PERMUTATION POLYNOMIALS IN SEVERAL VARIABLES OVER RESIDUE CLASS RINGS

H. K. KAISER and W. NÖBAUER

(Received 21 April 1986)

Communicated by R. Lidl

Abstract

The concept of a permutation polynomial function over a commutative ring with 1 can be generalized to multiplace functions in two different ways, yielding the notion of a k-ary permutation polynomial function $(k > 1, k \in \mathbb{N})$ and the notion of a strict k-ary permutation polynomial function respectively. It is shown that in the case of a residue class ring \mathbb{Z}_m of the integers these two notions coincide if and only if m is squarefree.

1980 Mathematics subject classification (Amer. Math. Soc.): 13 B 25.

The representation of permutations by polynomials has been thoroughly studied over the past century. Let $\langle R, +, -, 0, \cdot, 1 \rangle$ be a commutative ring with identity. Then we call a function $f: R \to R$ a *permutation permutation function* over $\langle R, +, -, 0, \cdot, 1 \rangle$ if f is both a permutation of the set R and a polynomial function over $\langle R, +, -, 0, \cdot, 1 \rangle$. A polynomial $f(x) \in R[x]$ which induces such an f is called permutation polynomial over $\langle R, +, -, 0, \cdot, 1 \rangle$.

A direct generalization of this concept to functions in several variables is not possible, since polynomial functions $f: \mathbb{R}^k \to \mathbb{R}, \ k > 1$, can never represent a permutation of \mathbb{R}^k , since $\mathbb{R}^k \neq \mathbb{R}$. Hence we have to consider k-tuples (f_1, \ldots, f_k) of functions $f_i: \mathbb{R}^k \to \mathbb{R}, \ i = 1, \ldots, k$, and we say: a permutation π of \mathbb{R}^k is represented by (f_1, f_2, \ldots, f_k) if $\pi(r_1, \ldots, r_k) = (f_1(r_1, \ldots, r_k), \ldots, f_k(r_1, \ldots, r_k))$ for all $(r_1, \ldots, r_k) \in \mathbb{R}^k$.

This yields the following generalization of a permutation polynomial function to the case of several variables: $f: \mathbb{R}^k \to \mathbb{R}$ is called *k*-place permutation polynomial function (in short PPF) over \mathbb{R} , if f is a component in a k-tuple of k-ary

^{© 1987} Australian Mathematical Society 0263-6115/87 \$A2.00 + 0.00

[2]

functions over R which represent a permutation of R^k and if f is a polynomial function over $\langle R, +, -, 0, \cdot, 1 \rangle$. Polynomials $f(x_1, \ldots, x_k) \in R[x_1, \ldots, x_k]$ which induce such a *PPF* are called *permutation polynomials in k variables* over $\langle R, +, -, 0, \cdot, 1 \rangle$. The set of all k-ary *PPF* over $\langle R, +, -, 0, \cdot, 1 \rangle$ is denoted by $S_k(R)$. It is easy to see that every k-ary *PPF f* appears as first component in the representation of a suitable permutation of R^k , hence we have: A polynomial function $f: R^k \to R$ is a k-ary *PPF* over $\langle R, +, -, 0, \cdot, 1 \rangle$ if and only if there are k-ary functions f_2, \ldots, f_k over R such that (f, f_2, \ldots, f_k) represents a permutation of R^k .

Another possibility of generalization is the following: A polynomial function $f: \mathbb{R}^k \to \mathbb{R}$ is called *strict permutation polynomial function* over $\langle \mathbb{R}, +, -, 0, \cdot, 1 \rangle$ (in short *SPPF*) if there are k-ary polynomial functions f_2, \ldots, f_k over $\langle \mathbb{R}, +, -, 0, \cdot, 1 \rangle$ such that the k-tuple of polynomial functions (f, f_2, \ldots, f_k) represents a permutation of \mathbb{R}^k . Again we call a polynomial $f(x_1, \ldots, x_k) \in \mathbb{R}[x_1, \ldots, x_k]$ a *strict permutation polynomial* over $\langle \mathbb{R}, +, -, 0, \cdot, 1 \rangle$ if $f(x_1, x_2, \ldots, x_k)$ induces a *SPPF f*. The set of all k-ary *SPPF* over $\langle \mathbb{R}, +, -, 0, \cdot, 1 \rangle$ will be denoted by $SS_k(\mathbb{R})$. If $P_k(\mathbb{R})$ symbolizes the set of all k-ary polynomial functions $f: \mathbb{R}^k \to \mathbb{R}$, then $SS_k(\mathbb{R}) \subseteq S_k(\mathbb{R}) \subseteq P_k(\mathbb{R})$.

Both generalizations have been investigated in a series of papers (see H. Lausch and W. Nöbauer [1] and bibliography thereto appended). Especially for permutation polynomials over finite fields a number of results are known (see R. Lidl and H. Niederreiter [2]). In the case of finite fields the two notions of *PPF* and *SPPF* coincide, since every k-ary function over GF(q) ($k \in \mathbb{N}$, arbitrary) with values in GF(q) can be represented by a polynomial function over GF(q). In [3] W. Nöbauer raised the problem for which finite commutative rings this coincidence holds. In this paper we solve the problem for all residue class rings \mathbb{Z}_m of the integers.

First we recall some properties of permutation polynomial functions and permutation polynomials over $\langle R, +, -, 0, \cdot, 1 \rangle$. Permutation polynomial functions over finite rings can be characterized as follows:

THEOREM. Let $\langle R, +, -, 0, \cdot, 1 \rangle$ be a finite commutative ring with identity. A polynomial function $f \in P_k(R)$ is a k-ary PPF if and only if for every $r \in R$ the set of all solutions in R of the equation $f(x_1, \ldots, x_k) = r$ has the cardinality $|R|^{k-1}$.

For a proof see H. Lausch and W. Nöbauer ([1], Chapter 3, Proposition 12.21.).

LEMMA 1. (i) If $f(x_1, x_2, ..., x_k) \in R[x_1, x_2, ..., x_k]$ is a k-ary permutation polynomial over $\langle R, +, -, 0, \cdot, 1 \rangle$, then $f(x_1, x_2, ..., x_k)$ is an n-ary permutation polynomial over $\langle R, +, -, 0, \cdot, 1 \rangle$ for every n > k.

(ii) If $f(x_1, ..., x_k) \in R[x_1, x_2, ..., x_k]$ then we denote by $\overline{f}(x_1, ..., x_k)$ the polynomial which is obtained by removing the constant term from f. Then the following holds: The k-tuple $(f_1(x_1, ..., x_k), ..., f_k(x_1, ..., x_k))$ of k-ary polynomials over $\langle R, +, -, 0, \cdot, 1 \rangle$ induces a permutation of R^k if and only if $(f_1(x_1, ..., x_k), ..., \overline{f_k}(x_1, ..., x_k))$, $\overline{f_2}(x_1, ..., x_k), ..., \overline{f_k}(x_1, ..., x_k)$ does so as well.

PROOF. (i) follows easily from the preceding theorem and (ii) is evident.

Now we turn to the problem of finding all \mathbb{Z}_m for which every $f \in \mathbb{Z}_m$ is a *PPF* if and only if f is a *SPPF*. Let $m = p_1^{e_1} \cdot p_2^{e_2} \cdot \ldots \cdot p_n^{e_n}$ be the prime factorization of m. Then \mathbb{Z}_m is isomorphic to the product of the residue class rings $\mathbb{Z}_{p'_{\underline{i}}}$, $i = 1, \ldots, n$. The following theorem is taken from H. Lausch and W. Nöbauer [1] (Chapter 3, Proposition 12.43).

THEOREM. If V is the variety of commutative rings with identity and $R = A \times B$ in V then there is a bijective mapping of $SS_k(R)$ onto $SS_k(A) \times SS_k(B)$ which is, if R is finite, the restriction of a bijective mapping from $S_k(R)$ onto $S_k(A) \times S_k(B)$.

This theorem reduces our study to $\mathbb{Z}_{p^{e}}$, p prime, $e \in \mathbb{N}$, e > 1 (since for finite fields \mathbb{Z}_{p} —as mentioned above—every *PPF* is *SPPF*). First we consider the case k = 2:

We show that in this case there are *PPF* over $\mathbb{Z}_{p^{e}}$ which are not *SPPF*. φ denotes Euler's phi-function.

LEMMA 2. The binary function $f: \mathbb{Z}_{p^e}^2 \to \mathbb{Z}_{p^e}$, p prime, e > 1, defined by $f(x, y) = px + y^{\varphi(p^e)+1} \mod p^e$ is a PPF.

PROOF. If we multiply every $x \in \mathbb{Z}_{p^e}$ by p, we obtain $(\mod p^e)$ every non negative multiple of p which is smaller than p^e exactly p times. If $(y, p^e) = 1$ then

$$v^{\varphi(p^e)+1} = v^{p^e - p^{e^{-1}} + 1} \equiv v \mod p^e$$

by the theorem of Fermat-Euler. If $(y, p^e) > 1$ then

$$y^{\varphi(p^{\epsilon})+1} = y^{p^{\epsilon}-p^{\epsilon-1}+1} \equiv 0 \mod p^{\epsilon}$$

since we have $p^e - p^{e-1} + 1 > p^e - p^{e-1} \ge 2p^{e-1} - p^{e-1} = p^{e-1} \ge (1+1)^{e-1} = \sum_{i=0}^{e-1} \binom{e-1}{i} \ge e$. Let $a \in \mathbb{Z}_{p^e}$ be a fixed element and $a \equiv t \mod p$, $t \in \{0, \ldots, p-1\}$. Then we obtain by f(x, a) every element of \mathbb{Z}_{p^e} which is congruent $t \mod p$ exactly p times, if x runs through the whole of \mathbb{Z}_{p^e} . Since the

174

congruence $y^{\varphi(p^e)+1} \equiv i \mod p$ (i = 0, 1, ..., p-1) has p^{e-1} incongruent solutions mod p^e , we have: The equation f(x, y) = u possesses $p \cdot p^{e-1} = p^e$ solutions in \mathbb{Z}_{p^e} for every $u \in \mathbb{Z}_{p^e}$. Hence f is a binary PPF over \mathbb{Z}_{p^e} .

LEMMA 3. $f: \mathbb{Z}_{p^e}^2 \to \mathbb{Z}_{p^e}$, defined by $f(x, y) = px + y^{\varphi(p^e)+1}$ for all $(x, y) \in \mathbb{Z}_{p^e}^2$ is not SPPF.

PROOF. We denote $f^{-1}(0) \subseteq \mathbb{Z}_{p^e}^2$ by ${}_f N_0$. For the function f defined in Lemma 2 we have

 $_{f}N_{0} = \{0, p^{e-1}, 2p^{e-1}, \dots, (p-1)p^{e-1}\} \times \{0, p, 2p, \dots, (p^{e-1}-1)p\}.$ Since $|_{f}N_{0}| = p^{e}$, a necessary condition for f to be a binary SPPF is the existence of a polynomial function $g: \mathbb{Z}_{p^{e}}^{2} \to \mathbb{Z}_{p^{e}}$ such that g restricted to $_{f}N_{0}$ is a mapping onto $\mathbb{Z}_{p^{e}}$. But such a g does not exist, since for any polynomial g(x, y) with

To settle the general case let k > 2 be a fixed integer. Then $f: \mathbb{Z}_{p^e}^k \to \mathbb{Z}_{p^e}$, defined by $f(x_1, \ldots, x_k) := px_1 + x_2^{\varphi(p^e)+1}$ for all $(x_1, \ldots, x_k) \in \mathbb{Z}_{p^e}^k$, is by Lemma 2 and Lemma 1, (i) a k-ary *PPF* over \mathbb{Z}_{p^e} and $_fN_0 = \{0, p^{e-1}, 2p^{e-1}, \ldots, (p-1)p^{e-1}\} \times \{0, p, 2p, \ldots, (p^{e-1}-1)p\} \times \mathbb{Z}_{p^e}^{k-2}$.

LEMMA 4. The function f defined above is not a SPPF over \mathbb{Z}_{n^c} .

constant term c, we have $g(\xi, \eta) \equiv c \mod p$ for all $(\xi, \eta) \in N_0$.

PROOF. Let us assume in the contrary that f is SPPF. Then there are $\varphi_2, \ldots, \varphi_k \in P_k(\mathbb{Z}_{p^e})$ such that $(f, \varphi_2, \ldots, \varphi_k)$ represents a permutation of $\mathbb{Z}_{p^e}^k$ and all $\varphi_i, i = 2, \ldots, k$ are assumed to be without constant term. If we restrict f, $\varphi_2, \ldots, \varphi_k$ to $_f N_0$ then $(f, \varphi_2, \ldots, \varphi_k)$ has to represent all k-tuples over \mathbb{Z}_{p^e} with first component 0. Thus $(\varphi_2, \ldots, \varphi_k)$ has to represent each element of $\mathbb{Z}_{p^{e^{-1}}}^{k-1}$ if (x_1, x_2, \ldots, x_k) runs over $_f N_0$. Hence $(\varphi_2, \ldots, \varphi_k)$, if considered mod p, represents all the elements of \mathbb{Z}_p^{k-1} , if (x_1, x_2, \ldots, x_k) runs over $_f N_0$.

Each polynomial φ_i can be written as $g_i(x_3, x_4, \dots, x_k) + h_i(x_1, x_2, \dots, x_k)$, where every term of $h_i(x_1, x_2, \dots, x_k)$ has a factor x_1 or x_2 . Since $x_1 \equiv x_2 \equiv 0 \mod p$ for all $(x_1, x_2, \dots, x_k) \in fN_0$, we obtain $\varphi_i(x_1, x_2, \dots, x_k) \equiv g_i(x_3, x_4, \dots, x_k) \mod p$ for every $(x_1, x_2, \dots, x_k) \in fN_0$. Hence $(\varphi_2, \dots, \varphi_k)$ has at most $|\mathbb{Z}_{p^e}|^{k-2}$ distinct values mod p if (x_1, x_2, \dots, x_k) runs over fN_0 , a contradiction. Hence f is not a k-ary SPPF over \mathbb{Z}_{p^e} .

This yields the following

THEOREM. Let R be a finite commutative ring with identity which is isomorphic to a direct product $\mathbb{Z}_{p_1^{e_1}} \times \mathbb{Z}_{p_2^{e_2}} \times \cdots \times \mathbb{Z}_{p_n^{e_n}}$ $(p_i, i = 1, ..., n, not necessarily distinct$ $primes, <math>e_i \in \mathbb{Z}$, $e_i \ge 1$, for i = 1, ..., n). Then every k-ary PPF is SPPF $(k > 1, k \in \mathbb{N} \text{ arbitrary})$ if and only if all $e_i = 1$. COROLLARY. Let \mathbf{Z}_m be a residue class ring of the integers. Then every k-ary PPF is SPPF if and only if m is squarefree.

References

- [1] H. Lausch and W. Nöbauer, Algebra of polynomials (North-Holland, Amsterdam, 1973).
- [2] R Lidl and H. Niederreiter, Finite fields (Addison-Wesley, Reading, Massachusetts, 1983).
- [3] W. Nöbauer, 'Darstellung von Permutationen durch Polynome und rationale Funktionen', Berichte des Math. Forschungsinst. Oberwolfach 5 (1971), 89-100.

Institut für Algebra und Diskrete Mathematik Technische Universität Wien Wiedner Hauptstraße 8–10 A-1040 Vienna, Austria