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Introduction and statement of results. A longstanding open question in low
dimensional topology was raised by J. H. C. Whitehead in 1941 [9]: “Is any subcomplex
of an aspherical, two-dimensional complex itself aspherical?” The asphericity of classical
knot complements [7] provides evidence that the answer to Whitehead’s question might
be “yes”. Indeed, each classical knot complement has the homotopy type of a
two-complex which can be embedded in a finite contractible two-complex. This property
is shared by a large class of four-manifolds; these are the ribbon disc complements, whose
asphericity has been conjectured, and even claimed, but never proven. (See [4] for a
discussion.) It is reasonable and convenient to formulate the following.

ResTrICTED WHITEHEAD CONJECTURE (RWC). Subcomplexes of finite contractible
two-complexes are aspherical.

The RWC has a purely algebraic reformulation, which we now describe.

By a normal factorization of a group G, we mean an expression G =R, . .. R, where
k is a positive integer and R, . . . , R, are normal subgroups of G. A normal factorization
F=R,...R, of afinitely generated free group F is here said to be efficient if there exist
pairwise disjoint finite subsets ry, ..., r, of F such that |r,| +...+ |r,] =rank F and, for
j=1,...,k, R;is normally generated in F by r;.

If A and B are subgroups of a group G, then [A, B] denotes the subgroup of G
generated by all commutators [a, b]=aba™'b~", where ac A and b € B. If A and B are
normal in G, then so is [A, B], and [A, B] is contained in A N B.

ALGEBRAIC RWC (ARWC). If R and § are distinct factors from an efficient normal
factorization of a finitely generated free group, then RN S c [R, S].

Using [3, Theorem 1], it is a simple matter to show that the conclusion of the ARWC
holds in the case where the normal factorization involves just two factors. (See Lemma 4
below.) In the general case, our main result is the following.

THEOREM 1. If R and S are distinct factors from an efficient normal factorization of a
finitely generated free group F, then RN S c [R, S|F, for all n = 1.

Here, for a group G, G, denotes the nth term of the lower central series of G,
defined inductively by G, =G and G, ., =[G, G, ]

To see that the RWC is implied by the ARWC, suppose that X is a subcomplex of a
finite contractible two-complex Y. It suffices to prove that 7, X = 0. One easily reduces to
the case where Y has a single two-cell and Y is obtained from X by attaching two-cells.
The case where X has a single zero-cell can be handled using the Lyndon Identity
Theorem [5]; this was done in greater generality by Cockroft in [2]. Suppose that X is a
union of subcomplexes X, and X, which intersect in the one-skeleton Y, and where each
of X, and X; has at least one two-cell. By induction, each of X, and X, is aspherical. Now,
Y =XUX,, where X, consists of the one-skeleton Y' together with the two-cells of
Y- X. Let F=m,Y", afinitely generated free group; let R, S, T denote the kernel of the
homomorphism on fundamental groups induced by the inclusions of Y' in X,, X, X,
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respectively. Then F=RST is an efficient normal factorization of F, since Y is
contractible. As normal generators for R, S, T, take the based homotopy classes of the
attaching maps for the two-cells of X,, X, X, respectively. A result of Gutierrez and
Ratcliffe [3, Theorem 1] then provides that &, X =(RNS)/[R, S], and so the ARWC
implies that 7,X =0. Even without the ARWC, the promised embedding for 7, is an
immediate consequence of Theorem 1.

CoroLLARY. If R and S are distinct factors from an efficient normal factorization of a
finitely generated free group F and Q = F/[R, S], then (R N S)/[R, S| embeds naturally in
Qo =M{Qn:n=1}.

Conversely, the above remarks show how to use a counterexample to the ARWC to
construct a counterexample to the RWC.

In Theorem 2, we determine the structure of Gr Q, where @ is the group in the
Corollary to Theorem 1. In particular, the groups Q,/Q,., are finitely generated free
abelian for all positive integers n.

Aside from the result of [3] which was used above, the main general tool employed in
the proof of Theorem 1 is the graded integral Lie algebra Gr G that is constructed from
the lower central series of a group G. Of special utility is the theorem of Magnus [6]
which states that if F is a free group, then Gr F is a free Lie algebra. Further, the
homogeneous components of Gr F are finitely generated free abelian, with ranks given by
an explicit formula due to Witt [10].

The author is grateful to M. N. Dyer for thought-provoking suggestions.

On free Lie algebras. Very little is new here. The primary reference for the
material in this section is [1, Chapter II]. All algebras are to be taken over the integers.

A magma is a pair (M, .), where M is a set and . is a binary operation on M. If x is a
set, then M(x) denotes the free magma on x. Thus M(x) is the disjoint union of sets x,,
(n=1), where x,=x, and x, is defined inductively as the disjoint union of the sets
X X X,oe (m=1,...,n~—1). The operation in M(x) is given by x.y =(x, y) for x €x,,
and y €x,_,,. If (N, .) is a magma, then any function of x; = x into N extends uniquely to
a magma homomorphism (M(x), .)— (N, .).

The free integral Lie algebra on the set x is denoted by L(x). There is a canonical
embedding of x into L(x). This yields a magma homomorphism &:(M(x),.)—
(L(x),[,]), where [,] denotes the Lie bracket in L(x). We identify x with §(x). Any
function of x into a Lie algebra L extends uniquely to a Lie algebra homomorphism
L(x)— L. In particular, L(x) is generated as a Lie algebra by x. The Lie algebra L(x) is
graded by the positive integers: L(x) = @ {L"(x):n =1}, where L"(x) is the subgroup of
L(x) spanned by the images of the elements of x,. In particular, [L™(x), L"(x)] <
L™"(x), and x is a Z-basis for the free abelian group L'(x). If x is finite, then L"(x) is
free abelian, with finite rank given in terms of n and the order of x. (The explicit formula
is given in [10]; see also [1, 11.3.3, Theorem 2].)

If ycx, then M(x —y) is naturally viewed as a subset of M(x). The elements of
M(x) — M(x —y) are here said to involve y. Similarly, a homogeneous element of L(x) is
said to involve y if it is of the form &(u), where pu e M(x) — M(x —y).
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LeMMa 1. The ideal I generated by y in L(X) is the Z-span of those elements of L(x)
that involve y. If uy, ... ,un e M(x—y),e;,...,e,€Z,and e;E(u) +...+e &) €el,
then e, E(u,) +. .. +¢,,E(u,,) =0.

Proof. Let Y denote the set of elements of L(x) that involve y. We show by induction
on n that if n € YN L"(x), then n € I. Clearly, YN L'(x) =y. For n>1, if n € YN L"(x),
then there exists pex,—M(x—y) such that n=§(u). There exist unique me
{1,...,n-1}, v, €x,,, and v,_,, €x,_, such that u=v,,.v,_,. Since ueM(x)—
M(x —y), either v, or v,_,, is in M(x) — M(x —y). By induction, either §(v,,) or &(v,_,,.)
is in 1. Since I is an ideal of L(x), n =[&(V.,), §(v,,_,,)] € L. This completes the induction,
and proves that I contains the Z-span of Y.

By [1, 11.2.9, Proposition 10], L(x) decomposes as the internal direct sum of I and
L(x—y). The second statement of the lemma follows, since L(x —y) is the Z-span of
E(M(x —y)). That I equals the Z-span of Y follows from the fact that L(x) is spanned by
EM(x). m

The direct product K X L of Lie algebras K and L has as underlying abelian group
the direct product of K and L, with Lie bracket given by [(x,y),(x',y')]=
(x,x'],[y,y']) forx,x’eKand y,y" € L.

Let a and b be disjoint sets. Let / and J be the ideals of L(aUb) generated by a and
b respectively. The function a Ub-— L(a) which restricts to the identity on a and which
carries each element of b to zero induces a split Lie algebra epimorphism of L(aUb)
onto L(a), with kernel J. (It is split using {1, I1.2.9, Proposition 10] as above.) There is an
analogous split Lie algebra epimorphism of L(aUb) onto L(b), with kernel /. Taken
together, these induce a Lie algebra epimorphism of L(aUb) onto L(a)x L(b), with
kernel /N J.

On group commutators. Let A and B be normal subgroups of a group G. Leta, b
and ¢ be disjoint sets, and let a—>A, b— B and ¢— G be functions. The function
aUbU c¢— G induces a magma homomorphism y:(M(aUbUc¢),.)— (G, [, ])-

LEMMA 2. Let ue M(aUbU ).
(i) If u involves a, then y(u) € A.
(i) If u involves both a and b, then y(u) € [A, B.

Proof. In both cases, one assumes that y € (a Ub U ¢),, and proceeds by induction on
n. Details are left to the reader. W

The graded integral Lie algebra associated to G is Gr G = @ {Gr" G:n =1}, where
Gr'G =G,/G,+,, and with Lie bracket determined by (uG,,,, vG, 1] =4, V]G,spms1>
for all u€ G, and v e G,,. The first homogeneous component Gr' G = G/G, generates
Gr G as a Lie algebra. A group homomorphism f:G— H induces a homomorphism
Grf:GrG— Gr H of graded Lie algebras; the process Gr is a functor from groups
to graded integral Lie algebras. It is easy to prove that the functor Gr preserves
direct products: there is an isomorphism Gr(G X H)— Gr G X Gr H which carries
(g, h)(G X Hy) e Gr'(G X H) to (gG,, hH,) € Gr' G x Gr' H, for all g e G and h € H.

Recall [6] (see also [1, I1.5.4, Theorem 3]) that if F = free(x) is the free group with
basis x, then the function x— GrF which carries x €ex to xF, € Gr' F induces an
isomorphism L(x)— Gr F of graded integral Lie algebras.
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The case of just two factors. Throughout this section, we assume that F = AB is an
efficient normal factorization of a finitely generated free group F. Select pairwise disjoint
finite normal generating sets a and b for A and B in F such that |a| + |b| = rank F.

Lemma 3. The homomorphism h:free(a)— F/B given by h(a)=aB induces an
isomorphism Gr h:Gr(free(a))— Gr F/B of graded Lie algebras.

Proof. Select a basis x for F, and let X be the two-complex modeled on the
presentation (x | b) for F/B. Thus, 7,X = F/B, and x(X) =1 — |x| + |b| =1 — |a]. Further-
more, X is a subcomplex of the two-complex Y modeled on the presentation (x | a, b)
for the trivial group F/AB. Since Y is simply connected and x(Y)=1—|x|+ |a| + |b] =1,
Y is contractible. This implies that H,X =0, and hence that H,F/B =0. (See [8].)
Further, since 1— |a] = x(X)=1—rank H, X + rank H,X, rank H,F/B =rank H, X = |a|.
Since F = AB, F/B is normally generated by {aB:a € a}. As such, the homomorphism A
induces an epimorphism H,h:H, free(a)— H,F/B of the abelianized groups. The fact
that H, free(a) and H,F/B have the same finite rank then implies that H,h is an
isomorphism. By [8, Lemma 3.1], Grh:Gr(free(a))—Gr F/B is an isomorphism.
(Interesting but irrelevant is the further consequence [8, Theorem 7.4] that 4 itself is
injective.) W

LemMA 4. AN B =[A, B).

Proof. We retain the notation of the proof of Lemma 3. Decompose Y as a union of
X and a complementary two-complex modeled on the presentation (x | a) for F/A; then
[3, Theorem 1] provides an epimorphism x,Y— (A N B)/[A, B]. The result follows from
the fact that Y is contractible. W

LEMMA 5. There is an isomorphism of Lie algebras
W¥:L(a) X L(b)— Gr(F/[A, B])

such that ¥((a,0))=aF,e F/E,=F/[A, BI,=Gr'(F/[A,B]) for all aca, and
W((0, b)) = bF; € F/F, = F[[A, B]E, = Gr'(F/[A, B) for all b &b,

Proof. The map W defines a Lie algebra homomorphism of the direct product since
the images of L(a) and L(b) under ¥ commute in Gr(F/[A, B)).

Using the fact that F=AB and AN B = [A, B}, one checks that the homomorphism
f:F/[A,B]—> F/A X F/B given by f(w[A, B]) = (wA, wB) is an isomorphism. There is
thus an isomorphism of graded Lie algebras

@:Gr(F/[A,B])=>Gr F/AxGrF/B

such that @(wE)=(wAF,, wBE,) for all wFE, € Gr'(F/[A, B]). The result follows from
Lemma 3 and Magnus’ isomorphism L(a) = Gr(free(a)). B

Proof of Theorem 1. Suppose that R and § are distinct factors from an efficient
normal factorization of a finitely generated free group F. Upon multiplication of the
complementary factors, there is an efficient normal factorization F = RST of F. There are
pairwise disjoint finite subsets r, s, and t such that |r| + |s| + [t| =rank F, where R, S, T
are normally generated in F by r, s, t respectively. Letu=rUsuUt.

LeMMA 6. The function @:u— Gr F given by @(u)= uF, extends to an isomorphism
®:L(u)—> Gr F of graded Lie algebras.
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Proof. Since F is normally generated by u, Gr' F = F/F, is generated as an abelian
group by @(u). It follows that ® is surjective, since Gr' F generates Gr F as a Lie algebra.
Since @(u) = Gr' F, ® is a homomorphism of graded Lie algebras: ®(L"(u)) = Gr" F for
all n=1. Since |u| =rank F, L"(u) and Gr" F are free abelian groups of the same finite
rank for all n = 1. This implies that ® is injective. B

Lemma 7. RNS =[R,ST]N[RT,S].
Proof. By Lemma 4, RNSc(RNST)N(RTNS)=[R,ST]N[RT,S]. W

Let gq:F— F/[R,S]=Q be the natural projection. The natural epimorphism
Q— F/[R, ST] induces an epimorphism of graded Lie algebras Gr Q — Gr F/[R, ST].
The structure of Gr F/[R, ST] is given by Lemma 5. Taken together, there is a composite
epimorphism of Lie algebras

p:LxUsU)=GrF—>GrQ—>Gr F/[R,ST]=L(x)x L(sUt)

which carries each rer to (r,0) and each xesUt to (0,x). Using the natural
epimorphism Q— F/[RT, §], there is an analogous composite epimorphism of Lie
algebras

o:L(xUsUt)=Gr F—> Gr Q— Gr F/[RT, S]=L{xUt) X L(s).

Let £, and ; denote the ideals of L(rUsUt) generated by r and s respectively. By the
discussion of direct products of Lie algebras following the proof of Lemma 1, it follows
that kerpNkeroc NI,

Theorem 1 is now proved as follows. Let w e R N S. By induction on n, we show that
w € R, S]F, for all n = 1. The case n =1 is trivial, and the case n = 2 follows from Lemma
7. Suppose that n = 3. By induction we may write w = uv, where u € [R,S]and veF,_,.
Since [R,S]cRNS, veRNS. Consider vF, e Gr"~' F. There exists a unique 7€
L""'(u) such that vF, = ®(n), where @ is the isomorphism of Lemma 6. Since p factors
through Gr F/[R,ST)], Lemma 7 implies that 7 € ker p. Similarly, 1 e ker 0. Thus it
follows that n e . N I,

Consider the magma homomorphisms &:(M(u), .)—(L(w),[,]) and y:(M(u), .)—
(F,[,]) induced by the inclusions of u into L(u) and F respectively. By Lemma 1, there
exist 4,,..., MU €uw,_; and e, ...,e, €Z such that each y; involves r and such that
n=e&(u)+...+eu) Also by Lemma 1, the sum of those e;§(u;) for which g,
involves s lies in £. Since 7 € I, the sum of those e;£(u;) for which y; does not involve s
lies in I, and hence is zero, again by Lemma 1. We may thus assume that each y; involves
both r and s. Note that y(u,)F, = ®(&(y;)) € Gr"~' F for each j. By Lemma 2, each y(u,)
lies in [R, §]. Since vF, = e, ®(5(u))) +. . . + e P(E(u)) = y(u1)® . . . y(1e)**F,, we con-
clude that v € [R, S]F,. Thus w = uv € [R, S]F,. This completes the proof of Theorem 1.

The structure of Gr Q. As in the preceding discussions, R and § are distinct factors
from an efficient normal factorization of a finitely generated free group F, and
Q =F/[R, S]. It has been noted that the composite epimorphism

LrUsU)=GrF—-GrQ

has kernel contained in I, NI. The reverse inclusion follows from Lemma 1 and 2:
GrQ=L{kUsU/[NL.
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THEOREM 2. There is a pull-back diagram
GrQ —— L(sUt)

l l

L(rut) —— L(t)
in the category of integral Lie algegras.
Before we give the proof, note that, as a consequence, Gr Q embeds in the direct

product L(rUt) X L(s Ut), which is torsion-free. For each n=1, Q,/0,,,=Gr"Q is a
homomorphic image of the finitely generated Gr” F.

CoroLLARY. For each positive integer n, Q,/0Q, ., is a finitely generated free abelian
group.

For the proof of Theorem 2, set u=rUsUt. Using [1, I1.2.9, Proposition 10},
there is a commutative square

Lu) —=— L(sUt)
L b
By
L(rut) — L(¥)
of split surjections of graded Lie algebras. For k =1, 2, let a, and f; be split by j, and i,

respectively; these splittings are the obvious inclusions of subalgebras, so j,i, = j,i, and
@, j, = i18,. Let I1 denote the pull-back of 8, and B,; we have a,j, = i,, and

II={(x,y) e LrUt) X L(s U): B,(x) = Bx()}.

Since B o, = B,a,, a Lie algebra homomorphism « = {a,, a,}:L(u)—1II is induced.
Recall that ker oy = I, and ker a, = I;. The map a therefore induces a homomorphism of
graded Lie algebras a: L(rUsUt)/[.N [,— II given by

a(u + L0 L) = (o (u), ax(u)).
On the other hand, we define a function b :I1— L(r Us U )/, N [, by
b(x,y) =ji(x) +j2(y — ixBAy)) + LN L.
One checks that a and b are inverse functions, completing the proof. W
Concluding remarks. By Lemma 4 and the Corollary to Theorem 1, the ARWC
would be implied by the following:

STRONGER CONJECTURE. If R and S are distinct factors from an efficient normal
factorization of a finitely generated free group F, and if the factorization has at least three
nontrivial factors, then the group Q = F/[R, S] is residually nilpotent (i.e. Q, =1).

The conclusion of the Stronger Conjecture does not hold for efficient normal
factorizations involving just two factors.

ExampLE. In the free group F with basis {x,y}, let R be the normal subgroup
determined by [x, y]y ™', and let S be the normal subgroup determined by [y, x]x~". It is
easy to show that F = RS: modulo RS, 1=xyx~'y~'y~'=xx"%y~', whence x=y~', and
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so, for example, 1=[x,y]y~'=y~". Asin the proof of Lemma 5, F/[R,S)=F/S X F/R.
Now, F/S is isomorphic to the semi-direct product Z[1/2] XZ, where Z acts on Z[1/2] via
multiplication by two. In particular, (F/S),= (F/S), =Z[1/2]. Thus, neither F/S nor
F/[R, §] is residually nilpotent.
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