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Abstract
While the spatial weightsmatrixW is at the core of spatial regressionmodels, there is a scarcity of techniques
for validating a given specification of W. I approach this problem from a measurement error perspective.
WhenW is inflated by a constant, a predictable form of endogeneity occurs that is not problematic in other
regression contexts. I use this insight to construct a theoretically appealing test and control for the validity of
W that is tractable in panel data, which I call the K test. I demonstrate the utility of the test using Monte Carlo
simulations.

Keywords: spatial regression, spatial autocorrelation, measurement error, time series cross-section data

1 Introduction
Spatial regression models are popular in the social sciences for modeling spatial dependencies
within data. At the core of thesemodels is the spatial weightsmatrixW, an n×nmatrixwith zeroes
along the diagonal that, in the cross-sectional context, contains the set of spatial relationships in
the data in its o�-diagonal elements: each elementwi j represents the relative influence unit j has
on unit i . More extreme values ofwi j indicate a stronger influence of unit j on unit i . Likewise, unit
j has no influence on unit i whenwi j equals zero.
There are many approaches to specifying W, both theoretical and empirical (Bhattacharjee

and Jensen-Butler 2013; Neumayer and Plumper 2016). There are also a number of challenges
to specifyingW, including using the correct conception of space, correct means of expressing the
same conception of space, and measuringwi j without error. Potential misspecification creates a
problem for scholars, as the estimates from spatial regression models are conditional upon W.
A misspecification of W, even by a constant, will cause inconsistent estimates (Neumayer and
Plumper 2016). This is not the case in other regression contexts, as inflation of a variable by a
constant will be absorbed into the intercept. Scholars largely agree that the misspecification of
W creates problems for inference, though this view is not universal (Corrado and Fingleton 2012;
Gibbons and Overman 2012, but see LeSage and Pace 2014).
Despite the risks of misspecifying W, few techniques exist for evaluating a particular

specification. Some developed techniques adjudicate between competingW matrices (Leenders
2002; Stakhovych and Bijmolt 2009). But these approaches are limited in that they can only help
judge the bestW among a set of choices, leading to the possibility of picking the best out of a set
of badly misspecified matrices (Harris, Mo�at and Kravtsova 2011). Neumayer and Plumper o�er
a test to determine if the nondiagonal elements of W that are set to zero are valid (2016, p. 123).

Author’s note: Texas A&M University; garrettvandekamp@tamu.edu. The author would like to thank Alejandro Medina,
Alison Higgins Merrill, Scott Cook, David Fortunato, Joseph Ura, Chris Schwarz, Desmond Wallace, John Poe, Robert
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A&MResearchMethodsWorkshop. Replicationmaterials for this article are available from the Political Analysis Dataverse,
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The test, however, is only theoretically described and gives no indication about the potential
misspecification of nonzero elements ofW.
This letterhighlights theproblematicbias resulting fromthemisspecificationofW andprovides

a test and control for some misspecifications. Specifically, eachwi j , i , j , withinW is thought to
be measured with some amount of error. From this approach, I develop a theoretically appealing
regression-based test of the specification ofW that is tractable when using panel data. I call this
the K test, which is simply another spatial lagwhere all nondiagonal elements ofW equal one. The
test is able to detect whenW is inflated by a constant in expectation. Inclusion of the K test in the
regressionmodel controls for part of the endogeneity resulting from this type ofmisspecification,
at least in SLXmodels, much like how including an intercept in a regressionmodel controls for the
inflation of a variable by a constant.

2 The Specification of W as a Measurement Error Problem
To begin, I examine classical measurement error in a simple regression context. Consider the
following data-generating process:

y = ια + x∗β + ε (1)

in which ε is a well-behaved error term and ι is a vector of ones associated with the intercept
parameter α . Suppose a scholar would like to model the relationship between x∗ and y but does
not have access to x∗. Instead, the scholar has access to x, a function of x∗:

x = x∗ + u∗ (2)

in which u∗ is an error variable with mean c that is uncorrelated to x∗. It will be useful for our
purposes to decompose u∗ into mean-zero measurement error and a constant:

x = x∗ + (u∗ − c) + c ≡ x∗ + u + c (3)

in which u has a mean of zero but is otherwise similarly distributed to u∗ and c is a vector of the
constant c. By substitutingequation (3) intoequation (1),weobserve theproblemsassociatedwith
measurement error in the independent variable:

y = ια + (x − u − c)β + ε (4)

⇔ y = ια + xβ + (ε − uβ − cβ ) (5)

⇔ y = (ια − cβ ) + xβ + (ε − uβ ). (6)

In equation (6), there are two sources of endogeneity in the model. The first results because
uβ is contained within the error term. The terms u and x are necessarily correlated given the
data-generating process in equation (3). In the bivariate regression case, the estimate of β will be
biased toward zero; this bias is commonly known as attenuation bias. In the multiple-regression
context, bias will permeate all independent variables in unknown directions in addition to the
attenuation bias in the mismeasured variable. Scholars have developed a number of approaches
to circumventing attenuation bias (see Buonaccorsi 2010). In general, however, the onerous
requirements for these solutionsmeans that they are rarely implemented in the applied literature
(Greene 2017).
The second source of endogeneity comes from cβ , which results in the expectation of the error

termbeingnonzero. This endogeneity is transferred fromtheerror termto the interceptparameter
α ; as a consequence, only α is biased. This is rarely problematic for scholars, as the quantity
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of interest is usually not α but rather β . Thus, while inferences from regression models are not
immune tomeasurementerror, partof theendogeneity fromnonzeromeasurementerror is solved
by including an intercept.

2.1 The Problem of Measurement Error WithinW
Aswehave just seen, part of the problemassociatedwith nonzeromeasurement error is remedied
by including an intercept in the regression model. Unfortunately, this will not alleviate similar
problems when misspecifying W in a spatial regression model. Consider the spatial lag of an
independent variable (SLX) model:

y = ια + x∗β +W∗x∗θ + ε (7)

in which ε is a well-behaved error term. Suppose a scholar would like to model the relationship
between x∗ and y but does not have access to W∗. Instead, the scholar has access to W, a
representation ofW∗ measured with error:

W ≡ W∗ + U + C (8)

in which U is a weights matrix where all nondiagonal elements are drawn from variable u,
which has a mean of zero, and C is a weights matrix where all nondiagonal elements are equal
to a constant c. Note how equation (8) mirrors equation (3). By substituting equation (8) into
equation (7), we observe unique problems created by measurement error withinW:

y = ια + x∗β + (W − U − C)x∗θ + ε (9)

⇔ y = ια + x∗β +Wx∗θ + (ε − Ux∗θ − Cx∗θ). (10)

As before, there are two sources of endogeneity. The first is from themean-zero measurement
error. Because of the correlation between the elements of W and U, Wx∗ and Ux∗ will also be
correlated. Asmentioned before, this attenuation bias is unlikely to be solved due to the problems
previously noted in solving mean-zero measurement error in simpler regression contexts. The
second source of endogeneity is derived from thematrix C and its nondiagonal elements c. Unlike
in the simple regression model, C is postmultiplied by x∗ to create a new variable. Any change to
the expectation of the error term resulting from Cx∗ is dependent upon the expectation of x∗. As
in the previous context, the expectation of −Cx∗θ will be absorbed into the constant.
But the intercept will not absorb the entirety of −Cx∗θ, however, because of the variance

associated with x∗. Further, this variation will necessarily be correlated with x∗ since −Cx∗θ is
a linear transformation of the total of x∗ within a cross-section minus the influence of x ∗i . Thus,
there will be additional bias in β and the coe�icients of all other variables correlated with x∗ that
is unique to the spatial regression context.
It is importanthere tonote thatmeasurementerror inW is notunique to theSLXcontext. Spatial

autoregressive and spatial error models (SAR and SEM, respectively) also use W to account for
spatial dependence. IfW ismeasuredwith error, it is highly likely that estimates from thesemodels
will also exhibit bias in some way. The additional econometric di�iculties associated with these
models, however, prevents an analytic demonstration of this bias at the present.

2.2 A Test and Control for the Misspecification ofW
The misspecification of W introduces additional endogeneity that is not a problem in simpler
regression contexts and will cause inconsistent estimates. This additional endogeneity, however,
is also an opportunity to develop a specification test of W by attempting to model that
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endogeneity. For the SLX data-generating process in equation (7), the model is equivalent to:

y = ια + x∗β +W∗x∗θ + Kx∗0 + ε (11)

in whichK is aWmatrix where every nondiagonal element equals one. Because the new termKx∗

has a coe�icient of zero, it does not influence y and is thus equivalent to the original model. But
if a scholar only hadW instead ofW∗ and modeled this relationship, one would get the following
result:

y = ια + x∗β + (W − U − C)x∗θ + Kx∗0 + ε (12)

⇔ y = ια + x∗β +Wx∗θ + Kx∗0 + (ε − Ux∗θ − Cx∗θ) (13)

⇔ y = ια + x∗β +Wx∗θ + Kx∗0 + (ε − Ux∗θ − Kx∗cθ) (14)

⇔ y = ια + x∗β +Wx∗θ + Kx∗(−cθ) + (ε − Ux∗θ). (15)

A substantially changed result appears in equation (16). As before, there will still be bias
resulting from mean-zero measurement error in W. Now, however, the additional bias resulting
from −Cx∗θ is transferred to the coe�icient of Kx∗ rather than staying in the error term and
a�ecting inferences in the rest of themodel. Thus, scholars concerned about themisspecification
ofW should estimate a full model:

y = ια + x∗β +Wx∗θ1 + Kx∗θ2 + ε . (16)

Kx∗, herea�er referred to as Kx or the K test, can serve as a specification test of W within the
regression model. If one assumes that Kx—or its counterparts Ky and Kε in other models—is
not a part of the data-generating process, then the K test should be zero in expectation and
distinguishable from zero only by chance.1 If the elements of W have been misspecified by a
constant in expectation, then the K test should be nonzero and distinguishable from zero at rates
greater than expected by chance. Thus, a K test that is statistically distinguishable from zero
is evidence that W is misspecified and that the scholar has failed to adequately model spatial
relationships within the data.2

Beyond functioning as a specification test, the K test also controls for a part of the endogeneity
resulting from the misspecification ofW. By absorbing the e�ect of −Cx∗θ, the only endogeneity
remaining from the misspecification of W is −Ux∗θ. This is similar to how the intercept controls
for part of the endogeneity resulting from measurement error in an additive variable. While the
le�over endogeneity will result in bias in the rest of the regression model, it now makes spatial
regression models comparable to other regression models in that nonzero measurement error is
modeled explicitly in the regression.3

While the K test can be used outside of the SLX case, it is unclear how the K test will perform
in the SAR and SEM cases. It is highly possible that the properties of the K test are di�erent given
their nonrecursive nature. I do not have an analytic proof on thepoint, and theMonteCarlo results
presented later provide evidence that the additional complexities associated with these models
need to be taken into account. Future research should further examine the K test’s properties in
these settings.

1 This should not be a controversial assumption, as scholars rarely, if ever, hypothesize a data-generating process containing
Kx, Ky, or Kε; no suchmodel could be found in my search of the literature.

2 In applied settings, the K test cannot distinguish from aWmatrix that is simply misspecified by a constant and an omitted
spatial lag (Hays, Kachi and Franzese 2010). Thus, it can only determine that the spatial processes have been inadequately
modeled.

3 For more on the relationship between the K test andmean-zero measurement error, see the appendix.
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2.3 Limits and Opportunities in Cross-Sectional and Panel Data Settings
While the K test is theoretically appealing, it su�ers from crippling limitations in cross-sectional
settings. In a SLX model of a single cross-section, the sum of Kx and x results in a constant that
will be perfectly multicollinear with the intercept. The researcher is le� with an untenable choice
between forgoing the test and omitting a variable and causing bias. The problem is not limited
to the SLX case; the use of the K test alongside a constant in the SAR case results in inconsistent
estimates (Kelejian and Prucha 2002).4

This limitation is mitigated when using panel data (Franzese and Hays 2007). If x varies over
both time and space and Wx is a purely spatial lag5, then the sum of x and Kx results in a
time-invariant variable. This allows for the estimation of x, Kx, and the constant in the same
regression model. The same is true in the SAR setting (Kelejian, Prucha and Yuzefovich 2006).
But the use of the test in these instances also has unique considerations associated with it.

When a spatial lag is taken of x, then the sum of x and Kx results in a new variable, xt ot al , that
only varies over time. This makes the test potentially sensitive to temporal unit e�ects, both that
are uncorrelated and correlated with xt ot al . I o�er suggestions for each case in turn. If there are
temporal unit e�ects that are uncorrelated with xt ot al but are not accounted for in the model,
the K test may report false positives. Fortunately, it is relatively easy to model these e�ects using
random e�ects.
More problematic is the possibility of temporal unit e�ects correlated with xt ot al . A scholar

could normally combat this problem using fixed e�ects. The lack of spatial variation in xt ot al ,
however, prevents the inclusion of temporal fixed e�ects in SLXmodels. SARmodels have similar
problems: estimates are inconsistent with the inclusion of fixed e�ects and the K test (Kelejian,
Prucha and Yuzefovich 2006). As present, there is no readily available solution to employ both
techniques. Scholars must assume an otherwise well-specified regression model, at least on the
temporal dimension, inorder tomake inferencesaboutwhether the spatial relationships specified
in the data are valid. Alternatively, temporal fixed e�ects should control from the endogeneity
resulting fromW being inflated by a constant (though it would be impossible to infer whetherW
is misspecified).

3 Simulation
To demonstrate the K test’s utility, I employ two sets of Monte Carlo simulations: one featuring
cross-sectional data and the other panel data.6 One thousand data points are generated that
either follow a SAR data-generating process or a SLX data-generating process:

y = xβ +Wyρ + Ky0 + ε

y = xβ +Wxθ + Kx0 + ε

where β = 5 and ρ = θ = 0.75. ε is drawn from a standard normal distribution, while x is
generated from a uniform distribution between −1 and 1. W is randomly generated. As per the
above discussion, the intercept is omitted in cross-sectional data. In panel data, an intercept ια is
included with α = 10.7

A spatial regression model is then estimated on the data that also employs my test of the
specification ofW, which includes eitherKy orKx depending on the regressionmodel. OLS is used
to estimate the SLX models, while 2SLS is used to estimate the SAR models using Wx and Kx as
instruments. This process is repeated one thousand times. In the analysis, I see how the test fairs

4 While unsubstantiated here, this limitation may also apply to the SEM case.
5 As opposed to a lag over time and space.
6 Replication materials for this article are available from the Political Analysis Dataverse, cited at the end of this article.
7 For panel data, n = 100 and t = 10, resulting in 1,000 observations.
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Table 1. The K test and bias in SLX Models using cross-sectional and panel data whenW is misspecified by a
constant (Coverage Probabilities in parentheses).

−45 −25 0 +25 +45

Cross-Section β̂ 0.00 0.00 0.00 −0.00 0.00
(0.94) (0.94) (0.96) (0.95) (0.95)

θ̂ 0.00 −0.00 −0.00 0.00 −0.00
(0.95) (0.95) (0.95) (0.95) (0.94)

K test 33.75 18.75 0.00 −18.75 −33.75
(0.00) (0.00) (0.95) (0.00) (0.00)

Panel α̂ −0.00 0.00 −0.00 −0.00 −0.00
(0.96) (0.94) (0.95) (0.95) (0.95)

β̂ −0.00 0.00 0.00 0.00 0.00
(0.95) (0.94) (0.95) (0.95) (0.96)

θ̂ 0.00 −0.00 0.00 0.00 0.00
(0.95) (0.94) (0.96) (0.95) (0.96)

K test 33.75 18.75 −0.00 −18.75 −33.75
(0.00) (0.00) (0.96) (0.00) (0.00)

when a model is estimated using the correctW matrix inflated by a constant. When the matrix is
inflated by zero, this reduces to a model with a correctly specified W. I subsequently report the
average bias for all coe�icient estimates and their coverage probabilities using 95% confidence
intervals. These quantities are reported for two reasons. First, these quantities demonstrate both
the size and power of the K test’s ability to detectmisspecifications ofW. Second, these quantities
showtheK test’s ability to control for thebias causedby themisspecificationofWwhenestimating
amodel. If the K test is a valid way for controlling for themisspecification ofW, then the bias of all
other coe�icients should be zero and their coverage probabilities should be 95%. This should be
true regardless of whetherW is correctly or incorrectly specified.
Tables 1 and 2 present the results for misspecifying a W matrix by a constant for SLX and SAR

processes, respectively. As we can see in Table 1, the K test works as a specification test in the
SLX context. WhenW is correctly specified, the test’s coe�icient is centered on zero and correctly
sized (in that it is only statistically distinguishable from zero about five percent of the time). But
when W is inflated by a constant, either positive or negative, the test is consistently biased in a
singular direction and almost always statistically distinguishable from zero. The K test, then, has
the expected size and power in the SLX context.
The K test also works as a control for endogeneity in the SLX context. Across all model

specifications, α̂ , β̂ , and θ̂ are centeredon their true values and their confidence intervals regularly
include them. In the instances in which W is misspecified, these estimates would normally be
biased. The only reason they are not is due to the inclusion of the K test in the model, thereby
demonstrating its utility as a control for this form of endogeneity.
In Table 2, the K test’s utility as a specification test in the SAR case is strong in applied settings.

Usingboth cross-sectional andpanel data, theK test has the samesize in theSARcontext as it does
in the SLX context: it is centered around zero when W is correctly specified. The test has slightly
lower power than its SLX counterpart when using panel data. When using it with cross-sectional
data, however, the test has little power. WhenW is inflated by a positive constant, the test appears
to have no power at all. While concerning on the surface, this limitation will have little relevance
in applied work given that the K test cannot be consistently estimated in a single cross-section.
The K test’s utility as a control in the SAR case is not as strong as it is in the SLX case. In

both the cross-sectional and panel case, β̂ is not biased when the K test is estimated, even if
W is misspecified. In contrast, though, ρ̂ is biased when W is misspecified even when the K test
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Table 2. The K test and bias in SARModels using cross-sectional and panel data whenW is misspecified by a
constant (Coverage Probabilities in parentheses).

−45 −25 0 +25 +45

Cross-Section β̂ −0.00 −0.00 0.00 −0.00 −0.00
(0.95) (0.96) (0.94) (0.95) (0.95)

ρ̂ −0.45 −0.22 0.31 0.82 0.97
(0.72) (0.91) (0.95) (0.95) (0.96)

K test 0.34 0.35 −0.46 −0.70 −0.99
(0.74) (0.92) (0.95) (0.95) (0.96)

Panel α̂ 0.19 0.11 0.17 0.20 0.17
(0.95) (0.97) (0.96) (0.97) (0.96)

β̂ −0.00 0.00 −0.00 −0.00 −0.00
(0.97) (0.97) (0.97) (0.98) (0.97)

ρ̂ −0.52 −0.29 0.00 0.29 0.53
(0.00) (0.12) (1.00) (0.69) (0.39)

K test 0.54 0.29 −0.01 −0.30 −0.54
(0.00) (0.14) (1.00) (0.70) (0.38)

is included. This result is likely due to the nonrecursive nature of SAR models compared to SLX
models. Interestingly, the coe�icient of the K test is biased in the exact opposite direction when
W is misspecified. Additional analysis in the replicationmaterials reveal that a linear combination
of ρ̂ and the K test’s coe�icient is equal to ρ and has the correct coverage probability of 95%. This
curious result does not have a readily available explanation. Regardless, additional consideration
needs to be given to the SAR case given its complexity.

4 Discussion
This letter presents the uncertainty surrounding the specification of W as a measurement error
problem. The approach clearly demonstrates the bias that results when W is misspecified in
regression models and reveals a theoretically appealing test and control for the misspecification
ofW by a constant, which I call the K test. Butwhile the K test has its uses, it is not a silver bullet for
measurement error inW. The test’s utility as a control in the SAR case is limited. The test also does
not identify or control for mean-zeromeasurement error. Finally, this letter does not consider the
possibility that measurement error inW is correlated with measurement error in other variables
in the model. Future research should consider these possibilities.
Scholars must exercise care when using the K test to adjudicate betweenmultipleW matrices.

If the test is used multiple times, the results must be appropriately weighted in order to avoid
spurious inferences that result in repeated hypothesis testing. Alternatively, this problem can be
avoided by using the test in conjunction with other methods of adjudicating between multipleW
matrices. This would result in a two-step procedure: identify the best choice ofW among a set of
alternatives and then test the validity of that choice.

Appendix
This letter focuses on the ability for the K test to control for measurement error resulting from the
nondiagonal elements ofW being inflated by a constant. It implicitly assumes that the K test will
not be able to account formean-zeromeasurement error. But as one reviewer noted, the K test, or
Kx , may in fact be correlated with mean-zeromeasurement error inW, Ux. If true, then the K test
would be able to detect and possibly control for mean-zeromeasurement error. This implications
of this correlation are too important to ignore, and for that reason I using Monte Carlo analysis to
investigate whether these two quantities of interest are correlated.
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Figure 1. Density Plot of the Correlation between Kx andUx .

I randomly generate one thousand observations of a variable x, x ∼ U (−a + c, a + c). I use
this variable to create two more variables, Kx and Ux. I create Kx by premultiplying x by K, a
weights matrix where all the nondiagonal elements are equal to 1. I create Ux by premultiplying
x by U, a weights matrix where all the nondiagonal elements are randomly drawn from a variable
u, u ∼ U (−b, b). Parameters a and b are identically distributed, U (0, 1,000), while parameter c
is uniformly distributed with mean zero, U (−1,000, 1,000). A�er both Kx and Ux are generated,
I calculate and record their correlation and its 95% confidence interval. I repeat this process
one thousand times, with the underlying distributions of x and u varying as well as the set of
observations drawn.
A density plot of these one thousand correlations is presented in Figure 1. The density appears

to be normally distributed with a mean of zero and low variance. This is exactly what one would
expect if Kx and Ux were uncorrelated. In addition, I investigated what proportion of these
correlations were statistically distinguishable from zero. The proportion is 0.06, close to the
proportion of statistically significant results onewould expect when repeatedly calculating a 95%
confidence interval on truly uncorrelated data.
There is a possibility that the elements of U could be correlated with measurement error in

x, should x be measured with error. In that case, Kx and Ux may be correlated. Similarly, if the
elements of U can be predicted by x, then there is a possibility of correlation. But if you assume
that the error inW is orthogonal to everything else in the model, as I do throughout, then Kx and
Ux will not be correlated.
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