BULL. AUSTRAL. MATH. SOC. VOL. 1 (1969), 231-235.

On the lattice of congruences on a regular semigroup

T. E. Hall

A result of Reilly and Scheiblich for inverse semigroups is proved true also for regular semigroups. For any regular semigroup Sthe relation Θ is defined on the lattice, $\Lambda(S)$, of congruences on S by: $(\rho, \tau) \in \Theta$ if ρ and τ induce the same partition of the idempotents of S. Then Θ is a congruence on $\Lambda(S)$, $\Lambda(S)/\Theta$ is complete and the natural homomorphism of $\Lambda(S)$ onto $\Lambda(S)/\Theta$ is a complete lattice homomorphism.

1. Introduction and summary

Let S be a semigroup, E its set of idempotents, $\Lambda(S)$ its lattice of congruences, and define on $\Lambda(S)$ the relation

 $\Theta = \{ (\rho, \sigma) \in \Lambda(S) \times \Lambda(S) : \rho \cap (E \times E) = \sigma \cap (E \times E) \} .$

Using the work of Munn [4] and Lallement [2], Reilly and Scheiblich [5] have proved the following

THEOREM 3.4 of [5]. If S is a regular semigroup then

(i) Θ is a meet compatible equivalence on $\Lambda(S)$;

(ii) each Θ -class is a complete modular sublattice of $\Lambda(S)$.

For inverse semigroups they prove considerably more in Theorem 5.1 [5]. We consider whether or not Theorem 5.1 [5] holds true also for regular semigroups. We answer this in the affirmative by proving the following

Received 21 March 1969. Received by J. Austral. Math. Soc. 6 December 1968. Communicated by G.B. Preston. This research was carried out at Monash University while the author held a Commonwealth Postgraduate Award. The author wishes to thank his supervisor, Professor G.B. Preston, for an inspiring discussion and further invaluable help.

theorem, which reduces to Theorem 5.1 [5] when S is an inverse semigroup.

MAIN THEOREM. Let S be a regular semigroup, E the set of idempotents of S, and $\Lambda(S)$ the lattice of congruences on S. Define on $\Lambda(S)$ the relation

$$\Theta = \{ (\rho, \sigma) \in \Lambda(S) \times \Lambda(S) : \rho \cap (E \times E) = \sigma \cap (E \times E) \}$$

Then

- (i) Θ is a congruence on $\Lambda(S)$;
- (ii) each Θ -class is a complete modular sublattice of $\Lambda(S)$;
- (iii) the quotient lattice $\Lambda(S)/\Theta$ is complete and the natural homomorphism $\Theta^{\mathbf{q}}$ of $\Lambda(S)$ onto $\Lambda(S)/\Theta$ is a complete lattice homomorphism.

We use wherever possible, and often without comment, the notations and conventions of Clifford and Preston [1]. For any equivalence E on S, we shall often denote the equivalence $E \cap (E \times E)$ by E | E. We shall use the following well-known result, which one may readily verify.

RESULT 1. Let L be a complete lattice and Θ a congruence on L satisfying the following condition.

(A) If
$$\{a_i : i \in I\}$$
 and $\{b_i : i \in I\}$ (I is some index set) are
any two subsets of L such that $(a_i, b_i) \in 0$ for each $i \in I$,
then $\left(\bigvee_{i \in I} a_i, \bigvee_{i \in I} b_i\right) \in 0$ and $\left(\bigwedge_{i \in I} a_i, \bigwedge_{i \in I} b_i\right) \in 0$.

Then the quotient lattice L/Θ is a complete lattice and the natural homomorphism Θ^{4} of L onto L/Θ is a complete lattice homomorphism.

2. $K(\sigma)$ -regularity

This section gives a routine generalization of Lallement's Theorem 3.6 [3] (see also Theorem 2.3 [2]).

Let S be a semigroup and σ any congruence on S. Let K be any one of Green's relations R, L, H, D, J on S (see [1]). To indicate that we are considering one of Green's relations on a different semigroup T say, we shall use, for example, the phrase "K on T". Define now $K(\sigma) = \{(a,b) \in S \times S : a\sigma \text{ and } b\sigma \text{ are } K\text{-related in } S/\sigma\}$. Then clearly $K(\sigma)$ is an equivalence relation on S, $K \subseteq K(\sigma)$, and $\sigma \subseteq K(\sigma)$. Also clearly $H(\sigma) = R(\sigma) \cap L(\sigma)$ and $D(\sigma) = R(\sigma) \circ L(\sigma) = L(\sigma) \circ R(\sigma) = L(\sigma) \circ R(\sigma)$.

For any element a in S, let $K(\sigma)_a [K_a]$ denote the $K(\sigma)$ -class [K-class] of S containing the element a, and let $K_{a\sigma}$ denote the K-class of S/σ containing the element $a\sigma$. Clearly there is a one-to-one mapping, ψ say, from the set of $K(\sigma)$ -classes of S onto the set of K-classes of S/σ such that, for any element a in S, $K(\sigma)_a \psi = K_{a\sigma}$.

Now for $K \neq D$, there is a natural ordering \leq (see [1] or [2]) on the set of K-classes of any semigroup. We define \leq on the set of $K(\sigma)$ -classes of S (for $K \neq D$), as follows. For any two elements a, bin S, $K(\sigma)_a \leq K(\sigma)_b$ if and only if $K_{a\sigma} \leq K_{b\sigma}$. Since ψ is a one-to-one mapping, \leq is a partial ordering. Note, for example, that $R(\sigma)_a \leq R(\sigma)_b$ if and only if

 $\{a\sigma^{\flat}\} \cup (a\sigma^{\flat})(S\sigma^{\flat}) \subset \{b\sigma^{\flat}\} \cup (b\sigma^{\flat})(S\sigma^{\flat})$.

For any two elements a , b in S , the following are clear.

(i) If $K_a = K_b$, then $K(\sigma)_a = K(\sigma)_b$ (since $K \subseteq K(\sigma)$).

(ii) For $K \neq \mathcal{D}$, if $K_a \leq K_b$, then $K(\sigma)_a \leq K(\sigma)_b$.

DEFINITION (from [2]) Let E be any equivalence relation on S. Then S is called E-regular if, for any congruence ρ on $S, \rho | E \subseteq E$ implies $\rho \subseteq E$.

THEOREM 1. If S is a regular semigroup, then S is $K(\sigma)$ -regular.

Proof. With minor alterations (involving (i) and (ii) above), Lallement's proof of Theorem 3.6 [3] is sufficient (see also Theorem 2.3 [2]). The alterations consist mainly in replacing, for example, R_a by $R(\sigma)_a$.

3. The lattice of congruences

LEMMA 1. Let S be a regular semigroup. For each element i of some index set I, let ρ_i , $\rho_i^!$ be congruences on S such that

 $(\rho_i, \rho'_i) \in \Theta$. Then

$$\left(\bigvee_{i \in I} \rho_i, \bigvee_{i \in I} \rho_i'\right) \in \Theta$$

In particular, Θ is a join compatible equivalence relation.

Proof. For each $i \in I$, let α_i and β_i be the least and greatest element respectively of $\rho_i \theta$ and put $\sigma = \bigvee \alpha_i$. Define $H(\sigma)$ as in $i \in I$ Section 2. Clearly $H(\sigma) | E = \sigma | E$. Then for each $i \in I$,

$$\beta_i | E = \alpha_i | E \subseteq \sigma | E = H(\sigma) | E$$

and from Theorem 1, $\beta_i \subseteq H(\sigma)$. Hence $\bigvee_{i \in I} \beta_i \subseteq H(\sigma)$. Therefore

$$\left(\bigvee_{i \in I} \alpha_i \right) | E \subseteq \left(\bigvee_{i \in I} \beta_i \right) | E \subseteq H(\sigma) | E = \sigma | E = \left(\bigvee_{i \in I} \alpha_i \right) | E ,$$

whence $\begin{pmatrix} \bigvee & \alpha_i \end{pmatrix} | E = \begin{pmatrix} \bigvee & \beta_i \end{pmatrix} | E$. Since, for each $i \in I$, we have $\alpha_i \subseteq \rho_i \subseteq \beta_i$ and $\alpha_i \subseteq \rho_i' \subseteq \beta_i$ we easily obtain that $\begin{pmatrix} \bigvee & \rho_i \end{pmatrix} | E = \begin{pmatrix} \bigvee & \rho_i' \end{pmatrix} | E = \begin{pmatrix} \bigvee & \alpha_i \end{pmatrix} | E$, giving the required result.

Following Reilly and Scheiblich [5], we see that

$$\begin{pmatrix} \bigcap_{i \in I} \rho_i \end{pmatrix} \cap (E \times E) = \bigcap_{i \in I} [\rho_i \cap (E \times E)] = \bigcap_{i \in I} [\rho_i' \cap (E \times E)]$$
$$= \begin{pmatrix} \bigcap_{i \in I} \rho_i' \end{pmatrix} \cap (E \times E)$$

From this and Lemma 1, it follows that Θ is a congruence on $\Lambda(S)$ satisfying condition (A) of Result 1. The proof of the main theorem is now complete.

COROLLARY 1. For each element ρ in $\Lambda(S)$, let $M(\rho)$ be the greatest element of the Θ -class $\rho\Theta$. Then for any two congruences ρ , σ on S, if $\rho \subseteq \sigma$ then $M(\rho) \subseteq M(\sigma)$.

Proof. Now from Lemma 1, $M(\rho) \lor M(\sigma) \in (\rho \lor \sigma)\Theta$, and so $M(\rho) \subseteq M(\rho) \lor M(\sigma) \subseteq M(\rho \lor \sigma) = M(\sigma)$.

REMARK I. If $m(\rho)$ denotes the least element of $\rho\Theta$, then it is clear that $\rho \subseteq \sigma$ implies $m(\rho) \subseteq m(\sigma)$, since $m(\rho) = [\rho \cap (E \times E)]^*$, the congruence on S generated by the relation $\rho \cap (E \times E)$.

REMARK 2. For any $\rho \in \Lambda(S)$, the O-class $\rho \Theta$ is isomorphic to the lattice of idempotent separating congruences on $S/m(\rho)$ (see the proof of (ii) Theorem 3.4 [5]) and if S is an inverse semigroup then $\Lambda(S)/\Theta$ is (isomorphic to) a sublattice of the lattice of congruences on the semilattice E; for let ρ , σ be any elements of $\Lambda(S)$. Then $(\rho \cap \sigma) | E = (\rho | E) \cap (\sigma | E)$ and $(\rho \vee \sigma) | E = (\rho | E) \vee (\sigma | E)$ (the proof of Theorem 5.1 [5] shows that $(\rho_1 \vee \rho_3) | E = (\rho_1 | E) \vee (\rho_3 | E)$. Let us call $\{\rho \cap (E \times E) : \rho \in \Lambda(S)\}$ the set of normal congruences on E, and denote it by N(E). Then N(E) is a sublattice of the lattice of congruences on E and is isomorphic to $\Lambda(S)/\Theta$. By considering any Brandt semigroup with three or more idempotents, we see that N(E) is not always equal to the lattice of all congruences on E . We note that the normal congruences on E are characterized as follows (due to Reilly and Scheiblich; see Definition 4.1 [5]): a congruence ζ on E is normal if and only if for every pair $(e,f) \in \zeta$ and every element $a \in S$, we have $(aea^{-1}, afa^{-1}) \in \zeta$.

References

- [1] A.H. Clifford and G.B. Preston, The algebraic theory of semigroups, vols. 1 and 2, (Amer. Math. Soc. Mathematical Surveys 7, Providence, 1961 and 1967).
- [2] G. Lallement, "Congruences et équivalences de Green sur un demi-groupe régulier", C.R. Acad. Sc. Paris, Série A, 262 (1966), 613-616.
- [3] Gérard Lallement, "Demi-groupes réguliers" (Doctoral dissertation), Ann. Mat. Pura Appl. (IV), Vol. 77, (1967), 47-130.
- [4] W.D. Munn, "A certain sublattice of the lattice of congruences on a regular semigroup", Proc. Cambridge Philos. Soc. 60 (1964), 385-391.
- [5] N.R. Reilly and H.E. Scheiblich, "Congruences on regular semigroups", Pacific J. Math. 23 (1967), 349-360.

Department of Mathematics, Monash University, Clayton, Victoria. 235