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Introduction and statement of results. A longstanding open question in low
dimensional topology was raised by J. H. C. Whitehead in 1941 [9]: "Is any subcomplex
of an aspherical, two-dimensional complex itself aspherical?" The asphericity of classical
knot complements [7] provides evidence that the answer to Whitehead's question might
be "yes". Indeed, each classical knot complement has the homotopy type of a
two-complex which can be embedded in a finite contractible two-complex. This property
is shared by a large class of four-manifolds; these are the ribbon disc complements, whose
asphericity has been conjectured, and even claimed, but never proven. (See [4] for a
discussion.) It is reasonable and convenient to formulate the following.

RESTRICTED WHITEHEAD CONJECTURE (RWC). Subcomplexes of finite contractible
two-complexes are aspherical.

The RWC has a purely algebraic reformulation, which we now describe.
By a normal factorization of a group G, we mean an expression G = RX. . . Rk where

A: is a positive integer and Rl7...,Rk are normal subgroups of G. A normal factorization
F = / ? ] . . . Rk of a finitely generated free group F is here said to be efficient if there exist
pairwise disjoint finite subsets rl7. .. ,rk of F such that IrJ + . . . + |r^| = rankF and, for
j = 1,. . . ,k, Rjis normally generated in F by r;.

If A and B are subgroups of a group G, then [..4,5] denotes the subgroup of G
generated by all commutators [a, b] = aba~1b~1, where a eA and b e B. If A and B are
normal in G, then so is [A, B], and [A, B] is contained in A n B.

ALGEBRAIC RWC (ARWC). If R and S are distinct factors from an efficient normal
factorization of a finitely generated free group, then R D S c [/?, 5].

Using [3, Theorem 1], it is a simple matter to show that the conclusion of the ARWC
holds in the case where the normal factorization involves just two factors. (See Lemma 4
below.) In the general case, our main result is the following.

THEOREM 1. If R and S are distinct factors from an efficient normal factorization of a
finitely generated free group F, then R fl S c [R, S]Fn for all n s 1.

Here, for a group G, Gn denotes the nth term of the lower central series of G,
defined inductively by Gx = G and Gn+l = [G, Gn].

To see that the RWC is implied by the ARWC, suppose that A' is a subcomplex of a
finite contractible two-complex Y. It suffices to prove that JI2X = 0. One easily reduces to
the case where Y has a single two-cell and Y is obtained from X by attaching two-cells.
The case where X has a single zero-cell can be handled using the Lyndon Identity
Theorem [5]; this was done in greater generality by Cockroft in [2]. Suppose that X is a
union of subcomplexes Xr and Xs which intersect in the one-skeleton Yl, and where each
of Xr and Xs has at least one two-cell. By induction, each of Xr and Xs is aspherical. Now,
Y = XUX,, where X, consists of the one-skeleton Yl together with the two-cells of
Y — X. Let F = nx Y

l, a finitely generated free group; let R, S, T denote the kernel of the
homomorphism on fundamental groups induced by the inclusions of Yl in Xr, Xs, X,
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respectively. Then F = RST is an efficient normal factorization of F, since Y is
contractible. As normal generators for R, S, T, take the based homotopy classes of the
attaching maps for the two-cells of Xr, Xs, X, respectively. A result of Gutierrez and
Ratcliffe [3, Theorem 1] then provides that n2X = (R C\S)I[R,S], and so the ARWC
implies that Jt2X = 0. Even without the ARWC, the promised embedding for n2 is an
immediate consequence of Theorem 1.

COROLLARY. If R and S are distinct factors from an efficient normal factorization of a
finitely generated free group F and Q = F/[R, S], then (R n S)/[R, S] embeds naturally in

Conversely, the above remarks show how to use a counterexample to the ARWC to
construct a counterexample to the RWC.

In Theorem 2, we determine the structure of GrQ, where Q is the group in the
Corollary to Theorem 1. In particular, the groups QnIQn+\ are finitely generated free
abelian for all positive integers n.

Aside from the result of [3] which was used above, the main general tool employed in
the proof of Theorem 1 is the graded integral Lie algebra Gr G that is constructed from
the lower central series of a group G. Of special utility is the theorem of Magnus [6]
which states that if F is a free group, then GrF is a free Lie algebra. Further, the
homogeneous components of Gr F are finitely generated free abelian, with ranks given by
an explicit formula due to Witt [10].

The author is grateful to M. N. Dyer for thought-provoking suggestions.

On free Lie algebras. Very little is new here. The primary reference for the
material in this section is [1, Chapter II]. All algebras are to be taken over the integers.

A magma is a pair (M,.), where M is a set and . is a binary operation on M. If x is a
set, then M(x) denotes the free magma on x. Thus M(x) is the disjoint union of sets xn

( n ^ l ) , where x, = x, and xn is defined inductively as the disjoint union of the sets
xm x xn_m (m = 1,. . . , n - 1). The operation in M(x) is given by x. y = (x, y) for x e \m

and y e xn_m. If (N,.) is a magma, then any function of Xj = x into N extends uniquely to
a magma homomorphism (M(x),.)—»(N,.).

The free integral Lie algebra on the set x is denoted by L(x). There is a canonical
embedding of x into L(x). This yields a magma homomorphism §:(M(x), .)-*
(L(x), [,]), where [,] denotes the Lie bracket in L(x). We identify x with §(x). Any
function of x into a Lie algebra L extends uniquely to a Lie algebra homomorphism
L(x)—*L. In particular, L(x) is generated as a Lie algebra by x. The Lie algebra L(x) is
graded by the positive integers: L(x) = 0 {L"(x):/i > 1}, where L"(x) is the subgroup of
L(x) spanned by the images of the elements of xn. In particular, [Lm(\), L"(\)] c
Lm+"(x), and x is a Z-basis for the free abelian group L\\). If x is finite, then L"(x) is
free abelian, with finite rank given in terms of n and the order of x. (The explicit formula
is given in [10]; see also [1, II.3.3, Theorem 2].)

If y c x , then M(x-y) is naturally viewed as a subset of M(x). The elements of
M(x) - M(x - y) are here said to involve y. Similarly, a homogeneous element of L(x) is
said to involve y if it is of the form £(//), where ju e M(x) - M(x - y).
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LEMMA 1. The ideal I generated by y in L(x) is the Z-span of those elements of L(x)
that involve y. If/iu. . . , pme M(x - y), eu...,emeZ, and e^(|i,) + . . . + em§(jum) e I,

Proof. Let Y denote the set of elements of L(x) that involve y. We show by induction
on n that if i\ e Y n L"(x), then rjel. Clearly, Y D L'(x) = y. For n > 1, if rj e Y n L"(x),
then there exists ( iexn-Af(x — y) such that r\ = |(ji). There exist unique m e
{1,.. . ,n-l), vmexm, and vn_mexn_m such that ji = vm.vn_m. Since jueM(x)-
A/(x - y), either vm or vn_m is in M(x) - M(\ - y). By induction, either §(vm) or |(vn_m)
is in /. Since / is an ideal of L(x), ?7 = [£(vm), §(vn_OT)] e /. This completes the induction,
and proves that / contains the Z-span of Y.

By [1, II.2.9, Proposition 10], L(x) decomposes as the internal direct sum of / and
L(x —y). The second statement of the lemma follows, since L(x —y) is the Z-span of

(x - y)). That / equals the Z-span of Y follows from the fact that L(x) is spanned by

The direct product K x L of Lie algebras K and L has as underlying abelian group
the direct product of K and L, with Lie bracket given by [(x,y),(x',y')] =
Qx,x'], [y,y']) for *,* ' e K and y,y' g L.

Let a and b be disjoint sets. Let / and / be the ideals of L(a U b) generated by a and
b respectively. The function a U b—• L(a) which restricts to the identity on a and which
carries each element of b to zero induces a split Lie algebra epimorphism of L(a U b)
onto L(a), with kernel J. (It is split using [1, II.2.9, Proposition 10] as above.) There is an
analogous split Lie algebra epimorphism of L(aUb) onto L(b), with kernel /. Taken
together, these induce a Lie algebra epimorphism of L(aUb) onto L(a) x L(b), with
kernel IHJ.

On group commutators. Let A and B be normal subgroups of a group G. Let a, b
and c be disjoint sets, and let a—*A, b—*B and c—*G be functions. The function
a U b U c—* G induces a magma homomorphism y: (A/(a U b U c),.)—»(G, [, ]).

LEMMA 2. Let // e Af (a U b U c).
(i) If fi involves a, then y{fi) eA.
(ii) If fi involves both a and b, then y(/x) e [A, B].

Proof. In both cases, one assumes that /z e (a U b U c)n and proceeds by induction on
n. Details are left to the reader. •

The graded integral Lie algebra associated to G is Gr G = ® {Gr" G:n > 1}, where
Gr" G = Gn/Gn+i, and with Lie bracket determined by [uGn+l, vGm+l\ = [w, v]Gn+m+u

for all u e Gn and v e Gm. The first homogeneous component Gr1 G = G/G2 generates
GrG as a Lie algebra. A group homomorphism f:G—*H induces a homomorphism
Gr/ :Gr G—»Gr H of graded Lie algebras; the process Gr is a functor from groups
to graded integral Lie algebras. It is easy to prove that the functor Gr preserves
direct products: there is an isomorphism G r ( G x / / ) - > G r G x G r / / which carries
(g, h)(G x H2) e Gr'(G x H) to (gG2, hH2) e G r ' C x Gr1 H, for all g e G and h e H.

Recall [6] (see also [1, II.5.4, Theorem 3]) that if F = free(x) is the free group with
basis x, then the function \—*GTF which carries * e x to xF^eGr1 F induces an
isomorphism L(x) —>• Gr F of graded integral Lie algebras.
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The case of just two factors. Throughout this section, we assume that F = AB is an
efficient normal factorization of a finitely generated free group F. Select pairwise disjoint
finite normal generating sets a and b for A and B in F such that |a| + |b| = rank F.

LEMMA 3. The homomorphism h :free(a)—*F/B given by h(a) = aB induces an
isomorphism Gr h : Gr(free(a))-» Gr F/B of graded Lie algebras.

Proof. Select a basis x for F, and let X be the two-complex modeled on the
presentation (x | b) for FIB. Thus, nxX = F/B, and x(X) = 1 - |x| + |b| = 1 - |a|. Further-
more, A' is a subcomplex of the two-complex Y modeled on the presentation (x | a, b)
for the trivial group F/AB. Since Y is simply connected and x(Y) = 1 - |x| + |a| + |b| = 1,
Y is contractible. This implies that H2X = 0, and hence that H2F/B = 0. (See [8].)
Further, since 1 - |a| = x(X) = 1 - rank HXX + rank H2X, rank #,F/fi = rank HyX = |a|.
Since F = AB, FIB is normally generated by {aB:a e a}. As such, the homomorphism h
induces an epimorphism Hxh:H\ free(a)—^/^F/Z? of the abelianized groups. The fact
that //!free(a) and HXF/B have the same finite rank then implies that Hxh is an
isomorphism. By [8, Lemma 3.1], Gr h : Gr(free(a)) —* Gr F/B is an isomorphism.
(Interesting but irrelevant is the further consequence [8, Theorem 7.4] that h itself is
injective.) •

LEMMA 4. ADB = [A,B].

Proof. We retain the notation of the proof of Lemma 3. Decompose Y as a union of
X and a complementary two-complex modeled on the presentation (x | a) for F/A; then
[3, Theorem 1] provides an epimorphism JI2Y—> (A n B)/[A, B]. The result follows from
the fact that Y is contractible. •

LEMMA 5. There is an isomorphism of Lie algebras

W: L(a) x L(b)^> Gi(F/[A, B])

such that V((a,0)) = aF2eF/F2 = F/[A,B]F2 = Gr1(F/[A,B]) for all aea, and
W((0, b)) = bF2 e F/F2 = F/[A, B]F2 = Gr\F/[A, B]) for all b e b.

Proof. The map W defines a Lie algebra homomorphism of the direct product since
the images of L(a) and L(b) under V commute in Gr(F/[A, B]).

Using the fact that F = AB and A fl B = [A, B], one checks that the homomorphism
f:F/[A,B]—>F/AxF/B given by f(w[A, B]) = (wA, wB) is an isomorphism. There is
thus an isomorphism of graded Lie algebras

<p: Gr(F/[,4, B]) -+ Gr F/A x Gr F/B

such that cp{wF2) = {wAF2,wBF2) for all wF2eGx\F/[A,B]). The result follows from
Lemma 3 and Magnus' isomorphism L(a) = Gr(free(a)). •

Proof of Theorem 1. Suppose that R and S are distinct factors from an efficient
normal factorization of a finitely generated free group F. Upon multiplication of the
complementary factors, there is an efficient normal factorization F = RST of F. There are
pairwise disjoint finite subsets r, s, and t such that |r| + |s| + |t| = rankF, where R, S, T
are normally generated in F by r, s, t respectively. Let u = r U s U t.

LEMMA 6. The function cp :u-» Gr F given by cp(u) = uF2 extends to an isomorphism
3>: L(u) -» Gr F of graded Lie algebras.
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Proof. Since F is normally generated by u, Gr1 F = F/F2 is generated as an abelian
group by <p(u). It follows that <t> is surjective, since Gr1 F generates Gr F as a Lie algebra.
Since (p(u) c: Gr1 F, <& is a homomorphism of graded Lie algebras: <J>(L"(u)) = Gr" F for
all n 5= 1. Since |u| = rank F, L"(u) and Gr" F are free abelian groups of the same finite
rank for all n > 1. This implies that <I> is injective. •

LEMMA 7. R D S = [R, ST] D [RT, S].

Proof. By Lemma 4, R D S <= (7? n ST) n (7?r n S) = [7?, ST] n [RT, S]. M.

Let q:F—*F/[R,S] = Q be the natural projection. The natural epimorphism
Q^F/[R,ST] induces an epimorphism of graded Lie algebras Gr Q^>GrF/[R, ST].
The structure of Gr F/[R, ST] is given by Lemma 5. Taken together, there is a composite
epimorphism of Lie algebras

p : L ( r U s U t ) s G r F -» Gr Q-> Gr F/[R, ST] = L(r) x L(s U t)

which carries each rer to (r,0) and each J tesUt to (0,*). Using the natural
epimorphism (?—» F/[RT,S], there is an analogous composite epimorphism of Lie
algebras

a: L{t U s U t) = Gr F-* Gr Q -* Gr F/[RT, S] s L(r U t) x L(s).

Let Ir and 7S denote the ideals of L(r U s U t) generated by r and s respectively. By the
discussion of direct products of Lie algebras following the proof of Lemma 1, it follows
that kerpDker a c / r n / „ .

Theorem 1 is now proved as follows. Let w e R(~\S. By induction on n, we show that
w € [R, S]Fn for all n a 1. The case n = 1 is trivial, and the case n = 2 follows from Lemma
7. Suppose that n s 3. By induction we may write w = uv, where u e [R, S] and v e Fn_,.
Since [ f i , 5 ] c « n S , veRHS. Consider vFneGx"~xF. There exists a unique r) e
L"~'(u) such that vFn = <J>(»7), where «& is the isomorphism of Lemma 6. Since p factors
through Gr F/[R,ST], Lemma 7 implies that r/ekerp. Similarly, r) e ker a. Thus it
follows that rj € /r n /s.

Consider the magma homomorphisms | :(M(u), .)—»(L(u), [, ]) and y:(M(u),.)—*
(F, [, ]) induced by the inclusions of u into L(u) and F respectively. By Lemma 1, there
exist jU,,... , nk e un_, and e , , . . . , e^ e Z such that each fij involves r and such that
7] = e,!(ji,) + • • • + ejtOifc). Also by Lemma 1, the sum of those e,§(jU;) for which /^
involves s lies in /„. Since TJ e 7S, the sum of those ey£(/xy) for which /xy does not involve s
lies in /s, and hence is zero, again by Lemma 1. We may thus assume that each /iy involves
both r and s. Note that y{Hj)Fn = <t>(§(^)) e Gr""1 F for each /. By Lemma 2, each y(/x;)
lies in [R,S]. S ince vFn = eMZ(Hi)) + •••+ e * * ( § ( ^ ) ) = Y ( ^ T ' • • • Y(nkT

kFn, w e c o n -
clude that v e [R, S]Fn. Thus w = uv e [R,S]Fn. This completes the proof of Theorem 1.

The structure of Gr Q. As in the preceding discussions, R and 5 are distinct factors
from an efficient normal factorization of a finitely generated free group F, and
Q = F/[R, S]. It has been noted that the composite epimorphism

has kernel contained in 7rn/s. The reverse inclusion follows from Lemma 1 and 2:
Gr Q = L(t U s U t)//r n 7S.
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THEOREM 2. There is a pull-back diagram
Gr Q > L(s U t)

I 1
L(rUt) > L(t)

in the category of integral Lie algegras.

Before we give the proof, note that, as a consequence, Gr Q embeds in the direct
product L(r U t) x L(s U t), which is torsion-free. For each n > 1, QnIQn+x = Gr" Q is a
homomorphic image of the finitely generated Gr" F.

COROLLARY. For each positive integer n, QnIQn+\ is a finitely generated free abelian
group.

For the proof of Theorem 2, set u = rUsUt . Using [1, II.2.9, Proposition 10],
there is a commutative square

L(u) — ^ L(sUt)

I
L(rUt) - * -> L(t)

of split surjections of graded Lie algebras. For k = 1, 2, let ak and f}k be split by jk and ik

respectively; these splittings are the obvious inclusions of subalgebras, so yV, = j2i2 and
/2 = 'i/32- Let n denote the pull-back of j3, and /32; we have a2j\ = i2fii and

n = {(*, y) e L(r U t) x L(s U t): /3,(JC) = /

Since j8,«! =/32ar2, a Lie algebra homomorphism # = {«], a-2}:L(u)—*n is induced.
Recall that ker a, = I, and ker ar2 = /s. The map a therefore induces a homomorphism of
graded Lie algebras a: L(r U s U t)//r D /s—* IT given by

On the other hand, we define a function b:II—»L(r U s U t)//r D /s by

b(x,y) =jx{x) +}2(y - i2p2(y)) + /, n /s.

One checks that a and b are inverse functions, completing the proof. •

Concluding remarks. By Lemma 4 and the Corollary to Theorem 1, the ARWC
would be implied by the following:

STRONGER CONJECTURE. If R and S are distinct factors from an efficient normal
factorization of a finitely generated free group F, and if the factorization has at least three
nontrivial factors, then the group Q = F/[R,S] is residually nilpotent (i.e. Qm = 1).

The conclusion of the Stronger Conjecture does not hold for efficient normal
factorizations involving just two factors.

EXAMPLE. In the free group F with basis {x,y}, let R be the normal subgroup
determined by [*,}'])'~1, and let 5 be the normal subgroup determined by [y, x]x~\ It is
easy to show that F = RS: modulo RS, l=xyx~xy~ly~l=xx~2y~\ whence x=y~\ and

https://doi.org/10.1017/S0017089500008430 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500008430


AN EMBEDDING FOR n2 OF A SUBCOMPLEX 371

so, for example, l = [x,y]y~1 ^y~l. As in the proof of Lemma 5, F/[R,S] = F/S X FIR.
Now, F/S is isomorphic to the semi-direct product Z[l/2] xZ, where Z acts on Z[l/2] via
multiplication by two. In particular, (F/S)2 = (F/S)w = Z[l/2]. Thus, neither F/5 nor
F/[7?, 5] is residually nilpotent.
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