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Abstract

Notions of effective complementation in effective topological spaces are considered, and several types
of non-complemented sets are constructed. While there are parallels with recursively enumerable sets,
some unexpected differences appear. Finally, a pair of splitting theorems is proved.
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1. Introduction

With their paper Recursive Constructions in Topological Spaces [6], Kalantari and
Retzlaff introduced the use of recursion theoretic tools in the study of effective-
ness in topology. This was the first of a series of papers, [2], [3], [4], [5], and [6]. In
these studies recursive properties of open sets form the central theme.

In this paper we develop some ideas suggested by the above work and
investigated in the author's Ph.D. thesis [1].

In Section 2 below we give the basic definitions and discuss some notions of
effective topological complementation which have been explored.

In Section 3 we go on to consider non-complemented sets, introducing notions
of topological creativity and simplicity, and constructing a set which is both
simple and creative. Finally we prove a pair of splitting theorems similar to
Friedberg's splitting theorem for recursively enumerable sets.
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2. Definitions

We consider a topological space, X, with countable basis A = {Sn: n e w } .
The elements of A are called basic open sets. We require that every non-empty
basic open set contain two disjoint non-empty basic open sets. This condition
gives us enough basic open sets to carry out infinite constructions.

We call such a space an effective topological space if there are algorithms by
which

, , given n, m e u we can find a number k such that Sn n Sm =

and

, . given m, nv..., nk e u we can decide whether or not Sm c
Sn U • • • U«B .

" 1 "k

Such a pair of algorithms is called an inclusion algorithm for X. This definition
is the same as that in [6], except that we do not require conditions I and III given
there. Examples of effective topological spaces are given in [1] and [6].

The objects of our study are the r.e. (recursively enumerable) open sets in such
an effective topological space. Still following [6], we write

« G u ( ) , the eth r.e. open set,

and

* / = U{Sn: n e us
e}, where us

e is the finite part of ue

enumerated up to stage s in a standard enumeration of the r.e. sets.
R.e. open sets are the topological analogue of recursively enumerable sets. A

natural question presents itself—what is the toplogical analogue of recursive sets?
This question is considered in [1], [5] and [6] where several distinct, reasonable
answers are found.

If one regards a recursive set as a complemented element of S£(oi\ the lattice
of r.e. sets, one arrives at the notion of a complemented r.e. open set, (see [6]), that
is an r.e. open set sf for which there is an r.e. open set 38 with j / n 38 = 0 and
stf U 38 dense in X. One could strengthen this and say that the natural topological
complement of stf, the exterior of J / , written ext s#, should be an r.e. open set.
Let us call such a set jtf strongly complemented (the term D-complemented is used
in [1]).

Or again, one might regard a recursive set as a decidable set. In the topological
version one may want to decide which basic open sets are contained in the given
r.e. open set, or which basic open sets intersect it nonemptily. In [1], a set for
which one can decide the second question is said to be (\recursive. A set for
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[3] Non-complemented open sets 131

which one can decide both questions is called completely resursive in [6]. Clearly
j / is completely recursive => J / is D-recursive => J / is strongly complemented
=> J / is complemented. Examples constructed in [1], [5] and [6] show that no

other implications hold in general, showing that the structure of the lattice of r.e.
open sets is substantially different from that of ££(u).

In the rest of this paper we investigate «o«-recursiveness in the topological case.

3. Creative and simple

A very useful concept in topological constructions is that of a partition. An r.e.
collection F = { Y;: / e to} of basic open sets if called a partition for a set stf if

(i) y,. * 0 , for all /,
(ii)/ *j=>yinyj= 0,
(iii)U(Y,: i e «} c j / ,

and (iv) U{ Y,- /' e to} is dense in J / .
In the proof of Theorem 3.1 of [5] it is shown that every non-empty r.e. open

set possesses a partition. We use this in our Theorem 1.
In -£?(to) the set K = {e: e ̂  ue) is a. standard example of a non-comple-

mented r.e. set. It is also an example of a creative r.e. set.
Let us say that an r.e. open set, #, is creative if there is an algorithm by which,

given an r.e. open set "Ue such that # n %e = 0 , we can find a non-empty basic
open set Sn such that Sn c ext(#U ^e). That is, Sn is an effective witness to <#
being non-complemented.

Shi has independently considered creative r.e. open sets and obtained a series
of results, but at this time we have seen only an abstract [7]. There he has our
Theorem 1, as well as a counterexample to the conjecture that creative r.e. open
sets are unique up to isomorphism. We do not know what his definitions and
assumptions are.

We first establish the existence of creative sets:

THEOREM 1. Let X be an effective topological space and let s? be a non-empty r.e.
open set in X. Then st contains a creative set, %'.

PROOF. Let {<*„: /j e to} be a partition for sf. Put <&= U{ae: aen <%e± 0 } .

Then if <€ n <%e = 0 , we will have ae c ext (^ U <%e).
In .£?(«), creative sets are unique up to isomorphism. We have not been able to

prove an analogous theorem for creative sets in an effective topological space, but
we have an intermediate result.
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For r.e. open sets sf, 38 we say 38 is m-reducible to sf, and write 38 < m s/ if
there is a recursive function / such that

8n n J1 = 0 <=> 8/(B) r\s/= 0.

An open set J?/ is m-complete il 3$ ^s# for all r.e. open sets ^?.

THEOREM 2. L f̂ X be an effective topological space and let W be a creative r.e.
open set in X. Then % is m-complete.

PROOF. The algorithm for the creativeness of # yields a recursive function h
such that "To <%e = 0 => Sh(e) c ext(^U # e ) .

Let J / be any r.e. open set. Define a recursive function g such that

0 if «^nj/= 0.

(Use the intersection algorithm.)
By the recursion theorem, there is a recursive function n such that

Thus

and

A creative set is non-complemented, but what other kinds of non-comple-
mented r.e. open sets exist? In £P{u) the corresponding question gives rise to
simple sets.

One may think of a simple set as one which has a large complement but no
infinite r.e. complement, since the only r.e. sets disjoint from it are small. To
define an analogous concept in topological terms one needs a notion of "large"
and "small". Such a notion is presented in [3], giving rise to the concept of
fragmentation simplicity. Here we take a different tack, and try to construct an r.e.
open set which meets as many r.e. open sets as possible, while still keeping the
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classical complement "large". If the set to be constructed is to have a non-trivial
complement, then certainly there must be at least one basic open set disjoint from
it. Unavoidably then, any r.e. open set in which this basic open set is dense is also
contained in the complement. If the complement is to be "large" then one would
not want this one basic open set to be dense in it, so one is forced to admit
another basic open set into the complement, together with any r.e. open set in
which any r.e. open set in which these two basic open sets are dense. Surely just
two basic open sets should not be dense in the complement, so we must allow
another, and so on. This line of thought leads to the following definitions.

A set s& in A" is A-large if no finite union of basic open sets is dense in s/.
Otherwise, J / is A-small.

Note that this concept is highly dependent on the choice of basis for the
topology. To be more precise, let us say that two bases are effectively equivalent if
there are algorithms by which, given an enumeration of an r.e. open set in either
basis, we can find an enumeration in the other basis for the same open set. It is
not difficult to construct examples of spaces, with effectively equivalent bases, in
which a set is "large" with respect to one basis but "small" with respect to
another. I am grateful to the referee for pointing this out and have taken up his
suggestion by using the terms A-large, A-small and A-simple to emphasize this
basis dependence.

Observe that any set dense in a A-large set is A-large and any subset of a
A-small set is A-small.

An r.e. open set y is called A-simple if
(i) ext S? is A-large, and,

(ii) <%e c exty=> "Ue is A-small.
Observe that a A-simple set cannot be complemented, since a complement

would be A-large (being dense in ext S?) and A-small (being a subset of e x t y ) .
Note that X may not contain any A-large sets. For example, X itself may be an

element of A. Thus, to construct a A-simple set we need X to satisfy some extra
condition. It is sufficient to require that X itself is A-large, i.e. that no finite
union of basic open sets is dense in X.

THEOREM 3. Let X be A-large. Then X contains a A-simple set

PROOF. We use a finite injury priority construction.
Let {/): i e «} be an effective list of all finite unions of basic open sets. We

aim to ensure that, for all i; e <o, y U f{ is not dense in X. From this it follows
that ext y is A-large. To do this we choose a witness Bt for each i, a basic open
set, which we try to keep disjoint from y u /,.
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We also try to make every <%e intersect £f non-trivially. It turns out that we
can fail only if Qle is A-small, so any r.e. open subset of X — Sf will be A-small.

Construction. Our requirement are

Ne: Be = lim Bs
e exists and is non-empty,

Pe: <%e is A-large => <%e n Sf* 0 .

We give these the priority ranking No > Po > Nx > Px > • • • . We say that Ne

requires attention at stage s if B* is not defined. Ne is attacked at stage s by
finding the first n such that 8n * 0 and 8n n {£fs U/ e ) = 0 , and putting
K+X = K- Note that such a 8n exists since X is A-large.

Ne is injured at stage 5 if 2?* is defined and Bs
e
 + l is undefined. We say that Pe

requires attention at stage s if # / n .9" = 0 , and for some « < s, 8nc <^/s
e and

8n n U{5/: /' < e and 5 / is defined} = 0. Pe is attacked at stage s by finding
the least such n and putting y + 1 = &s U 5n, 5 / + 1 undefined for all / > e.

0. Set £f° = 0 , 5 ° is undefined for all e e w.

5 > 0. Find the highest priority requirement requiring attention at this
stage and attack it.

End of construction.
The usual argument shows that all the Ne are met. Clearly, if Pe is ever the least

requiring attention, then Pe is met. On the other hand, if eHt n y = 0 and /*e is
never the least requiring attention, then Bo U • • • U Be is dense in ^ so that alle

is A-small. Thus the Pe are all met and Sf is A-simple as claimed.

In =5?(co), the complement of a creative set contains an infinite r.e. set, so a
creative set is not simple, but the analogous argument does not go through for
creative sets. Let ^ be a creative set. Specifically, since 0 c X — # we can find
a basic open set, av such that ^ c I - C ^ u 0 ) . We can then find a2 Q X —
( # U ax), a3 Q X - (y>\J ax U a2), etc. But the infinite r.e. collection
{al,a2,a},...} may not have an A-large union. This is shown clearly in the next
theorem.

THEOREM 4. Let X be A-large. Then X contains a A-simple, creative open set 0>.

PROOF. We modify the construction in Theorem 3.
Let A be a fixed basic open set and let Ao, Ax,... be a partition for it. To

ensure that & is creative, we require that, for all e, 01 C\^le= 0 => Ae c X —
(&>U <%e). Let us call this requirement Qe.
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W e s a y t h a t Qe requires attention a t s t a g e s i f Wj, n @>s = 0 a n d <&* n A e ± 0 .

Qe is attacked at stage 5 by putting @s+1 = @>s U >4e.
The following changes need to be made.
Ne is attacked at stage s by finding the first n such that fin n (^* u Y4 U/ e ) =

0 , and putting Bs
e
 + l = 8n.

Pe requires attention at stage s if <2C* n £?" = 0 , and for some n < s, 8n c °lls
e

and 8n n (A U U{2?/: /' < e and 5 / defined}) = 0 . We give these the priority
ranking No > Po > Qo > Nx > P1 > Q1

The same arguments as before show that the Ne and Pe are all met. Suppose
9 O °Ue = 0 . If Qe ever requires attention it will eventually be the least requiring
attention and so will be attacked. Then Ae c 0> and Ae n °Ue # 0 imply
^ n <%e ¥= 0 . This is a contradiction so 2 e never requires attention, that is,
<%en Ae= 0 as claimed.

An interesting question which we have not been able to answer, even for
particular X, is whether there exist sets which are "A-maximal", where this is
defined in the same spirit as A-simple. That is, let us call an r.e. open set
J( A-maximal if

(i) ext J( is A-large

and

<%e 3 J( => M U / is dense in <%e \ for some finite union,
^U' or <%e U / is dense in X) f, of basic open sets.

We conclude with a topological version of Friedberg's splitting theorem.

THEOREM 5. Let X be an effective topological space. Let s/ be an r.e. open set in
X which is not complemented. Then s/ contains r.e. open subsets ^1 and @t2

 suc^
that ^x n ^ 2 is dense in J / , 38x C\ 982 = 0 , and neither 3SX not 3S2 is comple-
mented.

PROOF. Let {an)nSu be a full enumeration of s/. That is, for some e e «,
s/= Qle and (8, c <8f* for some s £ « » J, = a , for some n e ue).

Construction. We construct 36x and 382 in stages. Set ^ ° = ^?° = 0 .

s + 1. Let a = the first an such that an # 0 and an n ( ^ U ^ | ) = 0 .
Let x, = the least x < s such that a n <tts

x * 0 and either ^ls
x C\38{= 0 or

<2r* C\38{= 0 . Effectively find some 0 c a n ^ .

Case (i). ^ n ^ f = 0 . Put ^ + 1 = 3S[ U ^8, ^ | + 1 = ^ | .
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Case (ii). <#£ n « | * 0 and <2^ n ^ | = 0 . Put ^ + 1 = #f, ^ 2
i + 1 = ^2

J U
/?. If no such x exists, put 38^x = 38[ U « , « 2

I + 1 = 381
At the end of time put 38 x = \J38[ and 382 = U 0 | .

fswd of construction
By construction, 38xf\ 382 = 0. To see that ^ U ^?2 is dense in s/, suppose

not and that 5 c s/ is disjoint from ^ U 382. There exists M such that an c 5.
By assumption, an is disjoint from 38{ U ^?2 f° r a ' l s- Thus at some stage s, an is
the first such. At this stage, by construction, an n (3S[+X U ^ | + 1 ) * 0 . This is a
contradiction, so 38X U 382 is dense in J / , as claimed.

It remains to show that S6X and 382 are not complemented. Suppose, for a
contradiction, that 38X is complemented. We show that in this case s/ is
complemented.

Suppose {%x has a complement, ^lm. Let s0 be the least s > m such that if
k < m, t > s, then xt± k (such a stage exists since each k = some x, at most
twice during the construction).

Suppose that at some stage s > s0, and for some basic open set 8 we have
§ c ^ and 8 n 38S

2= 0. We claim that in this case 8(~\382= 0 . Suppose
otherwise and that t + 1 is the earliest stage such that 8 n 3S'2

+l ¥= 0 . So t > s.
Then 38'2

+l = 38'n U ft where j 8 n ^ 0 . So ? > 5. Then ^ + 1 = ^ U £ where
P n 8 * 0 . Thus /? n ^ *= 0 . But since f > J 0 , we must have x, = m. How-
ever, this would be a Case (i) situation, and then <%[+l = 38{U /?, contradicting
the fact that 8 n P1 = 0 . Therefore, the claim holds. Thus

&= (J{8n: 8n c <#£ and Sn n ^ | = 0 for some 5 > s0} c ext J / . We claim
that ^ is a complement for J / . To see this, suppose 8 c ext J>/. Thus 5 c ext 31 x,
and so 8 n ^ m ^ 0 . Then there is some y c 8 n ^ at some stage r and so
Y c ^ and we get y f i S # 0 . Thus VUJ/ is dense in A', and V is a
complement as claimed.

This contradiction shows that 38X is not complemented and a similar argument
shows that 3ti2 is not complemented.

COROLLARY. Let X be an effective topological space. Let s& be an r.e. open set in
X which is not C\-recursive. Then st contains r.e. open sets 38Y and 382 such that
Bx U 382 is dense in J / , 38xOi 382= 0 and neither 38X nor 382 is O-recursive.

PROOF. The construction is the same as in the theorem. As before, # =
8n c ^ls

m and 8n C\ 382 = 0 for some s > s0 } c ext s/. Here we can assume that
ext 38\ = °Um where um = {n: 8n c e\t38x) is recursive. Thus if 5 c ext J / , then
at some stage s > sowe will have 8 Q°Us

m and 8 n 382 = 0 .

https://doi.org/10.1017/S1446788700031414 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700031414
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Therefore*{«: Sn c <V'm and Sn n 38{ = 0 for some s ^ s0) is equal to (n:
Sn ns/= 0 } . The first set is clearly r.e., the second is co-r.e. and so J& is
fl-recursive.

As before, this contradiction shows that SSX cannot be D-recursive and simi-
larly 3&2 is not H-resursive.
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