmetry of the formal mathematics so keenly that they may even 
deny any need for 'visualization' altogether, and those on the other 
hand whose natural interests and abilities lie in the field of specific 
observation and measurement, but who are, almost as a consequence, 
overwhelmed by the conceptual difficulties of four dimensions and 
curved space, and so cannot consider the fundamental aspects of rela­
tivity with the appropriate confidence." 

Reading these lines now, more than 20 years after they were written, 
we may feel that they represent rather an extreme view. With the 
advent of the new techniques, such as space ranging, Doppler tracking 
and VLBI, relativity is now becoming part of everyday life in some 
branches of astrometry, but nevertheless I believe that there is still 
a gap to be bridged between specialists in relativity and practical 
astrometrists. 

2. DEFLEXION OF LIGHT 

I like to define astrometry as the measurement of space-time coordinates 
of photon events. It is therefore necessary to define precisely the 
frames of reference which are to be used and the units in which our 
coordinates are to be specified. 

I hope I may be forgiven for mentioning once again the different 
representations of the track of a photon in a spherically symmetric 
gravitational field, which are obtained with the Schwarzschild standard 
and isotropic spatial coordinates. 

If r, 0 denote polar coordinates along the track, with 8 = 0 in 
the direction of perihelion, the slope in standard coordinates is 

- p c " 2 r " 1 tan 6 (2 + cos 20) 

and, in isotropic coordinates, is 

-2 p c~ 2 r" 1 tan 8 

where p = GM, G being the gravitational constant, M the central mass 
and c is the speed of light. 

Both these expressions appear in the literature (e.g. Brandt 1975, 
Mikhailov 1976) yet the difference between them can amount to about 
1 mas at r = 1 au, 9 = i 7T , which is by no means negligible by modern 
standards. As I have pointed out elsewhere (Murray 1981) the resolution 
of this paradox lies in translating "coordinate" quantities into "observ­
ables". We postulate that the space-time reference frame actually used 
by an observer is locally flat; by a suitable coordinate transformation 
we obtain an "observed" direction which is independent of the co­
ordinates used to describe the photon track (Murray 1983, p 32). I 
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have called this locally flat reference frame, for a fixed observer, 
the "natural" frame, and a direction measured in this frame a "natural" 
direction; this I believe accords with the use of the word "natural", 
in this context, by Eddington (1923). 

The unit vector r^ in the natural direction to a source can be 
expressed in the form 

£n = Lc + L x Lc (!) 

where _rc is the coordinate direction obtained by Euclidean geometry 
using the spatial coordinates of the source at the instant of emission 
of the observed photon and those of the observer at the instant of 
observation, e_ is a small vector representing the deflexion and |ej 2 
is neglected. Both v_c and e_ depend formally on the coordinate system 
chosen but does not. If isotropic coordinates are used for calculat­
ing £ c , then* 

e_ = 2u c" 2 a 0 " 1 (1 + u' u ^ ) " 1 u x (2) 

where u, u 0 are unit vectors in the heliocentric directions to the 
source and observer respectively, and a 0 is the heliocentric distance 
to the observer. 

From (2) we see that 

|ej = 2Mc~ 2 a Q ~ 1 tan & (3) 

where a is the angle between u, u_0. For the Sun, 

pc" 2 = 9.87063 x 10" 9 au (4) 

and hence for an observer at a 0 = 1 au 

|^| = OV004072 tan \a (5) 

This of course gives the maximum deflexion of 17748 for a Sun-grazing 
ray, with a = 1799,733, but clearly the deflexion is now observa-
tionally significant over much of the sky. 

It is of interest to note that, for a fixed observer, the vector e_ 
depends only on the angle a , and not on the distance to the source, 
provided that we use isotropic coordinates to calculate j r c . Thus, in 
particular, the deflexions for a source situated at the limb of the 
Sun, and for a star 90° away from the Sun as seen by the observer, are 
both 07004072. 

3. ABERRATION 

The natural reference frame is that for a hypothetical observer who is 

* throughout this review, the prime symbol ( f) denotes scalar multiplic­
ation 
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at rest in the coordinate reference frame. The "proper 1 1 direction _rp 

measured by a moving observer relative to his own local frame which we 
call his "proper" frame, is obtained by means of a Lorentz transforma­
tion between the two frames. Elsewhere (Murray 1983, p 46) I have 
derived a vectorial form for this transformation, which can be written 
as 

where Vq is the velocity of the observer relative to the natural frame 
and 

I am indebted to Dr T Fukushima for pointing out that the form (6) is 
more suitable for precise computation than my original expression. 

The jargon of classical astrometry includes words such as "mean", 
"true" and "apparent" to describe coordinates referred to different 
frames of reference. These words convey very little physical meaning, 
except to specialists. On the other hand, the words "coordinate" and 
"proper" have definite physical connotations in the context of relativ­
ity, and I would like to suggest that we adopt these in place of the 
old terminology. When the origin of a particular frame is important, 
then qualifiers such as barycentric, heliocentric, geocentric and 
topocentric can be used. 

4. RADIO INTERFEROMETRY 

The most accurate ground-based astrometric measurements of direction 
are now made with Very Long Baseline Interferometry, and the ultimate 
hope is that VLBI will provide a better approximation to an inertial 
reference frame than can be obtained at present from observations of 
stars. It is therefore very important to understand the principles of 
VLBI data analysis and the relationship between the reference systems 
of VLBI and optical astrometry. Already there has been some confusion 
over the origin of right ascension, elliptic aberration and the adoption 
of non-conventional values for some constants, but these matters are 
out of place at this Symposium. What does concern me however is the 
presentation of the fundamental principles of VLBI analysis. 

Not working in this field myself, I cannot claim any degree of 
familiarity with the literature, but I am rather confused by what I 
have found. There seems to be general agreement on the modelling of 
coordinate time delay A t c between the arrival of a wavefront at 
two stations, when referred to the Solar System barycentric frame, but 
some confusion arises when this is converted to a terrestrial proper 
time delay, Ax, between the clock readings at the two stations. 
Thomas (1975) gives a derivation which can be expressed in the form 

r = ( E ^ + ( I + A + 3 - 1 )
 lc 1 r n

t y n ) c 1v n> (6) 

- 2 = 
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where _v, v^ are the barycentric coordinate velocities of the Earth and 
the second station, _b is the baseline vector and c~" z p represents 
periodic terms in the difference between coordinate time and proper 
time. The expression (7) agrees to the same degree of approximation 
with the formulation by Chopo Ma (1978) who quotes Robertson (1975). 

However a rather different formulation has been given by Fanselow 
and Sovers (1985). Their approach is to transform A t c to the 
terrestrial proper frame by means of a Lorentz transformation using the 
velocity v_. This gives, in our notation, 

Ax = 3 { A t c(l - c" 2 v fv ) - c~ 2 v f b } (8) 

where 3 ~ 2 = l - c ~ z v >
z . This expression is rigorous within the 

limits of the physical model adopted, namely neglect of general relativ­
ity in the time transformation and the assumption of rectilinear veloci­
ties. Within these limitations, the main practical difference between 
(8) and (7) is the Lorentz factor 3, which differs from unity by 
about 5 x IO""9. I have no doubt that this factor is absorbed elsewhere 
in the model for the delay, but my point is that there is an apparent 
inconsistency in the literature which can only confuse the non-specialist. 

5. TIME SCALES AND CONSTANTS 

This leads me to my final point. The apparent confusion in the VLBI 
formulation arises because of the conventional definition of "coordinate" 
time. For practical and understandable reasons, the coordinate time 
scale in the barycentric reference frame, TDB, has been arbitrarily 
defined to have the same average rate as the atomic time scale of 
terrestrial clocks, TDT. This is allowed for in (7) but not in (8), 
which is otherwise more elegant and readily understandable. 

Astrometry has, in the past, been hindered by the use of conventions 
which are adopted for computational convenience at one epoch but lead 
to confusion later on. An excellent case in point is the omission of 
the elliptic aberration from the time of Bessel until 1984. Now with 
the definition of TDB we are in danger of making the same sort of 
mistake. 

I have drawn attention elsewhere (Murray, 1983 p 27) to the conse­
quence of this definition of coordinate time, namely that the unit of 
time used in the barycentric coordinate frame must be different from 
that used in the terrestrial frame. The implications of this on the 
definitions of some of the standard astronomical constants have been 
studied recently in some detail by Fukushima, Fujimoto, Kinoshita and 
Aoki (1986). 

My own solution to the problem is to include as defining constants 
those which specifically refer to the barycentric reference frame. 
Thus in addition to the conventional Gaussian constant k, I would 
define the speed of light in barycentric units to be 

c* = 173.14463331 au d" 1 (9) 

where the unit of time is the day (d) which consists of 86400 ( 1 + n ) 
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SI seconds, where 

n = 3 c*~ 2 k 2 (10) 
1 

In place of (10) it might be preferable to introduce a numerical constant 
to take full account of the mean rate of coordinate time relative to 
terrestrial time. 

The primary constants would include only those constants pertaining 
to the Earth-Moon system, expressed in SI units. Apart from the substi­
tution of c for the light time for unit distance, the only numerical 
change from*the existing system would be the number of metres in 1 au 
and the heliocentric gravitational constant which are both currently 
quoted to nine significant figures. 

6. CONCLUSION 

In this review I have mentioned those aspects of relativity which impinge 
upon fundamental astrometric measurements. I have assumed as a basis 
that General Relativity is correct. 

Optical astrometry provided the first direct test of the theory at 
the 1919 eclipse. In recent years the modern techniques of radar-echo 
and radio deflexion measurements have all converged to the prediction 
of General Relativity to much better than one per cent (Will 1980). 
The HIPPARCOS satellite, to be launched by the European Space Agency in 
1988, will make of the order of 10^ astrometric measurements of 
milli-arc second accuracy. Schutz (1982) has estimated that from these 
data it should be possible to make an independent check on General 
Relativity, again to much better than one per cent. Cowling (1983) has 
pointed out that all the HIPPARCOS measurements will be made at least 
47° away from the Sun, so that, unlike the radio deflexion measurements, 
they cannot possibly be affected by the solar corona; furthermore he 
has proposed a generalized axially symmetric model for the Solar System 
metric whose parameters could be solved for. It is thus possible that, 
once again, optical astrometry will make a significant contribution to 
the study of relativity in the Solar System and thus play its part in 
bridging the gap between theorists and observers to which Atkinson drew 
attention more than 20 years ago. 
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