## AN EMBEDDING FOR $\pi_2$ OF A SUBCOMPLEX OF A FINITE CONTRACTIBLE TWO-COMPLEX

## by WILLIAM A. BOGLEY

(Received 19 June, 1990)

Introduction and statement of results. A longstanding open question in low dimensional topology was raised by J. H. C. Whitehead in 1941 [9]: "Is any subcomplex of an aspherical, two-dimensional complex itself aspherical?" The asphericity of classical knot complements [7] provides evidence that the answer to Whitehead's question might be "yes". Indeed, each classical knot complement has the homotopy type of a two-complex which can be embedded in a finite contractible two-complex. This property is shared by a large class of four-manifolds; these are the ribbon disc complements, whose asphericity has been conjectured, and even claimed, but never proven. (See [4] for a discussion.) It is reasonable and convenient to formulate the following.

RESTRICTED WHITEHEAD CONJECTURE (RWC). Subcomplexes of finite contractible two-complexes are aspherical.

The RWC has a purely algebraic reformulation, which we now describe.

By a normal factorization of a group G, we mean an expression  $G = R_1 \dots R_k$  where k is a positive integer and  $R_1, \dots, R_k$  are normal subgroups of G. A normal factorization  $F = R_1 \dots R_k$  of a finitely generated free group F is here said to be *efficient* if there exist pairwise disjoint finite subsets  $\mathbf{r}_1, \dots, \mathbf{r}_k$  of F such that  $|\mathbf{r}_1| + \dots + |\mathbf{r}_k| = \operatorname{rank} F$  and, for  $j = 1, \dots, k, R_j$  is normally generated in F by  $\mathbf{r}_j$ .

If A and B are subgroups of a group G, then [A, B] denotes the subgroup of G generated by all commutators  $[a, b] = aba^{-1}b^{-1}$ , where  $a \in A$  and  $b \in B$ . If A and B are normal in G, then so is [A, B], and [A, B] is contained in  $A \cap B$ .

ALGEBRAIC RWC (ARWC). If R and S are distinct factors from an efficient normal factorization of a finitely generated free group, then  $R \cap S \subseteq [R, S]$ .

Using [3, Theorem 1], it is a simple matter to show that the conclusion of the ARWC holds in the case where the normal factorization involves just two factors. (See Lemma 4 below.) In the general case, our main result is the following.

THEOREM 1. If R and S are distinct factors from an efficient normal factorization of a finitely generated free group F, then  $R \cap S \subseteq [R, S]F_n$  for all  $n \ge 1$ .

Here, for a group G,  $G_n$  denotes the *n*th term of the lower central series of G, defined inductively by  $G_1 = G$  and  $G_{n+1} = [G, G_n]$ .

To see that the RWC is implied by the ARWC, suppose that X is a subcomplex of a finite contractible two-complex Y. It suffices to prove that  $\pi_2 X = 0$ . One easily reduces to the case where Y has a single two-cell and Y is obtained from X by attaching two-cells. The case where X has a single zero-cell can be handled using the Lyndon Identity Theorem [5]; this was done in greater generality by Cockroft in [2]. Suppose that X is a union of subcomplexes  $X_r$  and  $X_s$  which intersect in the one-skeleton  $Y^1$ , and where each of  $X_r$  and  $X_s$  has at least one two-cell. By induction, each of  $X_r$  and  $X_s$  is aspherical. Now,  $Y = X \cup X_t$ , where  $X_t$  consists of the one-skeleton  $Y^1$  together with the two-cells of Y - X. Let  $F = \pi_1 Y^1$ , a finitely generated free group; let R, S, T denote the kernel of the homomorphism on fundamental groups induced by the inclusions of  $Y^1$  in  $X_r$ ,  $X_s$ ,  $X_t$ 

Glasgow Math. J. 33 (1991) 365-371.

respectively. Then F = RST is an efficient normal factorization of F, since Y is contractible. As normal generators for R, S, T, take the based homotopy classes of the attaching maps for the two-cells of  $X_r$ ,  $X_s$ ,  $X_t$  respectively. A result of Gutierrez and Ratcliffe [3, Theorem 1] then provides that  $\pi_2 X \cong (R \cap S)/[R, S]$ , and so the ARWC implies that  $\pi_2 X = 0$ . Even without the ARWC, the promised embedding for  $\pi_2$  is an immediate consequence of Theorem 1.

COROLLARY. If R and S are distinct factors from an efficient normal factorization of a finitely generated free group F and Q = F/[R, S], then  $(R \cap S)/[R, S]$  embeds naturally in  $Q_{\omega} = \bigcap \{Q_n : n \ge 1\}$ .

Conversely, the above remarks show how to use a counterexample to the ARWC to construct a counterexample to the RWC.

In Theorem 2, we determine the structure of Gr Q, where Q is the group in the Corollary to Theorem 1. In particular, the groups  $Q_n/Q_{n+1}$  are finitely generated free abelian for all positive integers n.

Aside from the result of [3] which was used above, the main general tool employed in the proof of Theorem 1 is the graded integral Lie algebra Gr G that is constructed from the lower central series of a group G. Of special utility is the theorem of Magnus [6] which states that if F is a free group, then Gr F is a free Lie algebra. Further, the homogeneous components of Gr F are finitely generated free abelian, with ranks given by an explicit formula due to Witt [10].

The author is grateful to M. N. Dyer for thought-provoking suggestions.

On free Lie algebras. Very little is new here. The primary reference for the material in this section is [1, Chapter II]. All algebras are to be taken over the integers.

A magma is a pair (M, .), where M is a set and . is a binary operation on M. If  $\mathbf{x}$  is a set, then  $M(\mathbf{x})$  denotes the free magma on  $\mathbf{x}$ . Thus  $M(\mathbf{x})$  is the disjoint union of sets  $\mathbf{x}_n$   $(n \ge 1)$ , where  $\mathbf{x}_1 = \mathbf{x}$ , and  $\mathbf{x}_n$  is defined inductively as the disjoint union of the sets  $\mathbf{x}_m \times \mathbf{x}_{n-m}$  (m = 1, ..., n-1). The operation in  $M(\mathbf{x})$  is given by  $x \cdot y = (x, y)$  for  $x \in \mathbf{x}_m$  and  $y \in \mathbf{x}_{n-m}$ . If (N, .) is a magma, then any function of  $\mathbf{x}_1 = \mathbf{x}$  into N extends uniquely to a magma homomorphism  $(M(\mathbf{x}), .) \rightarrow (N, .)$ .

The free integral Lie algebra on the set **x** is denoted by  $L(\mathbf{x})$ . There is a canonical embedding of **x** into  $L(\mathbf{x})$ . This yields a magma homomorphism  $\xi:(M(\mathbf{x}),.) \rightarrow$  $(L(\mathbf{x}), [,])$ , where [,] denotes the Lie bracket in  $L(\mathbf{x})$ . We identify **x** with  $\xi(\mathbf{x})$ . Any function of **x** into a Lie algebra L extends uniquely to a Lie algebra homomorphism  $L(\mathbf{x}) \rightarrow L$ . In particular,  $L(\mathbf{x})$  is generated as a Lie algebra by **x**. The Lie algebra  $L(\mathbf{x})$  is graded by the positive integers:  $L(\mathbf{x}) = \bigoplus \{L^n(\mathbf{x}): n \ge 1\}$ , where  $L^n(\mathbf{x})$  is the subgroup of  $L(\mathbf{x})$  spanned by the images of the elements of  $\mathbf{x}_n$ . In particular,  $[L^m(\mathbf{x}), L^n(\mathbf{x})] \subseteq$  $L^{m+n}(\mathbf{x})$ , and **x** is a  $\mathbb{Z}$ -basis for the free abelian group  $L^1(\mathbf{x})$ . If **x** is finite, then  $L^n(\mathbf{x})$  is free abelian, with finite rank given in terms of *n* and the order of **x**. (The explicit formula is given in [10]; see also [1, II.3.3, Theorem 2].)

If  $y \in x$ , then M(x - y) is naturally viewed as a subset of M(x). The elements of M(x) - M(x - y) are here said to *involve* y. Similarly, a homogeneous element of L(x) is said to *involve* y if it is of the form  $\xi(\mu)$ , where  $\mu \in M(x) - M(x - y)$ .

LEMMA 1. The ideal I generated by y in  $L(\mathbf{x})$  is the  $\mathbb{Z}$ -span of those elements of  $L(\mathbf{x})$  that involve y. If  $\mu_1, \ldots, \mu_m \in M(\mathbf{x} - \mathbf{y}), e_1, \ldots, e_m \in \mathbb{Z}$ , and  $e_1\xi(\mu_1) + \ldots + e_m\xi(\mu_m) \in I$ , then  $e_1\xi(\mu_1) + \ldots + e_m\xi(\mu_m) = 0$ .

*Proof.* Let Y denote the set of elements of  $L(\mathbf{x})$  that involve y. We show by induction on n that if  $\eta \in \mathbf{Y} \cap L^n(\mathbf{x})$ , then  $\eta \in I$ . Clearly,  $\mathbf{Y} \cap L^1(\mathbf{x}) = \mathbf{y}$ . For n > 1, if  $\eta \in \mathbf{Y} \cap L^n(\mathbf{x})$ , then there exists  $\mu \in \mathbf{x}_n - M(\mathbf{x} - \mathbf{y})$  such that  $\eta = \xi(\mu)$ . There exist unique  $m \in \{1, \ldots, n-1\}$ ,  $v_m \in \mathbf{x}_m$ , and  $v_{n-m} \in \mathbf{x}_{n-m}$  such that  $\mu = v_m \cdot v_{n-m}$ . Since  $\mu \in M(\mathbf{x}) - M(\mathbf{x} - \mathbf{y})$ , either  $v_m$  or  $v_{n-m}$  is in  $M(\mathbf{x}) - M(\mathbf{x} - \mathbf{y})$ . By induction, either  $\xi(v_m)$  or  $\xi(v_{n-m})$ is in *I*. Since *I* is an ideal of  $L(\mathbf{x})$ ,  $\eta = [\xi(v_m), \xi(v_{n-m})] \in I$ . This completes the induction, and proves that *I* contains the  $\mathbb{Z}$ -span of **Y**.

By [1, II.2.9, Proposition 10],  $L(\mathbf{x})$  decomposes as the internal direct sum of I and  $L(\mathbf{x} - \mathbf{y})$ . The second statement of the lemma follows, since  $L(\mathbf{x} - \mathbf{y})$  is the  $\mathbb{Z}$ -span of  $\xi(M(\mathbf{x} - \mathbf{y}))$ . That I equals the  $\mathbb{Z}$ -span of  $\mathbf{Y}$  follows from the fact that  $L(\mathbf{x})$  is spanned by  $\xi(M(\mathbf{x}))$ .

The direct product  $K \times L$  of Lie algebras K and L has as underlying abelian group the direct product of K and L, with Lie bracket given by [(x, y), (x', y')] = ([x, x'], [y, y']) for  $x, x' \in K$  and  $y, y' \in L$ .

Let **a** and **b** be disjoint sets. Let *I* and *J* be the ideals of  $L(\mathbf{a} \cup \mathbf{b})$  generated by **a** and **b** respectively. The function  $\mathbf{a} \cup \mathbf{b} \rightarrow L(\mathbf{a})$  which restricts to the identity on **a** and which carries each element of **b** to zero induces a split Lie algebra epimorphism of  $L(\mathbf{a} \cup \mathbf{b})$  onto  $L(\mathbf{a})$ , with kernel *J*. (It is split using [1, II.2.9, Proposition 10] as above.) There is an analogous split Lie algebra epimorphism of  $L(\mathbf{a} \cup \mathbf{b})$  onto  $L(\mathbf{b})$ , with kernel *I*. Taken together, these induce a Lie algebra epimorphism of  $L(\mathbf{a} \cup \mathbf{b})$  onto  $L(\mathbf{a}) \times L(\mathbf{b})$ , with kernel  $I \cap J$ .

**On group commutators.** Let A and B be normal subgroups of a group G. Let **a**, **b** and **c** be disjoint sets, and let  $\mathbf{a} \rightarrow A$ ,  $\mathbf{b} \rightarrow B$  and  $\mathbf{c} \rightarrow G$  be functions. The function  $\mathbf{a} \cup \mathbf{b} \cup \mathbf{c} \rightarrow G$  induces a magma homomorphism  $\gamma: (M(\mathbf{a} \cup \mathbf{b} \cup \mathbf{c}), .) \rightarrow (G, [, ])$ .

LEMMA 2. Let  $\mu \in M(\mathbf{a} \cup \mathbf{b} \cup \mathbf{c})$ .

(i) If  $\mu$  involves **a**, then  $\gamma(\mu) \in A$ .

(ii) If  $\mu$  involves both **a** and **b**, then  $\gamma(\mu) \in [A, B]$ .

*Proof.* In both cases, one assumes that  $\mu \in (\mathbf{a} \cup \mathbf{b} \cup \mathbf{c})_n$  and proceeds by induction on *n*. Details are left to the reader.

The graded integral Lie algebra associated to G is Gr  $G = \bigoplus \{Gr^n G : n \ge 1\}$ , where  $Gr^n G = G_n/G_{n+1}$ , and with Lie bracket determined by  $[uG_{n+1}, vG_{m+1}] = [u, v]G_{n+m+1}$ , for all  $u \in G_n$  and  $v \in G_m$ . The first homogeneous component  $Gr^1 G = G/G_2$  generates Gr G as a Lie algebra. A group homomorphism  $f: G \to H$  induces a homomorphism Gr  $f: Gr G \to Gr H$  of graded Lie algebras; the process Gr is a functor from groups to graded integral Lie algebras. It is easy to prove that the functor Gr preserves direct products: there is an isomorphism  $Gr(G \times H) \to Gr G \times Gr H$  which carries  $(g, h)(G \times H_2) \in Gr^1(G \times H)$  to  $(gG_2, hH_2) \in Gr^1 G \times Gr^1 H$ , for all  $g \in G$  and  $h \in H$ .

Recall [6] (see also [1, II.5.4, Theorem 3]) that if  $F = \text{free}(\mathbf{x})$  is the free group with basis  $\mathbf{x}$ , then the function  $\mathbf{x} \to \text{Gr } F$  which carries  $x \in \mathbf{x}$  to  $xF_2 \in \text{Gr}^1 F$  induces an isomorphism  $L(\mathbf{x}) \to \text{Gr } F$  of graded integral Lie algebras.

The case of just two factors. Throughout this section, we assume that F = AB is an efficient normal factorization of a finitely generated free group F. Select pairwise disjoint finite normal generating sets **a** and **b** for A and B in F such that  $|\mathbf{a}| + |\mathbf{b}| = \operatorname{rank} F$ .

LEMMA 3. The homomorphism  $h: \text{free}(\mathbf{a}) \to F/B$  given by h(a) = aB induces an isomorphism Gr  $h: \text{Gr}(\text{free}(\mathbf{a})) \to \text{Gr } F/B$  of graded Lie algebras.

*Proof.* Select a basis **x** for *F*, and let *X* be the two-complex modeled on the presentation (**x** | **b**) for *F/B*. Thus,  $\pi_1 X \cong F/B$ , and  $\chi(X) = 1 - |\mathbf{x}| + |\mathbf{b}| = 1 - |\mathbf{a}|$ . Furthermore, *X* is a subcomplex of the two-complex *Y* modeled on the presentation (**x** | **a**, **b**) for the trivial group *F/AB*. Since *Y* is simply connected and  $\chi(Y) = 1 - |\mathbf{x}| + |\mathbf{a}| + |\mathbf{b}| = 1$ , *Y* is contractible. This implies that  $H_2 X = 0$ , and hence that  $H_2 F/B = 0$ . (See [**8**].) Further, since  $1 - |\mathbf{a}| = \chi(X) = 1 - \operatorname{rank} H_1 X + \operatorname{rank} H_2 X$ ,  $\operatorname{rank} H_1 F/B = \operatorname{rank} H_1 X = |\mathbf{a}|$ . Since *F* = *AB*, *F/B* is normally generated by {*aB*: *a* ∈ **a**}. As such, the homomorphism *h* induces an epimorphism  $H_1h: H_1$  free(**a**) →  $H_1F/B$  of the abelianized groups. The fact that  $H_1$  free(**a**) and  $H_1F/B$  have the same finite rank then implies that  $H_1h$  is an isomorphism. By [**8**, Lemma 3.1], Gr h:Gr(free(**a**)) → Gr F/B is an isomorphism. (Interesting but irrelevant is the further consequence [**8**, Theorem 7.4] that *h* itself is injective.)

LEMMA 4.  $A \cap B = [A, B]$ .

*Proof.* We retain the notation of the proof of Lemma 3. Decompose Y as a union of X and a complementary two-complex modeled on the presentation  $(\mathbf{x} \mid \mathbf{a})$  for F/A; then [3, Theorem 1] provides an epimorphism  $\pi_2 Y \rightarrow (A \cap B)/[A, B]$ . The result follows from the fact that Y is contractible.

LEMMA 5. There is an isomorphism of Lie algebras

$$\Psi: L(\mathbf{a}) \times L(\mathbf{b}) \rightarrow \mathrm{Gr}(F/[A, B])$$

such that  $\Psi((a, 0)) = aF_2 \in F/F_2 = F/[A, B]F_2 = Gr^1(F/[A, B])$  for all  $a \in \mathbf{a}$ , and  $\Psi((0, b)) = bF_2 \in F/F_2 = F/[A, B]F_2 = Gr^1(F/[A, B])$  for all  $b \in \mathbf{b}$ .

**Proof.** The map  $\Psi$  defines a Lie algebra homomorphism of the direct product since the images of  $L(\mathbf{a})$  and  $L(\mathbf{b})$  under  $\Psi$  commute in Gr(F/[A, B]).

Using the fact that F = AB and  $A \cap B = [A, B]$ , one checks that the homomorphism  $f:F/[A, B] \rightarrow F/A \times F/B$  given by f(w[A, B]) = (wA, wB) is an isomorphism. There is thus an isomorphism of graded Lie algebras

$$\varphi$$
: Gr( $F/[A, B]$ )  $\rightarrow$  Gr  $F/A \times$  Gr  $F/B$ 

such that  $\varphi(wF_2) = (wAF_2, wBF_2)$  for all  $wF_2 \in Gr^1(F/[A, B])$ . The result follows from Lemma 3 and Magnus' isomorphism  $L(\mathbf{a}) \cong Gr(\text{free}(\mathbf{a}))$ .

**Proof of Theorem 1.** Suppose that R and S are distinct factors from an efficient normal factorization of a finitely generated free group F. Upon multiplication of the complementary factors, there is an efficient normal factorization F = RST of F. There are pairwise disjoint finite subsets r, s, and t such that  $|\mathbf{r}| + |\mathbf{s}| + |\mathbf{t}| = \operatorname{rank} F$ , where R, S, T are normally generated in F by r, s, t respectively. Let  $\mathbf{u} = \mathbf{r} \cup \mathbf{s} \cup \mathbf{t}$ .

LEMMA 6. The function  $\varphi: \mathbf{u} \to \operatorname{Gr} F$  given by  $\varphi(u) = uF_2$  extends to an isomorphism  $\Phi: L(\mathbf{u}) \to \operatorname{Gr} F$  of graded Lie algebras.

**Proof.** Since F is normally generated by  $\mathbf{u}$ ,  $\operatorname{Gr}^1 F = F/F_2$  is generated as an abelian group by  $\varphi(\mathbf{u})$ . It follows that  $\Phi$  is surjective, since  $\operatorname{Gr}^1 F$  generates  $\operatorname{Gr} F$  as a Lie algebra. Since  $\varphi(\mathbf{u}) \subset \operatorname{Gr}^1 F$ ,  $\Phi$  is a homomorphism of graded Lie algebras:  $\Phi(L^n(\mathbf{u})) = \operatorname{Gr}^n F$  for all  $n \ge 1$ . Since  $|\mathbf{u}| = \operatorname{rank} F$ ,  $L^n(\mathbf{u})$  and  $\operatorname{Gr}^n F$  are free abelian groups of the same finite rank for all  $n \ge 1$ . This implies that  $\Phi$  is injective.

LEMMA 7.  $R \cap S = [R, ST] \cap [RT, S]$ .

*Proof.* By Lemma 4,  $R \cap S \subseteq (R \cap ST) \cap (RT \cap S) = [R, ST] \cap [RT, S]$ .

Let  $q: F \to F/[R, S] = Q$  be the natural projection. The natural epimorphism  $Q \to F/[R, ST]$  induces an epimorphism of graded Lie algebras  $\operatorname{Gr} Q \to \operatorname{Gr} F/[R, ST]$ . The structure of  $\operatorname{Gr} F/[R, ST]$  is given by Lemma 5. Taken together, there is a composite epimorphism of Lie algebras

$$\rho: L(\mathbf{r} \cup \mathbf{s} \cup \mathbf{t}) \cong \operatorname{Gr} F \to \operatorname{Gr} Q \to \operatorname{Gr} F/[R, ST] \cong L(\mathbf{r}) \times L(\mathbf{s} \cup \mathbf{t})$$

which carries each  $r \in \mathbf{r}$  to (r, 0) and each  $x \in \mathbf{s} \cup \mathbf{t}$  to (0, x). Using the natural epimorphism  $Q \rightarrow F/[RT, S]$ , there is an analogous composite epimorphism of Lie algebras

$$\sigma: L(\mathbf{r} \cup \mathbf{s} \cup \mathbf{t}) \cong \operatorname{Gr} F \to \operatorname{Gr} Q \to \operatorname{Gr} F / [RT, S] \cong L(\mathbf{r} \cup \mathbf{t}) \times L(\mathbf{s}).$$

Let  $I_r$  and  $I_s$  denote the ideals of  $L(\mathbf{r} \cup \mathbf{s} \cup \mathbf{t})$  generated by  $\mathbf{r}$  and  $\mathbf{s}$  respectively. By the discussion of direct products of Lie algebras following the proof of Lemma 1, it follows that ker  $\rho \cap \ker \sigma \subseteq I_r \cap I_s$ .

Theorem 1 is now proved as follows. Let  $w \in R \cap S$ . By induction on n, we show that  $w \in [R, S]F_n$  for all  $n \ge 1$ . The case n = 1 is trivial, and the case n = 2 follows from Lemma 7. Suppose that  $n \ge 3$ . By induction we may write w = uv, where  $u \in [R, S]$  and  $v \in F_{n-1}$ . Since  $[R, S] \subseteq R \cap S$ ,  $v \in R \cap S$ . Consider  $vF_n \in \operatorname{Gr}^{n-1} F$ . There exists a unique  $\eta \in L^{n-1}(\mathbf{u})$  such that  $vF_n = \Phi(\eta)$ , where  $\Phi$  is the isomorphism of Lemma 6. Since  $\rho$  factors through Gr F/[R, ST], Lemma 7 implies that  $\eta \in \ker \rho$ . Similarly,  $\eta \in \ker \sigma$ . Thus it follows that  $\eta \in I_r \cap I_s$ .

Consider the magma homomorphisms  $\xi: (M(\mathbf{u}), .) \to (L(\mathbf{u}), [, ])$  and  $\gamma: (M(\mathbf{u}), .) \to (F, [, ])$  induced by the inclusions of  $\mathbf{u}$  into  $L(\mathbf{u})$  and F respectively. By Lemma 1, there exist  $\mu_1, \ldots, \mu_k \in \mathbf{u}_{n-1}$  and  $e_1, \ldots, e_k \in \mathbb{Z}$  such that each  $\mu_j$  involves  $\mathbf{r}$  and such that  $\eta = e_1\xi(\mu_1) + \ldots + e_k(\mu_k)$ . Also by Lemma 1, the sum of those  $e_j\xi(\mu_j)$  for which  $\mu_j$  involves  $\mathbf{s}$  lies in  $I_{\mathbf{s}}$ . Since  $\eta \in I_{\mathbf{s}}$ , the sum of those  $e_j\xi(\mu_j)$  for which  $\mu_j$  does not involve  $\mathbf{s}$  lies in  $I_{\mathbf{s}}$ , and hence is zero, again by Lemma 1. We may thus assume that each  $\mu_j$  involves both  $\mathbf{r}$  and  $\mathbf{s}$ . Note that  $\gamma(\mu_j)F_n = \Phi(\xi(\mu_j)) \in \operatorname{Gr}^{n-1} F$  for each j. By Lemma 2, each  $\gamma(\mu_j)$  lies in [R, S]. Since  $vF_n = e_1\Phi(\xi(\mu_1)) + \ldots + e_k\Phi(\xi(\mu_k)) = \gamma(\mu_1)^{e_1} \ldots \gamma(\mu_k)^{e_k}F_n$ , we conclude that  $v \in [R, S]F_n$ . Thus  $w = uv \in [R, S]F_n$ . This completes the proof of Theorem 1.

The structure of Gr Q. As in the preceding discussions, R and S are distinct factors from an efficient normal factorization of a finitely generated free group F, and Q = F/[R, S]. It has been noted that the composite epimorphism

$$L(\mathbf{r} \cup \mathbf{s} \cup \mathbf{t}) \cong \operatorname{Gr} F \to \operatorname{Gr} Q$$

has kernel contained in  $I_r \cap I_s$ . The reverse inclusion follows from Lemma 1 and 2: Gr  $Q \cong L(\mathbf{r} \cup \mathbf{s} \cup \mathbf{t})/I_r \cap I_s$ . THEOREM 2. There is a pull-back diagram



in the category of integral Lie algegras.

Before we give the proof, note that, as a consequence, Gr Q embeds in the direct product  $L(\mathbf{r} \cup \mathbf{t}) \times L(\mathbf{s} \cup \mathbf{t})$ , which is torsion-free. For each  $n \ge 1$ ,  $Q_n/Q_{n+1} = \operatorname{Gr}^n Q$  is a homomorphic image of the finitely generated  $\operatorname{Gr}^n F$ .

COROLLARY. For each positive integer n,  $Q_n/Q_{n+1}$  is a finitely generated free abelian group.

For the proof of Theorem 2, set  $\mathbf{u} = \mathbf{r} \cup \mathbf{s} \cup \mathbf{t}$ . Using [1, II.2.9, Proposition 10], there is a commutative square

of split surjections of graded Lie algebras. For k = 1, 2, let  $\alpha_k$  and  $\beta_k$  be split by  $j_k$  and  $i_k$  respectively; these splittings are the obvious inclusions of subalgebras, so  $j_1i_1 = j_2i_2$  and  $\alpha_1j_2 = i_1\beta_2$ . Let  $\Pi$  denote the pull-back of  $\beta_1$  and  $\beta_2$ ; we have  $\alpha_2j_1 = i_2\beta_1$  and

 $\Pi = \{ (x, y) \in L(\mathbf{r} \cup \mathbf{t}) \times L(\mathbf{s} \cup \mathbf{t}) : \beta_1(x) = \beta_2(y) \}.$ 

Since  $\beta_1 \alpha_1 = \beta_2 \alpha_2$ , a Lie algebra homomorphism  $\alpha = \{\alpha_1, \alpha_2\} : L(\mathbf{u}) \to \Pi$  is induced. Recall that ker  $\alpha_1 = I_r$  and ker  $\alpha_2 = I_s$ . The map  $\alpha$  therefore induces a homomorphism of graded Lie algebras  $a : L(\mathbf{r} \cup \mathbf{s} \cup \mathbf{t})/I_r \cap I_s \to \Pi$  given by

$$a(u+I_{\mathbf{r}}\cap I_{\mathbf{s}})=(\alpha_1(u),\,\alpha_2(u)).$$

On the other hand, we define a function  $b: \Pi \to L(\mathbf{r} \cup \mathbf{s} \cup \mathbf{t})/I_{\mathbf{r}} \cap I_{\mathbf{s}}$  by

$$b(x, y) = j_1(x) + j_2(y - i_2\beta_2(y)) + I_{\rm r} \cap I_{\rm s}.$$

One checks that a and b are inverse functions, completing the proof.

**Concluding remarks.** By Lemma 4 and the Corollary to Theorem 1, the ARWC would be implied by the following:

STRONGER CONJECTURE. If R and S are distinct factors from an efficient normal factorization of a finitely generated free group F, and if the factorization has at least three nontrivial factors, then the group Q = F/[R, S] is residually nilpotent (i.e.  $Q_{\omega} = 1$ ).

The conclusion of the Stronger Conjecture does not hold for efficient normal factorizations involving just two factors.

EXAMPLE. In the free group F with basis  $\{x, y\}$ , let R be the normal subgroup determined by  $[x, y]y^{-1}$ , and let S be the normal subgroup determined by  $[y, x]x^{-1}$ . It is easy to show that F = RS: modulo RS,  $1 \equiv xyx^{-1}y^{-1} \equiv xx^{-2}y^{-1}$ , whence  $x \equiv y^{-1}$ , and

370

so, for example,  $1 \equiv [x, y]y^{-1} \equiv y^{-1}$ . As in the proof of Lemma 5,  $F/[R, S] \cong F/S \times F/R$ . Now, F/S is isomorphic to the semi-direct product  $\mathbb{Z}[1/2] \rtimes \mathbb{Z}$ , where  $\mathbb{Z}$  acts on  $\mathbb{Z}[1/2]$  via multiplication by two. In particular,  $(F/S)_2 = (F/S)_{\omega} = \mathbb{Z}[1/2]$ . Thus, neither F/S nor F/[R, S] is residually nilpotent.

## REFERENCES

1. N. Bourbaki, Lie groups and Lie algebras, Chapters 1-3 (Springer-Verlag, 1989).

2. W. H. Cockroft, On two-dimensional aspherical complexes, Proc. London Math. Soc. (3) 4 (1954), 375-384.

3. M. Gutierrez and J. Ratcliffe, On the second homotopy group, Quart. J. Math. Oxford Ser. (2) 32 (1981), 45-55.

4. J. Howie, On the asphericity of ribbon disc complements, Trans. Amer. Math. Soc. 289 (1985), 281-302.

5. R. C. Lyndon, Cohomology theory of groups with a single defining relation, Ann. of Math. (2) 52 (1950), 650-665.

6. W. Magnus, Über Beziehungen zwischen höheren Kommutatoren, J. Reine Angew. Math. 177 (1937), 105-115.

7. C. D. Papakyriakopoulos, On Dehn's lemma and the asphericity of knots, Ann. of Math. (2) 66 (1957), 1-26.

8. J. Stallings, Homology and central series of groups, J. Algebra 2 (1965), 170-181.

8. J. H. C. Whitehead, On adding relations to homotopy groups, Ann. of Math. (2) 42 (1941), 409-428.

10. E. Witt, Treue Darstellung Liescher Ringe, J. Reine Angew. Math. 177 (1937), 152-160.

DEPARTMENT OF MATHEMATICS OREGON STATE UNIVERSITY CORVALLIS OR 97331 USA