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Abstract

A flat spot in a Banach space X is an element x e Sx = {xe X: || x || = 1} with the property
that the infimum m(x) of the lengths of all curves in Sz joining x to — x is 2. Flat spots occur
in every non-superreflexive space when suitably renormed. A study is made of the geometric
implications of the existence of flat spots. Connections with other notions such as differentia-
bility, decomposition constants and Kadec-Klee norms are explored and some renorming
results for non-superreflexive spaces are proved.

Subject classification (Amer. Math. Soc. (MOS) 1970): 46 B 99.

Introduction and summary

Let X be a Banach space and let Bx and Sx denote its unit ball and unit sphere,
respectively. Schaffer (1967) introduced a geometric parameter called the girth of
Bx and defined as follows. For each xeSx let m(x) be the infimum of the lengths
of all curves in Sx with initial point x and endpoint — x and let

m(X) = inf{w(jc): xeSx}.

By reflecting through the origin each curve from x to — x, one sees that the number
2m(X) can be regarded as the infimum of the lengths of all centrally symmetric
closed curves in Sx. It is therefore called the girth of Bx. Always 2</n(JS0<4
(see Schaffer (1967)) and m(X)>2 if and only if X is superreflexive (James and
Schaffer (1972)).

If for some X both infima involved in the definition of m(X) are attained and
equal 2, that is if there exists a so-called girth curve in Sx joining two antipodal
points and with length 2, this has various geometric consequences which justify
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290 D. van Dulst [2]

calling such a space flat (Harrell and Karlovitz (1974)). Flat spaces have non-
separable flat duals (Karlovitz (1973)) and cannot be isomorphically'embedded
into any separable dual space (Harrell and Karlovitz (1974)). Examples are
C[0,1], Zi[0,1], L^IO, 1], /°°. If only m(x) = 2 for some xeSx (where the infimum
may or may not be attained), then x is called aflat spot (Schaffer (1976)). Until
recently almost nothing was known about flat spots, not even their existence,
except in flat spaces (Schaffer (1976)). In van Dulst and Schaffer (1979) the first
examples were given of flat spots in non-flat Banach spaces. Subsequently, Pach
(1979) proved that any non-superreflexive Banach space can be equivalently
renormed so that it has a flat spot. Since m(X) > 2 for superreflexive spaces X, this
completely solves the isomorphic existence problem for flat spots.

In Section 1 we formally state Pach's result for later reference and, for motivation,
present probably the simplest example of a non-trivial flat spot. In Section 2 we
study the geometry of the unit sphere at a flat spot. More generally, we investigate
the geometric implications of the assumption 'm(x) close to 2'. It is shown that in
this case there exist two-dimensional subspaces whose unit spheres approximate
squares with x as a vertex and with one edge containing x uniformly close to all
hyperplanes supporting the unit ball at x. We also give estimates for the local
moduli of convexity and smoothness at x in terms of m{x). In the limit case
m(x) = 2 both moduli are as bad as can be. It follows in particular that if x is a
flat spot then the norm is not Frechet differentiable and not locally uniformly
convex at x, and x fails to be a strongly exposed point. We end Section 2 with an
investigation of the dual of a space with a flat spot.

Complementing these results, we identify in Section 3 two more properties of
Banach spaces which rule out the existence of flat spots. One has to do with the
existence of certain projections in the dual space and the other is the Kadec-KIee
property of the norm. Joined with Pach's theorem, our results show the existence
of 'bad' renormings for non-superreflexive spaces. We conclude with some remarks
on open problems.

1. Existence of flat spots in non-flat Banach spaces

PROPOSITION 1.1 (Pach (1979)). On every non-superreflexive Banach space
(X, ||. ||) there exists an equivalent norm |||. ||| such that (X, \\\. |||) has aflat spot.

The proof of this result is rather complicated and will appear elsewhere. The
simplest example of a space for which this renonning (to obtain a flat spot) can be
carried out explicitly is c0 = co(N). Observe that c0 is not isomorphic to a flat space,
since its dual is separable (Karlovitz (1973)). We now reproduce this example from
van Dulst and Schaffer (1979). As usual, we denote the space /°°(r) by /?> if
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F = {1,2,...,«} (neN). Also, when more than one space is involved, we use its
name as a subscript, for example mx(x), mr(x). Let us note the trivial inequality
mx(x)^mT(x) for every xeST, where Yis a subspace of X.

EXAMPLE. 1. Let T be the set of all rational numbers in [-1,1] and define
?e/°°(r) by q(y): = y for all yeT. We consider the subspace X: = c^+TSLq of
/°°(r). X is obviously isomorphic to co(N), since F is countably infinite. Further-
more, || q || = 1. We shall prove that q is a flat spot of X.

2. Let neN be fixed for the time being. We define a map Tn: /£Vi-•/"(O by

U) i fy= 1-2(7-1)/« (y=l , . . . ,n+ l ) ,
(Tnx)(y): =

\ x(l)y ifyeT\{l-2(j-l)ln:j= 1,...,« +1}

for xel™+1. It is plain that Tn is linear and isometric. We denote its range by
Xn. Clearly Tnx—x(l)q has finite support for every xe/J+ 1 ; therefore Xn is a
subspace of X. Define />„ e S +̂1» by

PoU): = 1-20-1)/* 0 = 1 « + !)•

It follows that (Tnp0)(y) = y for all yeT, so that Tnp0 = ^.
3. We claim that mg+l(p0) ̂ 2(1 +1 /ri). Indeed, consider the polygon in l%+1

joining p0 to — p0 and with consecutive vertices

Clearly HpJ = 1 (i = 0,...,«+1). Furthermore, since ^i_i(/) =/><(/) = 1 for all
i = 1,...,« + 1, each segment [/>{_1,/'{], and therefore the entire polygon, lies in
S£>+1. Obviously, \\pi-p^W = 2/n for all i = 1, ...,n+1, so that the polygon has
length (n+ l)(2//i) = 2(1 + 1/n). This proves our claim.
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4. Finally, since Tn is an isometry from /£+1 onto Xn, we now conclude that

mx(q) < mxJS = mXn(Tnp0) = /M«.+1»(/>O) < 2(1 + 1/n).

Thus 2^mx(q)^2(1 + 1/n). Since neN was arbitrary, it follows that mx(q) = 2,
so that q is a flat spot of X.

2. The geometry of the unit sphere at flat spots

In this section, Jf will denote a normed linear space. For any xeSx, we define
the local moduli of convexity S(x,.) and of smoothness />(*,.) by

P(X,T) =

X is called uniformly non-square if there exists a S > 0 such that there do not exist
x,yeSx with

l - S and i | | , - ^ | | > i _ S .

x e Sx is called a strongly exposed point of Bx if there exists a support functional
x* at x, that is ||x*|| = <*,**> = 1, such that <xn,x*>-> 1, x n e 5 x (n = 1,2,...)
implies \\xn—x||->0.

We begin now by deriving some inequalities of which the results in this section
will be easy consequences. Let xeSx and let a curve be given in Sx with initial
point x and endpoint — x and with length 2+e, where e>0. Suppose that
xe: [0,2+e]^-Sx is its standard representation in terms of arc length. Then

(1)

and

(2) \\xe(s+h)-xe(s)\\^h,

whenever 0^s^s+h^2+e. Let x*: [0,2+e]^Sx, be such that

(3) <*£(0, **(*)> = 1 foraI10</<2+«

In other words, x*(t) is an arbitrary support functional at xj[t),
We claim that, for any 0 < t, s < 2+e,

(4) l

Indeed, by (2) and (3),

(5) |<^),
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and, using also (1),

(6) <x£s), **(/)> + 1 = <xc(s), x*(0> + <xe(t), *•(/)>

(\\x£s)-xe(0)\\

\\x£(s)-xe(2+e)\\
{ +\\Xe(0)-xe(t)\\<(2+s-s) + t.

From (5) and (6), (4) easily follows.
Next, for any 0 < t < 2 + e , let us define

_

Then | | x e j = 1 and by (3), (4) and (2) we have

^ 1—(1—

and

(l-/+e)-l -t+e
* 1 T-

From these inequalities we derive

LEMMA 2.1. Let xeSx, e>0, and suppose that xe: [0,2+e]-*Sx is the standard
representation in terms of arc length of a curve with initial point x and endpoint —x.
Then, with xeJt defined as above, we have

, II *

(ii) <—JCe,(2«)», ̂ * ) ^ 1 — (ieflfor all support functional x* at x,
(iii) fix,T)>T-(2re)* for all T>0,
(iv) 8(x, T) < e* for all 0 s? T < 2 - e*.

PROOF. By (1), (3) and (8), we have, whenever T > 0 and 0 < < < 2 + e ,

(9) | | * -«J | = ||^(0)-r^||^ <xe(p)-rxePxf(p)>

= 1 - T<*«^ **(0)> > 1 -
TS
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and, by (1), (4) and (7),

(10) | | * + T * , J = \\xj[f))+rxt,\\> <*.(0)f **

Substituting T = 1 and t = (2e)* in (9) and (10) easily yields (i). More generally,
(9) and (10) imply that, whenever T > 0 and

Hence, for all

- inf (!!

which is (iii). Next, by (8) we have, for all 0<t^2+e, <-xe>,,
Since x*(0) is an arbitrary support functional at x = xe(0), substitution of / = (2e)*
gives (ii). Finally, to prove (iv), note that, by (9), \\x-xe>ei\\>2-e*, and, by (10),
\\x+xeiei\\>2-2ei; so 8(jf,2-fi»)<l-i | |*+*M»||<l-K2-2«») = «*. From this
(iv) follows, since 8(x,.) is a non-decreasing function.

REMARK 2.2. (i) means that the unit sphere of the two-dimensional subspace
spnaned by the unit vectors x and xe{u)i resembles a square with vertices ±x,
± xe>(2e)i if s is small. (Compare Schaffer (1976), Theorem 17H for a similar result.)
(ii) means that, moreover, the edge joining x and —xei{2e)i lies uniformly close to
all support hyperplanes at x, if e is small.

PROPOSITION 2.3. Ifx is aflat spot in X, then
(i) for every r\>0 there exists ayeSx such that

and such that, in addition,
(ii) <j>, x*y ~&\—r\ for all support functional x* at x,

(iii) pipe, T) = T for all T > 0,
(iv) 8(x,T) = 0 for allO<r<2.

In particular, the norm is not Frichet differentiable at x, is not locally uniformly
convex at x, and x fails to be a strongly exposed point of Bx.

PROOF, (i) and (ii) immediately follow from the corresponding properties in
Lemma 2.1, by taking y = xe{2e)i for sufficiently small e>0. Moreover, taking the
limit for e->-0 in (iii) and (iv) of Lemma 2.1, we get p(*, T) > T (T > 0) and
8(x,T)<0(0<T<2). Since the reverse inequalities always hold, this proves (iii)
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and (iv). As for the remaining statements, recall that ||.|| is Frechet differentiable
at x if and only if lim p(x, T)/T = 0. Finally, the fact that x is not strongly exposed

T-»0

is obvious, since, by (i) and (ii), for any support functional x* at x and any 17 > 0,
the set {y e Sx: <j>, x*} > 1 -17} has diameter 2.

REMARK 2.4. (a) It follows in particular from Lemma 2.1(i), by taking e
arbitrarily small, that if m(X) = 2, X fails to be uniformly non-square and a
fortiori uniformly convex. It is known that Zis not even isomorphic to a uniformly
non-square space if m(X) = 2. This deep result is due to Schaffer, James and
Enflo (see James and Schaffer (1972), Enflo (1972), James (1972)). The pleasant
feature in the present discussion is that, even if m(X) is greater than but close to 2,
we are able to locate 'squares' precisely, working with curves whose lengths
approximate the girth of the unit ball. And also, of course, if the girth is achieved
'locally', that is if x e Sx is a flat spot, then 'good' squares can be found with
vertex in x and 'almost' tangent to all support hyperplanes.

Observe also that Proposition 2.3 never holds with 77 = 0. Indeed, if

for some yeSx, then the subspace spanned by x and y has no rm

and so there exists a support functional x* at x with <>>, JC*> = 0, contradicting (ii).
(b) If X* is WCG, then A'is an SDS (Namioka and Phelps (1975)). Therefore,

by Proposition 2.3, {xeSx: m(x) = 2} is nowhere dense in Sx. For an atomless
measure /z the space X = L^Qi) has the property that m(x) = 2 for all x e Sx

(Schaffer (1971)). This shows that a flat spot may very well be smooth. In fact,
if Vip.) is separable, it is a WDS (Asplund (1968)). Let us finally observe (Schaffer
(1976)) that every WCG space has an equivalent norm for which no flat spots
exist. This is a consequence of Proposition 2.3 since every WCG space has an
equivalent locally uniformly convex norm (Troyanski (1971)).

Next we show that if m{x) = 2 for some x e Sx, then the geometric situation at
x described in Proposition 2.3 also largely holds in A'* at any support functional
x* at x.

PROPOSITION 2.5. Let x be aflat spot in X. Then
(i) for every t\ > 0 there exists a y*e Sx, such that

for all support functional x* at x and such that, in addition,
(ii) <*,>>•» 1—7,
(iii) p(x*, T) = T for all T^O, and
(iv) 8(x*,T) = Ofor allO^r<2, for all support functionals x* at x.
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PROOF. By Proposition 2.3 there exists for any T?1>0 a yeSx such that
il|*+.J'|| + i||JC~J;||^2—Vi a n d < — y>•**>^ 1 — Vi f° r aU support functionals x*
at*.

Clearly the first inequality implies ||JC+J>||>2—21^. Let y*eSx. be a support
functional at (*+.y)/||x+.y||, t n a t is (.x+y,y*y = \\x+y\\- Then, for any
and any support functional x* at x,

(11) ||j

= 2 + 2 T - T ? 1 ( 1 + 2 T ) .

Moreover,

(12) <x,y*> =\\x+y\\-<y,y*>2(2-2r]l)-l = 1-2^.

Since (11) with T = 1 easily yields ||x* ±y*\\>2—3r)1, we have

(13) 8{x*,2

(i) now follows from (11) with T = 1 and ^ sufficiently small, and similarly (ii)
follows from (12). (iii) and (iv) are obtained from (11) and (13) by letting ijx tend
toO.

REMARK 2.6. Observe that, in contrast to Proposition 2.3, the squares with
vertices ±x*, ±y* in this proof have an edge close to the support hyperplane at
x* defined by x, but not necessarily to all support hyperplanes at x*. Also note
that x* need not be a flat spot in X*. Indeed, if x is the function identically 1 in
X = L^O, 1] and if x* is the same function in X* = Z,°°[0,1], then

<«,*•> = ||x|| = | | * * | | = l , m{x) = 2 and «(*•) = 4,

as is easily verified (Schafler (1976)). It can in fact be shown (van Dulst and
Schaffer (1979)) that, in contrast to the situation for flat spaces, there exists a
space with a flat spot whose dual is separable and has no flat spots.

In conjunction with Proposition 1.1 the results obtained so far in this section
show that even for reflexive X the geometry of Sx can be quite pathological.
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PROPOSITION 2.7. Any non-superreflexive Banach space X for which Bx, is
w*-sequentially compact can be equivalently renormed so that there exist elements
x$eSx, {n — 1,2, ...),x%eSx» satisfying the following conditions:

(i) w* - limx* = x*,
W-»CO

(ii) li
n-»oo

(iii) lim
n,m-*oo;

PROOF. Using Proposition 1.1 choose an equivalent norm so that X has a flat
spot x. For each neN, pick en>0 such that (2en)*<«-1. With the notations used
above, put xn = x^^t (n = 1,2,...). Then, by Lemma 2.1,

(14)

and for all x* s Sx, satisfying <x, JC*> = 1 we have

(15) <-*„,**> >l-2/r~i.

Now choose x * e S x . such that (x+xn,x*) = ||x+xn||. The proof of Proposition
2.5 then shows that for all x*eSx» with <*,**> = 1 we have

(16) ||x

and

(17) (

By passing to a subsequence we may assume that {x*} is u>*-convergent, with limit
x*, say. By (17), <*,**> = 1 and so, by (16), ||^c*—JC*||^2—3«-^ (» = 1,2,...).
Thus (i) and (ii) hold. It is easily verified that by passing to yet another subsequence
and using (i) and (ii), also (iii) can be realized.

3. Some Banach spaces having no flat spots

The next result is most easily stated in terms of a parameter (see Karlovitz (1976))
which we now introduce. If X is a Banach space and x* e Sx,, we define A(x*) to
be the infimum of the positive numbers a for which there exists a w*-closed sub-
space M<=X* with codimM<oo such that the projection from spx*@M onto
M with kernel spx* has norm < a. In formula,

A(x*) = inf{a>0: 3M<=X*, M w*-closed, codimAf<oo, and

||j'*+j8;c*i|3sa-
1||>>*|| for all y*eM and all scalars

We also set \(X*) = sup{A(x*): x*eSx.}.
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Observe that A(JSf*)<2 for all X. Indeed, let x$eSx. and e>0 be arbitrary.
By subreflexivity (Bishop and Phelps (1961)), there exists a y*eSx. and a yoeSx

such that O'cjtf) = 1 and |bJ-JcJ| |<e. Put M = (spyoy-. Fix y*eSM. Then
we have, whenever | )3 | ^ | ,

\\y*+P$\\>b*+Py$\\-\P\\\$-yS\\>\<y»y*+Pyi>\-\P\*

= \P\
and, whenever | /8| < \,

Thus \{x%) < 2, since e > 0 was arbitrary.

PROPOSITION 3.1. Let X be a normed linear space with a flat spot x0. Then
A(xjj') = 2 for some support functional x$ at x0. Hence \(X*)<2 implies that X has
no flat spots.

PROOF. By Proposition 2.3 there exists a sequence {xn}<=Sx satisfying

(18) iHXo+xJ + i\\Xo-.xJ>2-n-1 (it = 1,2,...)

and

(19) <—xn,x*y^l— n'1 for all support functional x* at x0 (« = 1,2,...)-

Let x*eSx. be such that

<xo+xn,x*} = | |*0+*n| | (n = 1,2,...).

The proof of Proposition 2.5 then shows that for all support functionals x* at x0

we have

(20) $\\x*+x*\\ + h\\x*-xt\\>2-3n-i («= 1,2,...),

as well as

(21) <^0,x*>^l-2«-1 («=1,2,...).

Let x%eBx. be a w* limit point of {**}. Clearly, by (21), <xo,xj> = 1; so xj is
a support functional at x0. In particular, by (20),

(22) i\\x*+x*\\-l\\x$±x*\\>2-3n-* (it = 1,2,...).

We claim that A(xJ) = 2. Indeed, assume for contradiction that Mx$) < 2,
Then there exists a w*-closed subspace M<^X* with codimAf<oo such that the
projection P from spxj©M onto M with kernel spxj has norm Û H = 2 -e<2 .
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Choose a finite biorthogonal system yv...,yneX, yf, ...,y*eX* such that

Then any x*eX* can be uniquely written as

(23) x* = S <yt. x*>yf+ z*, with z*eM.

Now consider the sequence tt(*J-*J)}. By (22), l i m ^ H K * ? - * ; ) ! ^ 1.
Since also 0 is a H>*-limit point, it follows from (23) that there exists an neN and
az*eAf such that

(24) ||z*|| = l and ||z*

From ||P|| = 2—s and zJeMwe deduce the existence of an x**eX** satisfying

(25) <**,***> = 1, <xf,x**> = 0 and | |***| |<2-e.

In particular, by (24),

l | / r * r * * \ | _ \/l(Y* — rie\ y** \ |> / r* Y**\— llr* — KY* — x*\\\ llr**l

Hence |<x*,;c**>|>2-£, contradicting | |x**||<2-£. This completes the proof.

COROLLARY 3.2. Let X be a Banach space with a shrinking finite-dimensional
Schauder decomposition (FDD) {Xn}, with associated sequence of projections
{PJ (i>

B(2f-i^) = S?=1^,^6^i). //liminf^00||/-Pn||<2, then X has no fiat
spots. In particular, X has no flat spots if it has an unconditional shrinking FDD
with unconditional decomposition constant<2.

PROOF. The last statement is an obvious consequence of the first. To prove the
first, let x*eSx, be arbitrary. By passing to a subsequence if necessary, we may
suppose that | |/—Pn||<2-e for all neN and some e>0. Since {Xn} is shrinking,
limn.*0O||x*-P*x*|| = 0. Combining this with | | / - P * | | ^ 2 - e ( n = 1,2,...), we
readily deduce that for sufficiently large n the projection from spx*©(7—P*) X*
onto the H>*-closed finite-codimensional subspace (I—P^X* with kernel spx*
has norm < 2 - \e. Thus A(Z *) < 2 - \e, and the conclusion follows from Proposition
3.1.

REMARK 3.3. (a) An interesting particular case is the Tsirelson space r(Tsirelson
(1974), Figiel and Johnson (1974)). It is reflexive, but contains no infinite-
dimensional superreflexive subspaces, that is m( Y) = 2 for all infinite-dimensional
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Y<= T. Nevertheless T has no flat spots by Corollary 3.2, since it has an uncon-
ditionally monotone basis.

(b) Arguments similar to the ones used to prove Proposition 3.1 will show that
if some x*eSx. attaining its norm is a flat spot in X*, then either Bx, is not
strictly convex at x* or A(x*) = 2. We do not give details.

In conjunction with Proposition 1.1, Corollary 3.2 yields the following renorming
result, which seems to be new even for spaces with bases.

PROPOSITION 3.4. Let X be a non-superreflexive Banach space with a shrinking
FDD. Then there exists on X an equivalent norm such that, with respect to this new
norm, liminf^oofl/—Pn\\^2for every shrinking FDD with associated sequence of
projections {Pn}.

Our final result exhibits yet another property which, under the mild assumption
that Zis WCG, rules our the existence of flat spots in both JSTand X*. A norm on
a Banach space X is called a Kadec-Klee norm (KK norm) if on Sx. »v*-sequential
convergence implies norm-convergence, or, more precisely, if x* w > x* and
11x* II ""*" II x*\\ imPty 11 *J—** || -»• 0. It is well known that every Banach space with a
separable dual has an equivalent KK norm (Kadec (1952), Klee (1960/61)). The
same result holds if X and X* are both WCG since by John and Zizler (1972), X
then has an equivalent norm whose dual norm is locally uniformly convex. Such a
norm is obviously KK. Note, however, that in general a KK norm and its dual
do not have even the weakest smoothness and rotundity properties. (Consider, for
example, the natural norms on c0 and its dual I1.)

PROPOSITION 3.5. Let X be a Banach space with a KK norm and suppose that
Bx, is w*-sequentially compact. Then the following hold.

(i) X has no flat spots.
(ii) If X* has aflat spot, then X* is flat.
(iii) IfXis WCG, then X* fails to be flat; so X* has no flat spots.
Thus, ifXis a WCG space with a KKnorm, then neither Xnor X* has flat spots.

PROOF. The last statement follows from (i), (ii) and (iii) if one recalls the fact that
for a WCG space X Bx, is an Eberlein compact in its w*-topology (Amir and
Lindenstrauss (1968), Lindenstrauss (1972)) and therefore w*-sequentialry compact.

(i) Suppose x is a flat spot in X. The proof of Proposition 3.1 then shows that
there exists a support functional x* at x and a sequence {xJD^Sjr. such that
x* w* > x* and \\x*—x*\\->2. This contradicts the KK property.

(ii) Suppose x* is a flat spot in X*. We show that then X* must be flat. For
each n e N, let yn be a curve in Sx, joining x* to - x* and with length l(yn) < 2+n~\
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Let x**eX** be any support functional at x*. Furthermore, let A be a dense
countable subset of the interval (—1,1). For each neN and a e ^ we choose a
point x*Aeynn{y*: C*.***) = a}. Since Bx, is w*-sequentially compact we
may, by applying a diagonal procedure, assume that for each a eA the sequence
{•*n,a}»£-i w*-converges, say to x*.

We claim that lim,̂ ,*, || x* —x*A\\ = 0, for each a eA. Indeed, the inequalities

(26)

(27)
n->oo

which follow from the w*-lower semicontinuity of the dual norm, together with

(28)

and

imply that, for all ate A,

(29) | |**±**| |=lim| |**±**a | | and | |**-**| |+| |**+**| | = 2.
n-»oo

Also, for all neN and a eA,

llv*—v* l l > / v * — v * v** \ — 1 — rv

\\x -xnA\\S*^x -xna,x ) - i a

and

Using (29) we conclude that, for all a eA,

and
||x*+x*|| = lim || .x

The assumption that the norm is KK now yields linv^Hx* — x*a|| = 0, for all
aeA, which proves our claim.

To finish the proof, note that /(yn)<2+«- 1 implies that for all oc1,a2eA and
neN,

and therefore

The unique continuous extension of this Lipschitz continuous map <x\->x* to
[—1,1] now defines a curve y in Sx* joining the antipodal points x* ~ x\ and
—x* = x*!, obviously with l(y) = 2, so that flatness has been proved.
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(iii) It remains to prove now that X * cannot be flat if X is WCG. The proof is
by transfinite induction on the density character of X. Let us first observe that X
has an equivalent Frechet differentiable norm and therefore satisfies all properties
of John and Zizler (1974), Theorem 1. Indeed, by Amir and Lindenstrauss (1968)
there exists a w*-to-w continuous linear injection T: X * -> co(F), for some set F.
If p is Day's norm on co(F) (see Rainwater (1969)) then \\.\\i =\\.\\+pT(.) on JJf •
is not only a strictly convex dual norm, so that it arises from a smooth norm
||. Id on X, but also this smooth norm ||. \\x on X is KK, as one easily checks. Hence
\\.\\x, being a smooth KK norm, is Frechet differentiable. Thus, by John and
Zizler (1974), Theorem 1 there exists on X a 'long sequence' of projections
{Pa: co < a<y) (JJ, is the first ordinal of cardinality dens X) such that

(1) Pp = identity, ||Pa|| = 1 for
(2) PaPfi = PfiP« = Pmin(a>/W for
(3) dens Pa X^ 3 (= cardinality of ex) for co < a. < n,
(4) for any fixed xeX the map <x^-Pax is continuous for the order topology

and the norm topology, respectively,
(5) the dual projections P* have the analogous properties (l)*-(4)*.
Now, if densJSr=K0, then, by (3)*, densX* = K0; so X* cannot be flat

(Karlovitz (1973)). Next, let 2R be some cardinal >K0 and let us suppose that it
has been proved for every WCG Zwith a KK norm and with densZ<9Jt, that
X* is not flat. Let X be a WCG space with a KK norm and with dens X= SCR.
Let ju, be the first ordinal of cardinality 2Ji and let {Pa: co < a. < /x} be a long sequence
of projections in jfas above. Supposing that X* is flat, let Y<= X* be the (separable)
closed linear span of a girth curve in Sx,. It is then easily derived from (4)* that
Y<=P* X* for some a<^i. Also P* X* is isometrically and w*-to-w* isomorphic
to (PaX)* by the restriction map. Therefore PaX'is a space with a KK norm and
also, of course, WCG. Since densPaX<$Jl the induction hypothesis now implies
that P* X*^ (Pa X)* is not flat, contradicting Y<=P*X*. This completes the proof.

COROLLARY 3.6. Let X=(^IT®X^mv){\<p<o6), or X= (2r©-̂ r)c<,<r>>
where T is an arbitrary set, and each Xy (y 6 F) is a WCG space with a KK norm.
Then neither Xnor X* has flat spots.

PROOF. It is known (Lindenstrauss (1972)) that X is WCG. Also, since the
natural norms on lp(T) (1 <p<co) and co(F) are KK, it is easily verified that the
norm of X is KK in all cases, se that Proposition 3.5 is applicable.

REMARK 3.7. Corollary 3.6 applies in particular for all choices of finite-
dimensional Xy. (Except for ( (S r © XY)lHr) ^ ( (£ r © X*)^)) * the conclusion then
also follows from an obvious modification of Corollary 3.2.) Even in this relatively
simple case no direct proof seems available. At any rate the usual arguments do
not work (see, for example, Schaffer (1971), Theorem 7).
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4. Concluding remarks and open problems

Our study of flat spots, together with Proposition 1.1, has yielded two renorming
results for certain non-superreflexive spaces, stated without reference to flat spots,
namely Propositions 2.7 and 3.4. The question arises whether they characterize
the non-superreflexive spaces among the spaces considered in these propositions.
More explicitly, the following problems need solving.

PROBLEM 1. Suppose X is a superreflexive Banach space and that {xn}<^Sx is
a weakly convergent sequence, with limit x0 e Sx. Does it follow that

limsup[|xo-xn||<2?
n-»oo

PROBLEM 2. Suppose X is a superreflexive Banach space having an FDD with
associated sequence of projections {Pn}. Does it follow that liming,*, ||/— Pn||<2
(hence limsupn_>00||/-.Pn||<2) for some such F.D.D.?

A final remark concerns Proposition 3.5 (we thank the referee for making this
observation). Sometimes the KK norm property for X is defined differently by
requiring that on Sx, w*-convergence for nets implies norm convergence. It is
shown in Namioka and Phelps (1975) that spaces X with a KK norm in this
stronger sense are SDS (or Asplund spaces) and in Stegall (1979) that for the latter
Bx, is w*-sequentially compact. Thus, if one adopts this stronger definition of a
KK norm, the assumption that Bx* is H>*-sequentially compact is not needed in
Proposition 3.5. We do not know if (iii) holds without the assumption that X is
WCG.
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