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Abstract

Precisionmedicine for cardiomyopathies holds great promise to improve patient outcomes costs
by shifting the focus to patient-specific treatment decisions, maximising the use of therapies
most likely to lead to benefit andminimising unnecessary intervention. Dilated cardiomyopathy
(DCM), characterised by left ventricular dilatation and impairment, is a major cause of heart
failure globally. Advances in genomic medicine have increased our understanding of the genetic
architecture of DCM. Understanding the functional implications of genetic variation to reveal
genotype-specific disease mechanisms is the subject of intense investigation, with advanced
cardiac imaging and mutliomics approaches playing important roles. This may lead to increas-
ing use of novel, targeted therapy. Individualised treatment and risk stratification is however
made more complex by the modifying effects of common genetic variation and acquired
environmental factors that help explain the variable expressivity of rare genetic variants and
gene elusive disease. The next frontier must be expanding work into early disease to understand
the mechanisms that drive disease expression, so that the focus can be placed on disease
prevention rather than management of later symptomatic disease. Overcoming these challenges
holds the key to enabling a paradigm shift in care from the management of symptomatic heart
failure to prevention of disease.

Impact statement

Advances in the understanding of themolecular mechanisms that cause dilated cardiomyopathy
offer the opportunity to personalise care and improve the outcomes of patients with this
heterogeneous family of disease. Comprehensive characterisation of the disease with genetic
testing and advanced imaging will play a key role. Precision therapies that target the primary
disease mechanism will offer new hope for disease prevention in genetically susceptible indi-
viduals at risk of developing highly penetrant, malignant forms of the condition as well as
effective treatments of early asymptomatic disease.

Introduction

Heart failure is a looming global health crisis with a predicted lifetime risk of 25 to 45% that is
rapidly reaching epidemic proportions (Huffman et al., 2013; Benjamin et al., 2019). Despite the
already high risk of developing heart failure, current projections indicate that the prevalence of
the condition will surge by 46%, and treatment expenditure will increase by a staggering 127% by
2030 (Heidenreich et al., 2013; Huffman et al., 2013). These sobering statistics call for a radical
shift in our current approach to managing the disease.

Dilated cardiomyopathy (DCM) is a myocardial disorder characterised by left ventricular
(LV) dilatation accompanied by systolic dysfunction, in the absence of abnormal loading
conditions or coronary artery disease (Yancy et al., 2013; Pinto et al., 2016; Heidenreich et al.,
2022). Its prevalence is around 1 in 220 people and it represents the leading indication for heart
transplantation (Japp et al., 2016; Chambers et al., 2018). DCM arises from a range of genetic and
acquired factors, often occurring simultaneously. There is a significant overlap between intrinsic
and extrinsic causes (Figure 1). Conditions that were previously considered as separate aetiolo-
gies, such as peripartum cardiomyopathy, cardiomyopathy following anthracycline chemother-
apy and alcohol-related cardiomyopathy have been shown to have similar genetic backgrounds
(Ware et al., 2016; Ware et al., 2018; Garcia-Pavia et al., 2019). It is therefore perhaps best to
consider DCM as a family of related disease that require comprehensive geno- and phenotyping
to fully understand (Yancy et al., 2013; Japp et al., 2016; Pinto et al., 2016).

Present treatment strategies centre on the management of symptomatic heart failure using
guideline-directed heart failure management (GDMT) – a combination of beta-blockers,
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angiotensin-converting enzyme inhibitors, mineralocorticoid ant-
agonists and SGLT-2 inhibitors (Japp et al., 2016; McDonagh et al.,
2021; Heidenreich et al., 2022). This easily generalisable approach
has dramatically improved the outcome of patients with heart
failure reduced ejection fraction over the last 40 years
(Vaduganathan et al., 2020). However, it places little focus on early
treatment of asymptomatic myocardial dysfunction before the
onset of heart failure and instead predominantly targets the neu-
rohormonal consequences of the heart failure syndrome. The ques-
tion of the “right time” to start these treatments is unclear and
typically these agents are commenced when patients develop symp-
toms, late in the disease pathway. An increasing number of asymp-
tomatic individuals with mild disease or genetically susceptible
individuals are being identified through screening strategies. The
incorporation of genetic information into DCM care offers oppor-
tunities for early precision intervention in individuals at risk before
they develop symptoms (Figure 2). Whilst current GDMT will
undoubtedly continue to form a mainstay of symptomatic heart
failure, precision medicine offers a revolutionary solution that
could not only offer additional targeted therapies for those with
more advanced disease but perhaps, more importantly, offer tar-
geted therapies to prevent and slow disease expressionmuch earlier
in the disease course. Currently, there is limited evidence focusing
on the treatment of early DCM. This is likely to be related to low
event rates, a long latent period in the development of overt disease
and variability in the natural history of different gene mutations.
However, with increasing numbers of individuals being identified
at risk, it is important that streamlined clinical trials across large
populations, using pragmatic end-points set out to address this
important issue.

The fundamental premise is that a nuanced understanding of an
individual’s disease through advanced cardiac imaging, genetics,
and biomarkers enables a more personalised understanding of the
mechanism and guides a more refined and targeted therapeutic
approach. But is this all just a pipedream, or are we really on the
brink of a paradigm shift in DCM care? In this article, we examine
the present state and future promise of precision medicine in DCM

to guide novel treatments using precision phenotyping of disease.
We provide an overview of existing knowledge regarding the gen-
etic origins of DCM and contemporary approaches to individua-
lised management.

The genetic architecture of DCM

Using currently available next-generation sequencing panels, a
causative rare genetic variant in about 20–30% of cases of DCM
(Tayal et al., 2021). The yield may be higher in select populations,
such as those referred for advanced heart failure therapies, younger
patients or those with a high burden of ventricular arrhythmia or
conduction disease (Herman et al., 2012; Lukas Laws et al., 2022).

Figure 1. Dilated cardiomyopathy (DCM) – a family of diseases. Selected syndromic causes of dilated cardiomyopathy include Barth syndrome, haemochromatosis, Kearns–Sayre
syndrome, and Carvajal syndrome (adapted with permission from Halliday, 2022).

Figure 2. Precision therapies for genotype-positive, phenotype-negative (G+ P�)
individuals would likely involve genotype-specific therapies, and lifestyle interventions.
Treatments that could be introduced at an early disease stage include anti-fibrotic
agents, and therapies to target cardiac metabolism (such as SGLT2 inhibitors) whereas
advanced disease therapies include antiarrhythmics for those at the highest risk, ICD
therapy and guideline-directed heart failure therapy (GDMT) (HF, heart failure; LVSD,
left ventricular systolic dysfunction).
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Several different genes encoding a range of proteins with diverse
functions have been implicated in DCM (Jordan et al., 2021). These
are most commonly autosomal with X-linked and mitochondrial
variants also uncommonly identified. Autosomal dominant inher-
itance is the norm and themost common genes implicated are those
coding for sarcomeric proteins, including titin (TTN) and beta-
myosin (MYH7). Other notable genes include those coding for
cytoskeletal (FLNC), nuclear envelope (LMNA) and desmosomal
(DSP) proteins. In some cases, the identification of a causative
variant may influence treatment decisions, particularly those asso-
ciated with a more malignant prognosis. However, the greatest
value of genetic testing comes in predicting the risk of asymptom-
atic relatives by enabling the identification of those at high risk of
developing the disease in the future. In gene elusive disease, all first-
degree family relatives typically remain under clinical surveillance
until the age of 60 years. If a causative genetic variant is identified,
cascade screening will be able to identify the 50% of relatives who
are carriers and who have an elevated risk of developing disease.
Those who do not carry the variant can be discharged from
follow-up.

A landmark study found rare truncating variants in the titin
(TTNtv) gene in 25% of patients with advanced or familial DCM
(Herman et al., 2012). More recent studies found TTNtv in 13% of
nonfamilial cases of DCM and ~ 0.5% of the general population
(McNally and Mestroni, 2017; Tayal and Prasad, 2018; Schultheiss
et al., 2019; Verdonschot et al., 2019). These variants are associated
with incomplete penetrance and variable expression (Japp et al.,
2016) that may be attributed to additional gene-modifying factors,
environmental factors, or the penetrance of disease later in life
(Japp et al., 2016). Penetrance is likely to vary significantly between
asymptomatic carriers with a family history of DCM and those
found to carry a TTNtv as a secondary finding on testing performed
for another reason. Nevertheless, subtle markers of reduced cardiac
function have been found in carriers in the general population
(Schafer et al., 2016), suggesting they may be more susceptible to
extrinsic insults, such as alcohol and cardiotoxic chemotherapy.

Recent research has emphasised the importance of common
genetic variation or polygenic risk in determining the risk of
developing DCM (Pirruccello et al., 2020; Tadros et al., 2021).
Many patients without a rare variant cause are likely to have high
polygenic risk contributing to the development of contractile dys-
function along with extrinsic factors. Polygenic risk is also likely to
influence the penetrance of rare genetic variants, helping to explain
the variable expressivity and incomplete penetrance commonly
seen across families with a pathogenic variant. A future precision
approach to determining disease risk in families with DCM is likely
to integrate data on phenotype, rare and common genetic variation
and the interaction with extrinsic insults.

Autosomal recessive transmission has also been described. This
is of particular relevance in younger individuals and childhood
cardiomyopathies. For example, biallelic loss of functionmutations
in the nebulin-related anchoring protein gene (NRAP) have been
identified in some individuals with severe sporadic DCM and have
been proposed to cause low-penetrant recessive disease (Iuso et al.,
2018; Koskenvuo et al., 2021). Several syndromic causes of DCM
have been identified. These include dystrophinopathies such as
Duchenne and Becker’s muscular dystrophy, and other eponymous
syndromes including Barth syndrome (Hershberger et al., 2009;
Hershberger et al., 2013). A raised creatinine kinase level and
characteristic sub-epicardial fibrosis in the lateral wall are typical
in patients with dystrophinopathies and cardiac manifestations
may predate neuromuscular symptoms in Becker’s muscular

dystrophy (Del Rio-Pertuz et al., 2022). Rare metabolic disorders,
particularly inborn errors of metabolism, have also been associated
with DCM (Guertl et al., 2000; Cox, 2007). Broadly, these can be
grouped into disorders of amino acid/organic acid metabolism,
disorders of fatty acid metabolism, glycogen and lysosomal storage
disorder and mitochondrial disorders (Guertl et al., 2000).

Stratifying arrhythmic risk in genetic DCM

The traditional approach to stratifying the risk of major ventricular
arrhythmia in DCM relies on a combination of symptoms and left
ventricular ejection fraction (LVEF). However, this “cause-
agnostic” approach does not fully encapsulate the heterogeneity
of DCM and a growing body of data support an increased risk of
SCD with specific genotypes. This has begun to influence inter-
national guidelines on the selection of patients for implantable
cardioverter defibrillators (ICDs) that recommend lower thresh-
olds for such devices in patients with LMNA, FLNC, PLN or RBM20
variants and other high-risk features beyond LVEF (Zeppenfeld
et al., 2022). This represents a wider trend in recent guidelines that
attempt to risk stratify patients according to genotype and pheno-
type to make personalised decisions about their care, attempting to
break down the traditional grouping of “non-ischemic
cardiomyopathy” (Table 1).

Is genotype-specific therapy the answer?

Discovering a monogenic cause for DCM provides direct insight
into the molecular mechanisms that drive disease. This creates the
possibility of using precision therapies directed at the primary
molecular basis of disease. Such approaches are not only relevant
to those with symptomatic heart failure where they may be used
alongside GDMT, but perhaps more importantly for asymptomatic
individuals with early markers of disease or those with genetic
susceptibility to developing disease later in life. Evidence-based
treatments for the latter groups are currently lacking. Targeted
therapy for disease prevention must be a priority. Strategies target-
ing the primary disease mechanisms may take different main
approaches.

The immediately downstream molecular consequences of the
variant represent attractive targets. Most genes associated with
cardiomyopathy serve important functions within the cardiomyo-
cyte, with their respective proteins carrying out specific functions.
Disruptions in the function of these proteins, either through loss or
gain of function, result in intracellular changes in signal transduc-
tion, prompting the cardiomyocyte to undergo adaptive changes
(Reichart et al., 2019). Given the heterogeneity of DCM, down-
stream targeting of these processes would require a wide variety of
agents to target the products of different genes implicated in the
pathogenesis. One such target that was recently investigated in
phase II and III trials was the heightened cardiac activity of
ERK1/2, JNK, and p38 MAP kinases downstream from variants
in LMNA associated with DCM (Muchir et al., 2012). Much hope
arose from animal studies that demonstrated a reduction in adverse
remodelling following the administration of a p38 inhibitor
(Wu et al., 2011; Laurini et al., 2018). Unfortunately, these results
were not translated into the phase III trial that was recently stopped
due to futility.

Another example comes from the use of myosin modulators in
sarcomeric DCM. Sarcomeric dysfunction is the primary mechan-
ism of DCM in patients with TTNtv or relevant variants inMYH7.
This is the opposite functional consequence of sarcomeric variants
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causing hypertrophic cardiomyopathy (HCM) that are associated
with sarcomeric over-action. In the same way that promise has
arisen from the use of myosin inhibitors, there is excitement about
the potential use of agents such as danicamtiv and omecamtiv
mecarbil that increase actin-myosin cross-bridging in sarcomeric
DCM (Voors et al., 2020; Teerlink et al., 2021). Similarly, emerging
data suggest that TTNtv are associated with modifications in car-
diac metabolism and energy utilisation (Verdonschot et al., 2018;
Ware and Cook, 2018; Zhou et al., 2019). In particular, an upregu-
lation in the transcription of important mitochondrial machinery
may represent a compensatory response to sarcomeric dysfunction
(Ware and Cook, 2018). Targeting early mitochondrial dysfunction
may therefore be a promising target for future investigation.

An example of precision therapy from current clinical practice is
the use of sodiumchannel blockers such as flecainide or quinidine for
DCM associated with SCN5A variants that result in an increased
sodium current (Peters et al., 2022). A recent systematic review has
shown such cardiomyopathies, typically associated with a high bur-
den of ventricular arrhythmias, to be responsive to sodium channel
blockers (Peters et al., 2022). It may be argued that such phenotypes
are a primary electrical disease rather than a true cardiomyopathy.
Nevertheless, the reversibility with widely available therapies empha-
sises the importance of achieving a genetic diagnosis, avoiding other
unnecessary invasive procedures (Figure 3).

Arguably, the most definitive treatment approaches are those
that directly target the genetic variant (Verdonschot et al., 2019).

Figure 3. Cellular locations of some of the proteins with their respective genes associated with dilated cardiomyopathy.

Table 1. Genes with definite/strong association with DCM and their functional and phenotypic implications (14, 17)

Gene Protein Function Phenotype/risk

TTN Titin Extensible scaffold/molecular spring Low prevalence of LBBB, atrial fibrillation

LMNA Prelamin-A/C Nuclear membrane structure Accelerated disease Ventricular arrhythmia may
precede overt DCM

FLNC Filamin-C Structural integrity of cardiacmyocyte;
actin crosslinking protein

Ventricular arrhythmia may precede overt DCM,
Overlapping phenotype of dilated and left-dominant
arrhythmogenic cardiomyopathies complicated by
frequent premature SCD

RBM20 RNA-binding motif protein 20 Regulates cardiac gene splicing High risk of sudden cardiac death, Malignant VAs

PLN Cardiac phospholambin Sarcoplasmic reticulum calcium
regulator, inhibits SERCA2a pump

Founder mutation in Netherlands, high risk of SCD,
Significant posterolateral and free wall fibrosis in PLN
R14del

SCN5A Sodium channel protein type-5 subunit alpha Sodium channel Ventricular arrhythmia may proceed overt LV
dysfunction

DSP Desmoplakin Desmosomal junction protein Ventricular arrhythmia risk, Extensive fibrosis may
precede LV systolic dysfunction and LV dilatation

BAG3 BAG family molecular chaperone regulator 3 Inhibits apoptosis High penetrance > 40 years, worse prognosis in
nonsense variants

TNNTC1 Troponin C, slow skeletal and cardiac muscles Myocardial contraction

TNNT2 Troponin T, cardiac muscle (troponin T2) Myocardial contraction
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Various methods are currently being investigated to accomplish
this objective, including: (1) gene editing – the use of CRISPR/Cas9
to directly edit the genetic sequence and restore normal protein
function, (2) gene replacement therapy for cardiomyopathies asso-
ciated with loss of function variants where the wild type gene is
expressed, primarily through gene transfer techniques with viral
vectors, (3) gene silencing therapy, primarily using small interfering
RNA molecules to reduce the expression of abnormal functioning
protein as a result of missense variants, and (4) exon skipping,
involving the use of anti-sense oligonucleotides to mask exons
during transcription and restoring the reading frame (Carrier
et al., 2015; Gramlich et al., 2015; Prondzynski et al., 2017; Ma
et al., 2018).

Much of the early progress in this area has been in Duchenne
muscular dystrophy (DMD) where both exon skipping and gene
editing have been used to restore dystrophin production in experi-
mental models (Amoasii et al., 2018). Early work has also demon-
strated the potential of similar approaches in DCM associated with
TTN, another similarly large gene with areas of redundant sequence
(Gramlich et al., 2015; Romano et al., 2022). Pre-clinical studies in
mice with the well-described PLN R14 gene deletion, have also used
anti-sense oligonucleotides to decrease phospholamban activity,
prevent cardiac dysfunction, and improve survival (Grote Bever-
borg et al., 2021; Deiman et al., 2022). This particular founder
variant is associated with a malignant form of DCM, commonly
encountered in the Netherlands.

Although substantial progress has been made in demonstrating
the feasibility and potential of genome editing in cellular and
murine models, numerous unanswered questions remain prior to
advancing to human trials involving currently available techniques.
Key considerations include ensuring the safety of viral delivery and
accurately targeting the vector to the intended site with appropriate
dosage (Colella et al., 2018).

Precision therapy in gene elusive disease

Whilst genetic therapies hold great promise for those with mono-
genic disease, the majority will have little relevance for the majority
of patients with DCM without a rare variant genetic cause. This
group of patients are likely to have a diverse range of disease
mechanisms including activation of fibroinflammatory pathways
and metabolic dysfunction, driven by extrinsic causes including
toxic insults, inflammatory or metabolic disease as well as genetic
susceptibility related to common genetic variation (Reichart et al.,
2022). Characterising these mechanisms in individual patients
using precision phenotyping may help guide targeted therapy.
The integration of advanced cardiac imaging and biomarkers offer
huge potential to individualise management.

Myocardial fibrosis

In DCM the balance between extracellular matrix (ECM) synthesis
and degradation is disrupted (Piek et al., 2016). This leads to the
formation myocardial fibrosis. Fibrosis is initiated by the activation
and differentiation of fibroblasts into myofibroblasts, triggered by
transforming growth factor (TGF-β) (Khalil et al., 2017). Myofi-
broblasts produce higher levels of ECM proteins, contributing to
the development of fibrosis (Nagaraju et al., 2019). Fibrosis leads to
reduction in compliance of the diseased myocardium and acts as a
substrate for arrhythmias (de Jong S et al., 2011; Ellims et al., 2014).
It is recognised as a key disease mechanism across a spectrum of

DCM and is thought to represent a modifiable target for treatment,
particularly in early disease before replacement fibrosis or scar has
developed (Halliday and Prasad, 2019).

Fibrosis is likely to be driven via multiple different pathways.
Neurohormonal activation as part of the heart failure syndrome
with upregulation of angiotensin II and aldosterone is likely to play
an important role (Halliday and Prasad, 2019). Myocardial inflam-
mation and immune activation are also tightly linked to fibrotic
pathways and are likely to play an important role in a subset of
patients (Halliday and Prasad, 2019). Upregulation of fibrosis also
appears to be an early feature of specific genotypes including FLNC,
DSP and LMNA (Augusto et al., 2020). Targeting patients in these
groups with anti-fibrotic agents may therefore be fruitful.

Mineralocorticoid receptor antagonists, which are an important
part of GDMT show promise as potential antifibrotic drugs for
patients with DCM (Izawa et al., 2005; Al-Khatib et al., 2018;
McDonagh et al., 2021). These medications can influence remod-
elling, reduce biomarkers associated with collagen biosynthesis,
and improve patient outcomes (Sharma et al., 2004; Besler et al.,
2017). Evidence also suggests that antifibrotic agents used in other
diseases, such as pirfenidone, may hold some promise in the
treatment of heart failure (Lewis et al., 2021).

Cardiac metabolism

A key characteristic of DCM and heart failure is reduced oxidative
metabolism and a shift from fatty acid oxidation to increased
glucose utilisation (Heggermont et al., 2016). Whether this is
adaptive ormaladaptive remains a topic of debate. Other important
metabolic changes include increased ketone metabolism that is
thought to represent a therapeutic target. Regardless of the cause,
a myocardial energy deficit appears to be an important pathway in
perpetuating the progression of the disease (Heggermont et al.,
2016; Sacchetto et al., 2019).

It appears likely that the myocardial energetic phenotype and
impact of impaired myocardial energetics will differ across the
spectrum of DCM. This may be influenced by co-morbidities such
as diabetes mellitus as well as age that are associated with impair-
ment of energetics (Chowdhary et al., 2022). Genotype-specific
differences are also likely to exist. In recent studies, the impact of
DCM-causing TTNtv was explored in rats, revealing a correlation
with impaired autophagy, reduced oxygen consumption rate,
increased production of reactive oxygen species (ROS), and ele-
vated ubiquitination of mitochondrial proteins in cardiomyocytes
(Sacchetto et al., 2019; Zhou et al., 2019). This is supported by data
from human myocardial tissue demonstrating important changes
in the transcription of proteins relevant to mitochondrial function
in carriers of TTNtv (Verdonschot et al., 2018; Reichart et al., 2022).
Additionally, an aberrant signalling pathway involving ERK1/2 was
associated with alteredmitochondrial shape, distribution, fragmen-
tation, and degeneration in a mouse model of LMNADCM (Galata
et al., 2018).

There are many possible metabolic modulators that could be
studied in a targeted fashion. There is interest in the use of the
antioxidant and cofactor for mitochondrial electron transport,
coenzyme Q10. Phase III trial data in heart failure with reduced
ejection fraction was promising, however larger, more robust trials
are required before routine clinical use (Mortensen et al., 2014). A
mitochondrial-targeted form of coenzyme Q10, MitoQ, has also
gained interest following convincing experimental data (Goh et al.,
2019). Whether some forms of DCM, such as those related to
TTNtv, may gain more benefit from such therapies is unclear. It
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is also possible that such therapies will improve cardiac function
through other pathways, such as by reducing endothelial dysfunc-
tion and reducing afterload (Roura and Bayes-Genis, 2009; Gian-
nitsi et al., 2019). Trimetazidine inhibits the protein thiolase I,
responsible for the final step of beta-oxidation in the mitochondria.
This results in a shift in substrate utilisation towards glucose
metabolism (Tuunanen et al., 2008). Perhexilene reduces fatty acid
oxidation by inhibiting carnitine palmitoyltransferase-1 and simi-
larly promotes a switch to glucose utilisation (Beadle et al., 2015).
Early phase data have suggested that such agents may improve
myocardial energetics and LV systolic function, however, later
phase data are still lacking and concerns regarding the long-term
safety of perhexiline remain (Tuunanen et al., 2008; Zhang et al.,
2012; Beadle et al., 2015; Fan et al., 2018). Debate continues whether
downregulating fatty oxidation is truly beneficial (Watson et al.,
2023). Much therefore remains to be understood about the role of
personalised metabolic therapy.

Given the likely variable impact of fibrosis, immune activation
and metabolic dysfunction across the spectrum of DCM, it is
essential that we have accessible non-invasive methods to assess
the role of these mechanisms in individual cases to guide precision
and targeted therapies. Cardiac imaging as well as circulating
biomarkers have the potential to play an important role.

Cardiac imaging

Whilst echocardiography (TTE) serves as the initial modality for
diagnosing patients with heart failure with reduced ejection frac-
tion, it is unable to reliably discriminate the cause of left ventricular
dysfunction. Much data supports the use of cardiac magnetic
resonance (CMR) imaging as a valuable tool for discriminating
between ischaemic and non-ischaemic aetiologies and refining the
cause andmechanism of non-ischaemic LV dysfunction (Japp et al.,
2016; Halliday, 2022). It does so through detailed tissue character-
isation using late gadolinium enhancement (LGE) imaging and
parametric mapping (Japp et al., 2016; Halliday, 2022; Merlo
et al., 2023). This insight currently provides important information
that guides selection of patients for ICDs and may also help
individualise other treatment decisions in the future.

LGE represents replacement myocardial fibrosis and is present
in around one-third to a half of cases (Kuruvilla et al., 2014; Di
Marco et al., 2017). LGE presence has been found to be a predictor
of mortality, hospitalisation, and sudden cardiac death (SCD).
Furthermore, the presence, extent, and patterns of LGE may pro-
vide additional valuable predictive information regarding malig-
nant ventricular arrhythmias (VAs) or left ventricular (LV) reverse
remodelling (Kuruvilla et al., 2014). The presence of LGE is now
included in guidelines for primary prevention ICD implantation
(McDonagh et al., 2021; Zeppenfeld et al., 2022). The pattern of
myocardial fibrosis on CMR may also point towards particularly
genetic aetiologies. Variants in desmoplakin (DSP) and filamin C
(FLNC) have been shown to be associated with ring-like patterns of
myocardial fibrosis which has been associated with worse outcomes
(Augusto et al., 2020). Parametric mapping with CMR also offers
the ability to quantify interstitial changes, including fibrosis and
oedema. Another exciting emerging fibrosis imaging technique is
68-gallium-labelled fibroblast activation protein inhibitor (FAPI)
positron emission tomography (PET). This nuclear technique
offers the potential to image fibrosis activity, anticipate fibrotic
remodelling and prevent clinical disease before it occurs using
targeted anti-fibrotic therapies.

31Phosphorus magnetic resonance offers the unique ability to
study myocardial energetics in vivo. Studies have confirmed that
DCM is characterised by a decrease in the ratio of phosphocreatine
to adenosine triphosphate, a marker of impaired energetics (Stoll
et al., 2016). This has been shown to improve with reverse remod-
elling and predict outcome (Neubauer et al., 1997). This technique
offers the ability to characterise the metabolic phenotype of indi-
vidual patients and perhaps identify those who may gain most
benefit from targeted metabolic therapies.

Diffusion tensor CMR enables comprehensive evaluation of
cardiacmicrostructure revealing intricate details ofmyocardial wall
mechanics, including the rotational torsion of myocardial sheetlets.
This emerging techniquemay offer unique insight into the response
to therapies targeting the sarcomere (Nielles-Vallespin et al., 2017).

Blood biomarkers

Circulating biomarkers provide the opportunity to characterise
metabolic derangement, collagen turnover as well inflammatory
and immune activation (Rubis et al., 2022). This has the potential
to guide therapy decisions. One potential disadvantage is that
many are not cardiac-specific. For example, circulating serum
biomarkers of fibrosis reflect collagen turnover not only in the
heart but also in various organs such as vessels, liver, and bone.
Nevertheless, the carboxy-terminal propeptide of procollagen
type I (PICP) and the amino-terminal propeptide of procollagen
type III (PIIINP) have been correlated cardiac fibrosis observed on
histology (Izawa et al., 2005; Lopez et al., 2010; Rubis et al., 2022)
and elevated levels of these peptides predict an unfavourable
outcome in patients with HF (Martos et al., 2009; Sweeney et al.,
2020; Cleland et al., 2021). There has been interest in using
markers to select patients who may benefit the most from anti-
fibrotic therapy (Cleland et al., 2021; Raafs et al., 2021). Galectin-3
is another marker of fibro-inflammatory activity and has been
identified as a prognostic marker due to its association with worse
outcomes in DCM (Sharma et al., 2004; Besler et al., 2017). It
appears likely that fibrosis plays an important role in driving early
disease in particular phenotypes. The extent to which biomarkers
will be able to guide therapy prior to the emergence of symptom-
atic DCM is unknown. One advantage of using them in susceptible
individuals or those with early disease is that extra-cardiac causes
of fibrosis are less likely to be relevant in this younger, less
co-morbid group. Additionally, other markers such has high-
sensitivity troponin T (hsTnT) andN-terminal prohormone brain
natriuretic peptide (nt-proBNP) may have an important role in
predicting disease progression (Chmielewski et al., 2020; Suresh
et al., 2022). Both, for example, have been associated with the risk
of malignant ventricular arrythmias in LMNA mutation carriers
(Figure 4).

Precision phenotyping in DCM

Another key challenge is integrating these multidimensional data
in a simple, accessible way to create a ground truth for the patient
we see in clinic. Several studies have used unbiased clustering
analysis known as phenomapping, in patients with various forms
of heart failure including DCM, to help define subgroups of
patients (Shah et al., 2015; Verdonschot et al., 2020; Tayal et al.,
2022). The heterogenous aetiology of DCM makes it imminently
suitable for this form of classification. Tayal et colleagues used a
machine-learning based approach to cluster patients based on
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clinical, imaging, genetic and circulating characteristics and iden-
tified distinct subclasses of DCM with shared and distinct disease
mechanisms (Tayal et al., 2022). Verdonschot and colleagues used
a similar approach incorporating transcriptomics to identify dis-
tinct transcriptomic profiles, including, pro-fibrotic, pro-
inflammatory and metabolic subtypes (Verdonschot et al.,
2020). Both groups then used common clinical variables to dis-
criminate between the groups so that this approach could be
translated more easily into clinical practice.

By untangling the upstream causes and downstream active
processes unique to each patient, such approaches may illuminate
the targets for therapeutic intervention. The heterogeneity of DCM
necessitates a personalised approach, with treatment strategies
designed to benefit the individual patient subgroups that emerge
from thorough phenotypic characterisation.

Co-morbidities and lifestyle

In the individualised treatment of individuals with DCM, it is
important to also manage comorbidities such as coronary artery
disease, hypertension, diabetes, thyroid disease, anaemia, and obes-
ity (Reichart et al., 2019; Verdonschot et al., 2019; Zeppenfeld et al.,
2022). It is likely that such co-morbidities interact with intrinsic
susceptibility to develop contractile impairment. Whether more
intensive treatment and stricter control of these issues improves
outcomes remains unclear. Special attention should also be paid to
the impact of alcohol and cardiotoxic chemotherapy, such as
anthracyclines (Ware et al., 2018; Andersson et al., 2022; Tayal
et al., 2022).Whilst it is clear that excessive amounts of alcohol may
be harmful, it is debatable whether low or moderate levels of
consumption lead to adverse remodelling and unclear whether
abstinence should be recommended (Andersson et al., 2022). It is
possible that specific genotypes may lead to increased susceptibility
to cardiotoxins (Ware et al. 2018). Individualised exercise prescrip-
tion is another important factor to consider. Patients with symp-
tomatic DCMor features of increased risk should avoid engaging in
high-intensity or competitive sports (Pelliccia et al., 2019). There is
particular concern for those with high-risk genotypes.

Conclusion

A precision medicine approach holds great promise for revolutionis-
ing our approach topatientswith the heterogeneous family of diseases
thatmake upDCM.By integrating findings from clinical data, genetic
testing, advanced imaging and circulating biomarkers, clinicians can
gain a detailed understanding of each patient’s disease that can help
individualise treatment via a shared decision-making approach.

However, significant challenges remain. Integrating the breadth
of available genomic and phenotypic data to predict individual risk
remains a challenge. Whilst many disease-specific treatments are
under investigation, some remain years away from clinical routine.
Whilst disease mechanisms have been well characterised in
advanced disease, at what stage these occur in the natural history
of DCM and whether early targeted intervention will delay the
onset of overt disease remains to be determined. Despite these
hurdles, the incorporation of genomic and phenotypic data hold
the potential to establish a novel clinical framework for evidence-
based and personalised care in DCM.
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