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Abstract

In this paper, a new approach to a characterization of solvability of a nonlinear
nonsmooth multiobjective programming problem with inequality constraints is
introduced. A family of η-approximated vector optimization problems is constructed by
a modification of the objective and the constraint functions in the original nonsmooth
multiobjective programming problem. The connection between (weak) efficient points
in the original nonsmooth multiobjective programming problem and its equivalent η-
approximated vector optimization problems is established under V -invexity. It turns out
that, in most cases, solvability of a nonlinear nonsmooth multiobjective programming
problem can be characterized by solvability of differentiable vector optimization
problems.
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1. Introduction

Over recent years, there has been growing interest among researchers in the study
of optimality conditions for multiobjective programming problems, which are also
known as vector optimization problems. The study of mathematical techniques
developed in order to obtain optimality conditions in multiobjective programming
problems is often related to the convexity of all functions constituting these
optimization problems [8, 15, 17–22].

In the past few years, the literature relative to the other families of more general
functions used to substitute the convex functions in optimization theory has grown
immensely. In 1981, Hanson [11] introduced a new class of generalized convex
functions to prove the sufficiency of the Karush–Kuhn–Tucker necessary optimality
conditions in nonconvex differentiable optimization problems. Later, Craven [7]
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named it a class of invex functions. For differentiable vector functions, Jeyakumar
and Mond [12] extended the notion of invexity and they introduced a class of
V -invex functions. Recently, there has been an increasing interest in developing
optimality conditions for nonsmooth multiobjective programming problems involving
(locally) Lipschitz functions. For the most part, the study of nonsmooth generalized
invexity has been in the context of nondifferentiable nonconvex functions (see, for
example, Antczak [5], Egudo and Hanson [9], Giorgi and Guerraggio [10], Kim and
Schaible [13], Reiland [16]).

Recently, considerable attention has been given to devising new methods that
allow the characterization of solvability of the original multiobjective programming
problem by the help of an associated vector optimization problem. Antczak introduced
new approaches, the so-called modified objective function method [1] and, as its
extension, the so-called η-approximation method [2], to characterize solvability
of differentiable multiobjective programming problems with invex functions. In
these methods, optimality conditions for the (weak) Pareto optimality problem were
obtained by constructing an equivalent vector minimization problem for the considered
differentiable multiobjective programming.

This paper extends the η-approximation method introduced by Antczak [2] for
the characterization of solvability of a differentiable multiobjective programming
problem to the nonsmooth case. The main purpose of this paper is to obtain the
optimality conditions for (weak) Pareto optimal solutions in nonsmooth multiobjective
programming problems with locally Lipschitz functions by using the so-called η-
approximation approach. In this method, for the original nonsmooth multiobjective
programming problem, we construct a family of associated vector optimization
problems by modifying both the objectives and the constraints at an arbitrary but fixed
point (x, ξ , ζ ), where x is a feasible solution for the considered vector optimization
problem, and ξ and ζ are fixed Clarke’s generalized gradients of the objective function
and the inequality constraint function at x , respectively. This construction depends
heavily on results proved in this paper, which connect the (weakly) efficient points of
the original nondifferentiable multiobjective programming problem to the (weakly)
efficient points of the modified vector minimization problem. This equivalence
between these vector optimization problems is established under the assumption that
all functions constituting the original multiobjective programming problem are locally
Lipschitz V -invex at x on the set of all feasible solutions with respect to the same
function η and with respect to, not necessarily, the same functions α. In this way,
we obtain a family of the so-called associated η-approximated vector optimization
problems with the same (weak) Pareto optimal solution x and the same optimal value
as in the original nonsmooth multiobjective programming problem. Furthermore, the
associated η-approximated vector optimization problems have, in general, simpler
forms than the original nonlinear nonsmooth multiobjective programming problem
and, therefore, they are easier to solve (in most cases, they are smooth and linear (or
convex)). In this paper, this result is illustrated by suitable examples of nonlinear
nonsmooth multiobjective programming problems.
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2. Preliminaries

The following convention for equalities and inequalities will be used throughout the
paper.

For any x = (x1, x2, . . . , xn)
T , y = (y1, y2, . . . , yn)

T , we define:

(i) x = y if and only if xi = yi for all i = 1, 2, . . . , n;
(ii) x < y if and only if xi < yi for all i = 1, 2, . . . , n;

(iii) x 5 y if and only if xi ≤ yi for all i = 1, 2, . . . , n;
(iv) x ≤ y if and only if x 5 y and x 6= y.

DEFINITION 2.1 [6]. If f : Rn
→ R is a locally Lipschitz function at x ∈ Rn , the

generalized derivative (in the sense of Clarke) f at x ∈ Rn in the direction v ∈ Rn ,
denoted by f 0(x; v), is given by

f 0(x; v) = lim sup
y→x
λ↓0

f (y + λv) − f (y)

λ
.

DEFINITION 2.2 [6]. Clarke’s generalized gradient of f at x ∈ Rn , denoted by ∂ f (x),
is defined as follows:

∂ f (x) = {ξ ∈ Rn
| f 0(x; v) ≥ ξ T v ∀v ∈ Rn

}. (2.1)

REMARK 2.3. It follows that, for any v ∈ Rn ,

f 0(x; v) = max{ξ T v | ξ ∈ ∂ f (x)}.

In this section, in terms of the Clarke subdifferential, we give a definition of locally
Lipschitz V -invex functions introduced by Egudo and Hanson [9].

DEFINITION 2.4. Let X be a nonempty subset of Rn . A vector function f : X →

Rk is said to be (locally Lipschitz) V -invex at u ∈ X on X (with respect to η

and α := (α1, . . . , αk)) if there exist functions η : X × X → Rn and αi : X × X →

R+\{0}, i = 1, . . . , k, such that, for all x ∈ X , the inequality

fi (x) − fi (u) = αi (x, u)ξ T η(x, u), i = 1, . . . , k, (2.2)

holds for each ξi ∈ ∂ fi (u). If the inequality (2.2) holds for any u ∈ X , then f is (locally
Lipschitz) V -invex with respect to η and α on X .

Each function fi satisfying (2.2) is said to be (locally Lipschitz) αi -invex with
respect to η on X .

We consider the multiobjective programming problem

V -minimize f (x) := ( f1(x), . . . , fk(x))

subject to g(x) := (g1(x), . . . , gm(x)) 5 0,
(VP)
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where f : X → Rk and g : X → Rm are locally Lipschitz functions on a nonempty
open set X ⊂ Rn . Note here that the symbol ‘V -minimize’ stands for vector
minimization (thus the weak Pareto optimal solution or the Pareto optimal solution).

Let

D := {x ∈ X | g j (x) 5 0, j ∈ J = {1, . . . , m}}

denote the set of all feasible solutions of (VP). Furthermore, we denote the set of active
constraints at the given feasible point x ∈ D as follows:

J (x) := { j ∈ J | g j (x) = 0}.

For such multicriterion optimization problems, the solution is defined in terms of a
(weak) Pareto optimal solution ((weakly) efficient solution) in the following sense.

DEFINITION 2.5. A feasible point x is said to be a Pareto optimal solution (efficient
solution) for (VP) if and only if there exists no x ∈ D such that

f (x) ≤ f (x).

DEFINITION 2.6. A feasible point x is said to be a weak Pareto optimal solution
(weakly efficient solution, weak minimum) for (VP) if and only if there exists no
x ∈ D such that

f (x) < f (x).

It is well known (see, for example, [10, 13, 14]) that the Karush–Kuhn–Tucker
conditions are necessary for optimality in such vector optimization problems under
the assumption that a suitable constraint qualification is fulfilled.

In this paper, we use the following constraint qualification.
At a point x ∈ D, let us define

� :=

{
{v ∈ Rn

| g0
j (x; v) < 0 for any j ∈ J (x)} if J (x) 6= ∅,

Rn if J (x) = ∅.

CONSTRAINT QUALIFICATION (CQ): At a point x ∈ D, it holds that � 6= ∅.

THEOREM 2.7. Let x be a (weak) Pareto optimal solution in problem (VP) and
Constraint Qualification (CQ) be satisfied at x. Then there exist λ ∈ Rk and µ ∈ Rm

such that

0 ∈

k∑
i=1

λi∂ fi (x) +

m∑
j=1

µ j∂g j (x), (2.3)

µ j g j (x) = 0, j = 1, . . . , m, (2.4)

λ ≥ 0, µ = 0. (2.5)
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PROOF. Assume that x ∈ D is a (weak) Pareto optimal solution in the considered
nonlinear multiobjective programming problem (VP). Hence, by the Fritz John
necessary optimality conditions of Clarke (see [6, Theorem 6.1.3]), there exist λ ∈ Rk

+

and µ ∈ Rm
+ , not all simultaneously zero, such that the conditions (2.3) and (2.4) are

fulfilled. By elementary calculus of support functions, (2.3) yields

k∑
i=1

λi f 0
i (x; v) +

m∑
j=1

µ j g
0
j (x; v) = 0 ∀v ∈ Rn.

To prove the generalized Karush–Kuhn–Tucker necessary optimality conditions (2.3)–
(2.5) for problem (VP) one must have the vector λ 6= 0.

We proceed by contradiction. Suppose that λ = 0. Thus,∑
j∈J (x)

µ j g
0
j (x; v) = 0 ∀v ∈ Rn. (2.6)

By assumption, � 6= 0. This means that, for all j ∈ J (x),

g0
j (x; v) < 0 ∀v ∈ Rn. (2.7)

From the Fritz John necessary optimality conditions of Clarke, it follows that µ 6= 0,
since we have assumed that λ = 0. Then, by (2.7), we obtain the inequality∑

j∈J (x)

µ j g
0
j (x; v) < 0 ∀v ∈ � ⊂ Rn,

which contradicts (2.6). 2

However, for the nonlinear multiobjective programming problem (VP) considered,
the so-called Generalized Slater’s Constraint Qualification (GSCQ) can also be
formulated. Now, we introduce this constraint qualification as follows.

GENERALIZED SLATER’S CONSTRAINT QUALIFICATION (GSCQ). For problem
(VP), assume that there exists a point x̃ ∈ D such that g j (̃x) < 0, j ∈ J (x), and,
moreover, the constraint functions g j , j ∈ J (x), are β j -invex at x on D with respect
to the same function η.

REMARK 2.8. It is not difficult to see that if we assume GSCQ then, at the point
x ∈ D, it holds that � 6= ∅. However, it follows from the formulation of GSCQ, the
constraint functions g j , j ∈ J (x), should also be assumed to be β j -invex at x on D
with respect to the same function η.

3. An equivalent vector optimization problem and optimality conditions

Let x be the given feasible solution in the original nonsmooth multiobjective
programming problem (VP) and, moreover, ξ and ζ be Clarke’s generalized gradients
of the objective function f and the constraint function g in (VP) at x , respectively.
We consider a family of η-approximated vector optimization problems (VPη(x, ξ , ζ ))
given by
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V -minimize ( f1(x) + ξ
T
1 η(x, x), . . . , fk(x) + ξ

T
k η(x, x))

subject to g j (x) + ζ
T
j η(x, x) 5 0, j = 1, . . . , m,

(VPη(x, ξ , ζ ))

where f , g, X are defined as in (VP), ξ i , i = 1, . . . , k, ζ j , j = 1, . . . , m, are Clarke’s
generalized gradients of fi , i = 1, . . . , k, and g j , j = 1, . . . , m, at x , respectively,
that is, ξ i ∈ ∂ fi (x), i = 1, . . . , k, ζ j ∈ ∂g j (x), j = 1, . . . , m, and η is a vector-valued
function defined by η : X × X → Rn . Throughout this paper we will assume that η

satisfies the following condition: η(x, x) 6= 0 for any x ∈ X such that x 6= x .
Let

D(x, ζ ) := {x ∈ X | g j (x) + ζ
T
j η(x, x) 5 0, j = 1, . . . , m}

denote the set of all feasible solutions of (VPη(x, ξ , ζ )).
First, we prove that a (weak) Pareto optimal solution x in the multiobjective

programming problem (VP) is also (weak) Pareto optimal in its associated η-
approximated vector optimization problem (VPη(x, ξ , ζ )), if the Clarke’s generalized
gradients ξ and ζ of the objective function f and the constraint function g at x ,
respectively, satisfy the Karush–Kuhn–Tucker optimality conditions.

THEOREM 3.1. Let x be a (weak) Pareto optimal solution in (VP) and the CQ
be fulfilled at x. Furthermore, assume that the generalized Karush–Kuhn–Tucker
necessary optimality conditions (2.3)–(2.5) are satisfied at x with the Lagrange
multipliers λ ∈ Rk and µ ∈ Rm (with λ > 0 in the case when x is a Pareto optimal
solution in (VP)). If η satisfies η(x, x) = 0, then x is also (weak) Pareto optimal in
(VPη(x, ξ , ζ )), where ξ = (ξ1, . . . , ξ k)

T
∈ ∂ f (x) and ζ = (ζ 1, . . . , ζm)T

∈ ∂g(x)

are Clarke’s generalized gradients of f and g at x, respectively, satisfying the
generalized Karush–Kuhn–Tucker necessary optimality conditions (2.3)–(2.5).

PROOF. Assume that x is a Pareto optimal solution in (VP) and CQ is fulfilled at x .
Then there exist the Lagrange multipliers λ ∈ Rk and µ ∈ Rm such that the Karush–
Kuhn–Tucker conditions (2.3)–(2.5) are satisfied.

We proceed by contradiction. Suppose that x is not a Pareto optimal solution in
(VPη(x, ξ , ζ )). This implies that there exists x̃ which is feasible for (VPη(x, ξ , ζ ))
such that

f (x) + ξη(̃x, x) ≤ f (x) + ξη(x, x), (3.8)

where, as follows from the definition of (VPη(x, ξ , ζ )), ξ ∈ ∂ f (x). By assumption,
η(x, x) = 0. Then,

ξη(̃x, x) ≤ 0.

From the assumption, λ > 0. Thus,

λ
T
[ξη(̃x, x)] < 0. (3.9)
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By x̃ ∈ D(x, ζ ) and µ = 0,

µT
[g(x) + ζη(̃x, x)] 5 0.

Using the Karush–Kuhn–Tucker optimality condition (2.4), we obtain

µT
[ζη(̃x, x)] 5 0, (3.10)

where, as follows from the definition of a nonsmooth vector optimization problem,
ζ ∈ ∂g(x). By (3.9) and (3.10), we get the inequality

[λ
T
ξ + µT ζ ]η(̃x, x) < 0,

which contradicts the generalized Karush–Kuhn–Tucker necessary optimality
condition (2.3). Hence, x is weak Pareto optimal in (VPη(x, ξ , ζ )).

The proof for weak Pareto optimality is similar, but it should be taken into account
that the Lagrange multiplier λ associated with the objective function f satisfies the
relation λ ≥ 0. 2

REMARK 3.2. Note that we have established Theorem 3.1 without any assumption
regarding to which class of generalized invex functions the functions involved in
problems (VP) and (VPη(x, ξ , ζ )) belong. However, if we assume that the GSCQ
is fulfilled at a (weak) Pareto optimal solution x in problem (VP), then the constraint
functions g j , j ∈ J (x), should be assumed to be β j -invex at x on D with respect to
the same function η.

REMARK 3.3. As follows from Theorem 3.1, if x is a (weak) Pareto optimal
solution in the nonsmooth multiobjective programming problem (VP) then it is also
a (weak) Pareto optimal solution in its η-approximated vector optimization problem
(VPη(x, ξ , ζ )), where ξ = (ξ1, . . . , ξ k)

T
∈ ∂ f (x) and ζ = (ζ 1, . . . , ζm)T

∈ ∂g(x)

are Clarke’s generalized gradients of f and g at x , respectively, satisfying the
generalized Karush–Kuhn–Tucker necessary optimality conditions (2.3)–(2.5). This
means that the nonsmooth multiobjective programming problem (VP) is not equivalent
to each η-approximated vector optimization problem (VPη(x, ξ , ζ )) belonging to a
family of all η-approximated vector optimization problems defined at the given point
(x, ξ , ζ ). We illustrate this result in the next example.

EXAMPLE 3.4. We consider the following nonlinear nonsmooth multiobjective
programming problem:

f (x) = (|x |, |x |) → min,

g(x) = 1 − ex 5 0.
(VP1)

Note that D = {x ∈ R | x = 0} and x = 0 is a Pareto optimal point in the considered
nonsmooth multiobjective programming problem (VP1). Let η : R × R → R be
defined by

η(x, x) = x − x
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and, moreover, ξ and ζ be Clarke’s generalized gradients of f and g at x ,
that is, ξ ∈ ∂ f (x) = {[ξ1, ξ2]

T
| −1 5 ξ1 5 1 ∧ −1 5 ξ2 5 1} and ζ ∈ ∂g(x) = {−1}.

We set ξ = [ξ1, ξ2]
T

= [−1, −1]
T and ζ = −1, and then we obtain the following

η-approximated vector optimization problem (VP1η(x, ξ , ζ )):

(−x, −x) → min,

−x 5 0.
(VP1η(x, ξ , ζ ))

It is not difficult to see that x = 0 is not a Pareto optimal point in this η-approximated
vector optimization problem (VPη(x, ξ , ζ )). This follows from the fact that there do
not exist Lagrange multipliers λ ∈ Rk and µ ∈ Rm such that the generalized Karush–
Kuhn–Tucker necessary optimality conditions (2.3)–(2.5) are satisfied with these
Clarke’s generalized gradients ξ and ζ .

REMARK 3.5. The hypothesis of Theorem 3.1, that the Lagrange multiplier λ

associated with the objective function f satisfies the condition λ > 0 in the case
when x is a Pareto optimal solution in (VP), is essential and it cannot be omitted.
We consider again the nonlinear nonsmooth multiobjective programming problem
(VP) from Example 3.4. Note that x = 0 is a Pareto optimal point in the considered
nonsmooth multiobjective programming problem (VP) and Clarke’s generalized
gradients of f and g at x are as follows: ∂ f (x) = {[ξ1, ξ2]

T
| −1 5 ξ1 5 1 ∧ −1 5

ξ2 5 1} and ∂g(x) = {−1}. We set ξ = [ξ1, ξ2]
T

= [−1, 0]
T and ζ = −1, and then we

obtain the following η-approximated vector optimization problem (VP1η(x, ξ , ζ )):

(−x, 0) → min,

−x 5 0.
(VP1η(x, ξ , ζ ))

Note that in this case, the generalized Karush–Kuhn–Tucker necessary optimality
conditions (2.3)–(2.5) are fulfilled only with the Lagrange multiplier λ = [λ1, λ2]

T ,
where λ1 = 0. Hence, the hypothesis λ > 0 of Theorem 3.1 is not satisfied. It
is not difficult to see that x = 0 is not a Pareto optimal point in this vector
optimization problem.

Now, under a suitable V -invexity assumption with respect to the same function η,
but with respect to, not necessarily, the same function α, imposed on the objective
function f and the constraint function g, we establish that a (weak) Pareto optimal
solution x in an η-approximated vector optimization problem (VPη(x, ξ , ζ )) is also
(weak) Pareto optimal in the original multiobjective programming problem (VP). To
prove this result we also assume that η satisfies the condition η(x, x) = 0.

THEOREM 3.6. Let x be a (weak) Pareto optimal solution in (VPη(x, ξ , ζ )) and
η(x, x) = 0. Furthermore, assume that f is V -invex at x on D with respect to η

and α and g is V -invex at x on D with respect to the same function η and with respect
to β, where, for all j /∈ J (x), β j (x, x) = 1 for all x ∈ D. Then x is also (weak) Pareto
optimal in (VP).
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PROOF. By assumption, g is V -invex at x on D with respect to η and β. Then, by
Definition 2.4, the inequalities

g j (x) = β j (x, x)ζ T
j η(x, x), j ∈ J (x), (3.11)

g j (x) = g j (x) + β j (x, x)ζ T
j η(x, x), j /∈ J (x), (3.12)

hold for each ζ j ∈ ∂g j (x) for j ∈ J and for all x ∈ D. Hence, they are satisfied for
ζ j = ζ j ∈ ∂g j (x) for j ∈ J . From Definition 2.4, it follows that β j (x, x) > 0 for all
x ∈ D. Dividing both sides of (3.12) by β j (x, x), we obtain

1
β j (x, x)

g j (x) =
1

β j (x, x)
g j (x) + ζ

T
j η(x, x), j /∈ J (x). (3.13)

By assumption, for all j /∈ J (x), β j (x, x) = 1 for all x ∈ D. Since g j (x) < 0 for all
j /∈ J (x), then

1
β j (x, x)

g j (x) + ζ
T
j η(x, x) = g j (x) + ζ

T
j η(x, x), j /∈ J (x). (3.14)

Thus, by (3.13) and (3.14),

1
β j (x, x)

g j (x) = g j (x) + ζ
T
j η(x, x), j /∈ J (x). (3.15)

Then, for any x ∈ D, the inequalities (3.11) and (3.15) imply, respectively,

0 = β j (x, x)ζ
T
j η(x, x), j ∈ J (x), (3.16)

0 = g j (x) + ζ
T
j η(x, x), j /∈ J (x), (3.17)

where ζ j ∈ ∂g j (x) for j ∈ J . From Definition 2.4, it follows that β j (x, x) > 0 for all
x ∈ D. Dividing both sides of (3.16) by β j (x, x), we obtain

0 = ζ
T
j η(x, x), j ∈ J (x). (3.18)

Since g j (x) = 0 for each j ∈ J (x), then (3.18) gives

0 = g j (x) + ζ
T
j η(x, x), j ∈ J (x).

Therefore, by (3.17) and (3.18), it follows that, for all x ∈ D,

0 = g j (x) + ζ
T
j η(x, x), j ∈ J,

where ζ j ∈ ∂g j (x) for j ∈ J . Hence, any feasible solution in (VP) is also feasible in
(VPη(x, ξ , ζ )), that is, D ⊂ D(x, ζ ). Let x be Pareto optimal in (VPη(x, ξ , ζ )). Then,
by Definition 2.5,

@ x ∈ D(x, ζ ), f (x) + ξη(x, x) ≤ f (x) + ξη(x, x).
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From D ⊂ D(x, ζ ) it follows that

@ x ∈ D, f (x) + ξη(x, x) ≤ f (x) + ξη(x, x). (3.19)

By assumption, η(x, x) = 0. Thus, (3.19) yields

@ x ∈ D, ξη(x, x) ≤ 0. (3.20)

We proceed by contradiction. Suppose that x is not Pareto optimal in (VP). Then by
Definition 2.5 there exists x̃ ∈ D such that

f (̃x) ≤ f (x). (3.21)

By assumption f is V -invex at x on D with respect to η and α. Then by Definition 2.4,
it follows that, for any i = 1, . . . , k, the inequality

fi (x) − fi (x) = αi (x, x)ξ T
i η(x, x)

holds for all x ∈ D and each ξi ∈ ∂ fi (x), i = 1, . . . , k. Hence, it is also satisfied for
x = x̃ and ξi = ξ i , i = 1, . . . , k. Thus, by (3.21),

αi (̃x, x)ξ
T
i η(̃x, x) 5 0, (3.22)

but, for at least one i ∈ J ,
αi (̃x, x)ξ

T
i η(̃x, x) < 0. (3.23)

By Definition 2.4, it follows that, for any i = 1, . . . , k, αi (̃x, x) > 0. Then, by (3.22)
and (3.23),

∃ x̃ ∈ D, ξ
T
η(̃x, x) ≤ 0,

which contradicts (3.20). Hence, the conclusion of the theorem is proved.
The proof for x to be a weak Pareto optimal solution is similar. 2

In view of Theorem 3.1 and Theorem 3.6, if we assume that the CQ (or GSCQ)
is satisfied at x , f and g satisfy suitable V -invex type conditions at x on the set of
all feasible solutions D with respect to the same function η and with respect to, not
necessarily, the same function α, and, moreover, η satisfies the relation η(x, x) = 0,
then the considered nonsmooth multiobjective programming problem (VP) and its η-
approximated vector optimization problem (VPη(x, ξ , ζ )) are equivalent in the sense
discussed above.

Now, we give an example of a nonlinear multiobjective programming problem (VP),
for which the η-approximation approach is used to find a Pareto optimal solution.

EXAMPLE 3.7. We consider the following nonlinear nonsmooth multiobjective
programming problem:

f (x) = (xe|x−1|, arctan |x |) → min,

g1(x) = 1 − ex 5 0,

g2(x) = |x | − 2 5 0.

(VP2)
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Note that D = {x ∈ R | 0 5 x 5 2} and x = 0 is a Pareto optimal point in the
considered nonlinear multiobjective programming problem. Let η : R × R → R be
defined by

η(x, x) = ex
− ex .

Now, we construct the associated η-approximated vector optimization problem
(VP2η(x, ξ , ζ )) by transforming at x both the objective function f and the constraint
function g. Thus, we obtain the following vector optimization problem:

(ex+1
− e, ξ2(e

x
− 1)) → min,

1 − ex 5 0,

−2 + ζ 2(e
x

− 1) 5 0,

(VP2η(x, ξ , ζ ))

where ξ and ζ are Clarke’s generalized gradients of f and g at x , that is,

ξ ∈ ∂ f (x) = {[e, ξ2]
T

| −1 5 ξ2 5 1} and ζ ∈ ∂g(x) = {[1, ζ 2]
T

| −1 5 ζ 2 5 1},

satisfying the generalized Karush–Kuhn–Tucker necessary optimality condi-
tions (2.3)–(2.5). Since η satisfies the condition η(x, x) = 0, then, by Theorem 3.1,
x = 0 is also a Pareto optimal solution in the associated η-approximated vector opti-
mization problem (VPη(x, ξ , ζ )) defined above. In contrast, to prove by Theorem 3.6
that x , being a (weak) Pareto optimal solution in (VPη(x, ξ , ζ )), is also a (weak) Pareto
optimal solution in the original multiobjective programming problem (VP), we need
to show that f and g are V -invex at x on D with respect to the same η satisfying the
condition η(x, x) = 0. If we set, for example,

α1(x, x) = 1, α2(x, x) =

1 if x = 0,

arctan x

ex − ex
if 0 < x 5 2,

β1(x, x) =

1 if x = 0,
x

ex − ex
if 0 < x 5 2,

β2(x, x) = 1.

then, by Definition 2.4, f is V -invex at x on D with respect to η and α = (α1, α2)

and g is V -invex at x on D with respect to the same function η and with respect to
β = (β1, β2).

It is not difficult to see that any η-approximated vector optimization problem
(VP2η(x, ξ , ζ )) belonging to a family of this vector optimization problem is easier
to solve than the original nonsmooth multiobjective programming problem (VP2).

REMARK 3.8. Note that each η-approximated vector optimization problem
(VP2η(x, ξ , ζ )) constructed in the η-approximation method for the nondifferentiable
multiobjective programming problem (VP2) considered in Example 3.7 is smooth.
Thus, the η-approximation method allows the characterization of solvability of a
nondifferentiable multiobjective programming problem (VP) by the help of a smooth
vector optimization problem. This property is useful from a practical point of view.
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REMARK 3.9. It is not difficult to see that if the function η, with respect to which
all functions constituting the considered nonsmooth multiobjective programming
problem (VP) are V -invex, is linear with respect to the first component, then each η-
approximated vector optimization problem constructed in the η-approximation method
is a linear vector optimization problem.

Now, we give an example of a nonsmooth multiobjective programming problem
for which its η-approximated vector optimization problems constructed in the η-
approximation method are linear.

EXAMPLE 3.10. We consider the following nonlinear nonsmooth multiobjective
programming problem:

f (x) = (arctan|ex |, x ln(|x −
1
2 e| +

1
2 e)) → min,

g(x) = ln2(x + 1) − ln(x + 1) 5 0,

X = {x ∈ R | x > −1}.

(VP3)

Note that D = {x ∈ R | 0 5 x 5 e − 1} and x = 0 is a Pareto optimal point in the
considered nonlinear multiobjective programming problem. Let η : X × X → R be
defined as follows:

η(x, x) =
1
e
(x − x).

We construct the η-approximated vector optimization problem (VP3η(x, ξ , ζ ))
associated with (VP3) as follows:

(
1
e
ξ1x,

1
e

x

)
→ min,

−
1
e

x 5 0,

(VP3η(x, ξ , ζ ))

where ξ and ζ are Clarke’s generalized gradients of f and g at x , that is,
ξ ∈ ∂ f (x) = {[ξ1, 1]

T
| −e 5 ξ1 5 e} and ζ = −1, satisfying the generalized Karush–

Kuhn–Tucker necessary optimality conditions (2.3)–(2.5). Since η satisfies the
condition η(x, x) = 0, then, by Theorem 3.1, x = 0 is also a Pareto optimal solution
in (VP3η(x, ξ , ζ )).

In contrast, we consider any η-approximated vector optimization problem
(VP3η(x, ξ , ζ )) defined above. To prove, by Theorem 3.6, that x , being a (weak)
Pareto optimal solution in (VP3η(x, ξ , ζ )), is also a (weak) Pareto optimal solution
in the original multiobjective programming problem (VP3) it should be proved that
f and g are V -invex at x on D with respect to the same η satisfying the condition
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η(x, x) = 0. If we set, for example,

α1(x, x) =

{
1 if x = 0,
arctan ex

x
if 0 < x 5 e − 1,

α2(x, x) = e ln(|x −
1
2 e| +

1
2 e),

β(x, x) =

{
1 if x = 0 ∨ x = e − 1,
e

x
[ln(x + 1) − ln2(x + 1)] if 0 < x < e − 1.

then, by Definition 2.4, f is V -invex at x on D with respect to η and α =

(α1, α2) and g is V -invex at x on D with respect to the same function η and with
respect to β = (β1, β2). Note that each η-approximated vector optimization problem
(VP3η(x, ξ , ζ )) constructed for the considered nondifferentiable multiobjective
programming problem (VP3) is a smooth linear vector optimization problem, since
the function η, with respect to all functions constituting the considered multiobjective
programming problem (VP3), is linear with respect to the first component. This
property of the η-approximation method is also useful from a practical point of view.

REMARK 3.11. The assumption that a function η satisfies the condition η(x, x) = 0
is essential to confirm the equivalence between the vector optimization problems (VP)
and (VPη(x, ξ , ζ )) in the sense discussed in the paper. In the example below, we show
that in the case when this condition does not hold then there is no equivalence between
vector optimization problems (VP) and (VPη(x, ξ , ζ )).

EXAMPLE 3.12. We consider the following nonlinear multiobjective programming
problem:

f (x1, x2) = ( f1(x1, x2), f2(x1, x2)) → min,

g1(x1, x2) = ex1−1
− 2 ln x1 − x2 5 0,

g2(x1, x2) = − ln x1 5 0,

X = {(x1, x2) ∈ R2
| x1 > 0}

(VP4)

where

f1(x1, x2) =

{
x1 − 2 + x2 if 0 < x1 5 2,

2(x1 − 2) + x2 if x1 > 2,

f2(x1, x2) =

{
1
2 (x1 − 1) +

1
2 x2 if 0 < x1 5 1,

1
4 (x1 − 1) +

1
2 x2 if x1 > 1.

Note that D = {(x1, x2) ∈ X | x1 = 1 ∧ x2 = 1} and x = (1, 1) is a Pareto optimal
point in the considered multiobjective programming problem. Furthermore, f is V -
invex at x on D with respect to η and α = (α1, α2) and g is V -invex with respect to
the same function η and with respect to β = (β1, β2) defined by

η(x, x) =

[
x1 + x1 + 1
x2 + x2 − 5

]
,

α1(x, x) = 1, α2(x, x) =
1
2 , β1(x, x) = 1, β2(x, x) = 1.
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It is not difficult to see that the condition η(x, x) = 0 is not fulfilled by the function η

defined above. For the considered nonlinear multiobjective programming problem, we
construct its associated η-approximated vector optimization problem (VP4η(x, ξ , ζ )).
Thus, we obtain

(x1 + x2 − 2, ξ21(x1 + 2) +
1
2 x2 −

3
2 ) → min,

−x1 − x2 + 2 5 0,

−x1 − 4 5 0,

(VP4η(x, ξ , ζ ))

where ξ and ζ are Clarke’s generalized gradients of f and g at x , that is,

ξ ∈ ∂ f (x) =

{[
1 1

ξ21
1
2

] ∣∣∣∣ 1
4 5 ξ21 5 1

2

}
and ζ ∈ ∂g(x) =

[
−1 −1
−1 0

]
,

satisfying the generalized Karush–Kuhn–Tucker necessary optimality conditions
(2.3)–(2.5). Therefore, x = (1, 1) is not a Pareto optimal point in the above
vector optimization problem. Thus, the considered multiobjective programming
problem (VP4) and its associated η -approximated vector optimization problems
(VP4η(x, ξ , ζ )) are not equivalent in the sense discussed in this paper.

4. Conclusion

In this paper we have introduced a new approach for solving a nonlinear
(nonconvex) nondifferentiable multiobjective programming problem. The formulation
of the introduced η-approximated vector optimization problem requires the Lagrange
multipliers of the original multiobjective programming problem. Thus, apparently
one cannot compute the η-approximated vector optimization problem without first
computing the original multiobjective programming problem. This follows from
the formulation of the introduced η-approximation approach, since we need both
a point x , which is expected to be optimal, and Clarke’s generalized gradients ξ

and ζ of the objective function f and the constraint function g at x , respectively.
Then, a family of η-approximated vector optimization problems can be constructed
at such a selected point. In general, we obtain a simpler vector optimization
problem which is easier to solve than the original nonlinear nondifferentiable
multiobjective programming problem. It turns out that the η-approximation method
affords possibilities for characterizing solvability of a nondifferentiable nonconvex
multiobjective programming problem with the help of the linear (or convex) smooth
vector optimization problems (see Examples 3.7 and 3.10 and Remarks 3.8 and 3.9).
Moreover, as follows from the formulation of an η-approximated vector optimization
problem and the definition of V -invexity, there may exist more than one associated η-
approximated vector optimization problem equivalent to the considered multiobjective
programming problem (VP). These properties are also useful from a practical point
of view.
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