Canad. Math. Bull. Vol. 17 (1), 1974

ON INJECTIVE NEAR-RING MODULES

BY
V. SETH AND K. TEWARI

1. Introduction. Let N be a left near ring and let M be a right N-module. We recall [1] that M is called injective iff every diagram $0 \longrightarrow A \xrightarrow{f} B$ can be embedded

into a commutative diagram $0 \longrightarrow A \xrightarrow{f} B$, where A and B are right N-modules

with $0 \longrightarrow A \xrightarrow{f} B$ exact.
The purpose of this note is to show that if N is a d.g. near-ring with identity, then M is injective iff for every right ideal u of N and every N-homomorphism $f: u \rightarrow N$, there exists an element m in M such that $f(a)=m a$ for all a in u.

For the definition of near-rings, near-ring modules etc., see [2].
2. Main theorem. We first prove the following

Lemma. Let N be a left d.g. near ring with identity, generated by a distributive semi group S. Let M be a right N-module and A any subset of M. Then the submodule of M generated by A is

$$
\bar{A}=\left\{\sum_{i=1}^{n}-m_{i}+a_{i} s_{i}+m_{i} \mid m_{i} \in M, a_{i} \in A \text { and either } s_{i} \in S \text { or }-s_{i} \in S\right\} .
$$

Proof. Clearly \bar{A} is a right N-group. To show that \bar{A} is normal in M, take $m \in M$ and $\sum_{i=1}^{n}-m_{i}+a_{i} s_{i}+m_{i} \in \bar{A}$. Then
$-m+\left\{\sum_{i=1}^{n}-m_{i}+a_{i} s_{i}+m_{i}\right\}+m$
$=-m+\left\{\left(-m_{1}+a_{1} s_{1}+m_{1}\right)+\left(-m_{2}+a_{2} s_{2}+m_{2}\right)+\cdots+\left(-m_{n}+a_{n} s_{n}+m_{n}\right)\right\}+m$
$=\left\{\left(-m-m_{1}\right)+a_{1} s_{1}+\left(m_{1}+m\right)\right\}+\cdots+\left\{\left(-m-m_{n}\right)+a_{n} s_{n}+\left(m_{n}+m\right)\right\}$
$=\sum_{i=1}^{n}\left\{-\left(m_{i}+m\right)+a_{i} s_{i}+\left(m_{i}+m\right)\right\} \quad$ is in \bar{A}.

Let $m \in M, \bar{a}=\left\{\sum_{i=1}^{n}-m_{i}+a_{i} s_{i}+m_{i}\right\} \in \bar{A}$ and $r \in N$. Then

$$
(m+\bar{a}) r-m r=(m+\bar{a})\left(t_{1}+t_{2}+\cdots+t_{n}\right)-m\left(t_{1}+t_{2}+\cdots+t_{n}\right)
$$

where t_{i} or $-t_{i} \in S$.
To show that $(m+\bar{a}) r-m r$ is in \bar{A}, we use induction on n. For $n=1$, it is easy to see that the result is true. Suppose it is true for $n-1$. Then

$$
\begin{aligned}
(m+\bar{a}) r-m r= & (m+\bar{a})\left(t_{1}+t_{2}+\cdots+t_{n-1}+t_{n}\right)-m\left(t_{1}+t_{2}+\cdots+t_{n-1}+t_{n}\right) \\
= & (m+\bar{a})\left(t_{1}+t_{2}+\cdots+t_{n-1}\right)+(m+\bar{a}) t_{n}-m\left(t_{1}+t_{2}+\cdots+t_{n}\right) \\
= & (m+\bar{a})\left(t_{1}+t_{2}+\cdots+t_{n-1}\right)-m\left(t_{1}+t_{2}+\cdots+t_{n-1}\right) \\
& +m\left(t_{1}+\cdots+t_{n-1}\right)+(m+\bar{a}) t_{n}-m\left(t_{1}+\cdots+t_{n}\right) .
\end{aligned}
$$

Therefore if $t_{n} \in S$, then

$$
\begin{aligned}
(m+\bar{a}) r-m r= & \left\{(m+\bar{a})\left(t_{1}+t_{2}+\cdots+t_{n-1}\right)-m\left(t_{1}+\cdots+t_{n-1}\right)\right\} \\
& +\left\{m\left(t_{1}+\cdots+t_{n-1}\right)+m t_{n}+\bar{a} t_{n}-m\left(t_{1}+\cdots+t_{n}\right)\right\} \\
= & a^{\prime}+\left\{m r+\bar{a} t_{n}-m r\right\}
\end{aligned}
$$

where

$$
a^{\prime}=\left\{(m+\bar{a})\left(t_{1}+\cdots+t_{n-1}\right)-m\left(t_{1}+\cdots+t_{n-1}\right)\right\} \in \bar{A}
$$

Thus, since \bar{A} is normal in $M,(m+\bar{a}) r-m r$ is in \bar{A}. If $-t_{n} \in S$ then $(m+\bar{a}) r-m r$

$$
\begin{aligned}
& =a^{\prime}+\left\{m\left(t_{1}+t_{2}+\cdots+t_{n-1}\right)+\bar{a} t_{n}+m t_{n}-m\left(t_{1}+t_{2}+\cdots+t_{n}\right)\right\} \\
& =a^{\prime}+\left\{m\left(t_{1}+\cdots+t_{n-1}\right)+\bar{a} t_{n}+m t_{n}-m t_{n}-m t_{n-1}-\cdots-m t_{2}-m t_{1} .\right. \\
& =a^{\prime}+\left\{m\left(t_{1}+\cdots+t_{n-1}\right)+\bar{a} t_{n}-m\left(t_{1}+t_{2}+\cdots+t_{n-1}\right)\right\}
\end{aligned}
$$

is in \bar{A}. Hence \bar{A} is a submodule of M. Clearly $A \subseteq \bar{A}$. To show that \bar{A} is the smallest submodule of M containing A, we take a submodule B of M containing A. Let $\bar{a}=\sum_{i=1}^{n}-m_{i}+a_{i} s_{i}+m_{i}$ be an arbitrary element of \bar{A}. Since $a_{i} \in A \subseteq B$ and B is a submodule of M, we have that $-m_{i}+a_{i} s_{i}+m_{i} \in B(i=1,2, \ldots, n)$. Hence $\bar{A} \subseteq B$.

As an immediate observation we have

Corollary. If A is a subset of M such that $A N \subseteq A$, then the submodule of M generated by A is $\left\{\sum_{i=1}^{n}-m_{i}+a_{i}+m_{i} \mid m_{i} \in M, a_{i} \in A\right\}$.

Theorem. Let N be a left d.g. near-ring, with identity, and M be a right N module. Then the following are equivalent:
(i) M is injective
(ii) every diagram $0 \longrightarrow \underset{\substack{g \\ \downarrow \\ \\ M}}{\dot{j}} D$ can be embedded into a commutative diagram $0 \longrightarrow C \xrightarrow{j} D$, where C is a submodule of the right N-module D and j is the injection

map.
(iii) for every right ideal u of N and every N-homomorphism $f: u \rightarrow M$ there exists an element m in M such that $f(a)=m a$ for all a in u.

Proof. (i) \Rightarrow (ii): Trivial.
(ii) \Rightarrow (iii): Let u be a right ideal of N and $f: u \rightarrow M$ be a N-homomorphism and consider $0 \longrightarrow u \xrightarrow{j} N$.

Since u_{N} is a submodule of N_{N}, there exists a N-homomorphism $h: N_{N} \rightarrow M$ such that $h / u=f$. Then if $h(1)=m$ we have that $f(a)=m a$ for all a in u.
(iii) \Rightarrow (i): Let us consider the diagram $0 \longrightarrow A \xrightarrow{f} B$, where A and B are right

N-modules and $0 \longrightarrow A \xrightarrow{f} B$ is exact. Let $f(A)=C$. Then $C \subseteq B$ is a right N-module and $h: C \rightarrow M$ given by $h(f(a))=g(a)$ is a N-homomorphism.

Let \bar{C} be the submodule of B generated by C, then

$$
\bar{C}=\left\{\sum_{i=1}^{n}-b_{i}+f\left(a_{i}\right)+b_{i} / b_{i} \in B, a_{i} \in A\right\}
$$

Define

$$
h^{\prime}: \bar{C} \rightarrow M \quad \text { by } \quad h^{\prime}\left[\sum_{i=1}^{n}-b_{i}+f\left(a_{i}\right)+b_{i}\right]=\sum_{i=1}^{n} h\left(f\left(a_{i}\right)\right) .
$$

We note that $h^{\prime} / C=h$.
To show that h^{\prime} is well defined we take

$$
\sum_{i=1}^{n}\left[-b_{i}+f\left(a_{i}+\right) b_{i}\right]=\sum_{i=1}^{m}\left[-b_{i}^{\prime}+f\left(a_{i}^{\prime}\right)+b_{i}^{\prime}\right] \quad \text { in } \bar{C} .
$$

Then

$$
\begin{aligned}
f\left(a_{1}\right)=\sum_{i=1}^{m}\left[\left(b_{1}-b_{i}^{\prime}\right)+\right. & \left.f\left(a_{i}^{\prime}\right)+\left(b_{i}^{\prime}-b_{1}\right)\right] \\
& +\left[\left(b_{1}-b_{n}\right)+f\left(-a_{n}\right)+\left(b_{n}-b_{1}\right)\right] \\
& +\cdots+\left[\left(b_{1}-b_{2}\right)+f\left(-a_{2}\right)+\left(b_{2}-b_{1}\right)\right] \text { is in } C \\
\therefore \quad h\left(f\left(a_{1}\right)\right)= & h(\text { R.H.S. })=h^{\prime}(\text { R.H.S. }) \\
& =\sum_{i=1}^{m} h\left(f\left(a_{i}^{\prime}\right)+\left[h\left(f\left(-a_{n}\right)+\cdots+h\left(f\left(-a_{2}\right)\right)\right]\right.\right. \\
& =\sum_{i=1}^{m} h\left(f\left(a_{i}^{\prime}\right)\right)+h\left\{f\left(a_{n}\right)(-1)\right\}+\cdots+h\left\{f\left(a_{2}\right)(-1)\right\} \\
& =\sum_{i=1}^{m} h\left(f\left(a_{i}^{\prime}\right)\right)-h\left(f\left(a_{n}\right)\right)-\cdots-h\left(f\left(a_{2}\right)\right),
\end{aligned}
$$

or

$$
\sum_{i=1}^{n} h\left(f\left(a_{i}\right)\right)=\sum_{i=1}^{m} h\left(f\left(a_{i}^{\prime}\right)\right) .
$$

It can be seen that h^{\prime} is a N-homomorphism such that $h^{\prime} \circ f=g$. Put $X=\left\{\left(A^{\prime}, g^{\prime}\right) /\right.$ $A^{\prime} \subseteq B$ is an N-submodule of B containing $f(A)$ and

$$
\left.g^{\prime}: A^{\prime} \rightarrow M \text { an } N \text {-homomorphism } \ni g^{\prime} \circ f=g\right\}
$$

X is nonempty since $\left(\bar{C}, h^{\prime}\right)$ is in X.
As usual we can check that X has a maximal element, say $\left(C_{0}, g_{0}\right)$. We claim that $C_{0}=B$. If not let $x \in B$ such that $x \notin C_{0}$. Let $u=\left\{a \in N / x a \in C_{0}\right\}$. Then u is a right ideal of N. Define $\psi: u \rightarrow M$ by $\psi(a)=g_{0}(x a)$ for all a in u. One can check that ψ is an N-homomorphism. So there exists an m in M such that $\psi(a)=m a=g_{0}(x a)$ for all a in u. Let $g_{0}^{\prime}: x N+C_{0}+x N \rightarrow M$ be given by

$$
g_{0}^{\prime}\left(x r+c_{0}+x r^{\prime}\right)=m r+g_{0}\left(c_{0}\right)+m r^{\prime}, r \quad r^{\prime} \in N, \quad c_{0} \in C_{0}
$$

We wish to show that g_{0}^{\prime} is well defined. To this end we show that
(a) g_{0}^{\prime} takes the zero element of $x N+C_{0}+x N$ to the zero element of M, and
(b) g_{0}^{\prime} is additive.

So let $x r+c_{0}+x r^{\prime}=0$ for some r, r^{\prime} in N, c_{0} in C_{0}.
Then $c_{0}=-x r-x r^{\prime}=x\left(-r-r^{\prime}\right) \in C_{0}$ and so $-r-r^{\prime} \in u$ and hence

$$
g_{0}\left(c_{0}\right)=g_{0}\left\{x\left(-r-r^{\prime}\right)\right\}=\psi\left(-r-r^{\prime}\right)=m\left(-r-r^{\prime}\right)=-m r-m r^{\prime}
$$

and so $m r+g_{0}\left(c_{0}\right)+m r^{\prime}=0$; thus $g_{0}^{\prime}\left(x r+c_{0}+x r^{\prime}\right)=0$. Secondly let $x r+c_{0}+x r^{\prime}$ and $x t+c_{0}^{\prime}+x t^{\prime}$ be any two elements of $x N+C_{0}+x N$.

Then

$$
\begin{aligned}
& g_{0}^{\prime}\left\{\left(x r+c_{0}+x r^{\prime}\right)+\left(x t+c_{0}^{\prime}+x t^{\prime}\right)\right\} \\
& =g_{0}^{\prime}\left[\left(x r+x r^{\prime}\right)+\left(-x r^{\prime}+c_{0}+x r^{\prime}\right)+\left(x t+c_{0}^{\prime}-x t\right)+\left(x t+x t^{\prime}\right)\right] \\
& =g_{0}^{\prime}\left[x\left(r+r^{\prime}\right)+b_{0}+x\left(t+t^{\prime}\right)\right] \text { where } b_{0}=\left(-x r^{\prime}+c_{0}+x r^{\prime}\right)+\left(x t+c_{0}^{\prime}-x t\right) \in C_{0} \\
& =m\left(r+r^{\prime}\right)+g_{0}\left[\left(-x r^{\prime}+c_{0}+x r^{\prime}\right)+\left(x t+c_{0}^{\prime}-x t\right)\right]+m\left(t+t^{\prime}\right) \\
& =m\left(r+r^{\prime}\right)+g_{0}\left\{\left(-x r^{\prime}+c_{0}+x r^{\prime}\right)\right\}+g_{0}\left\{\left(x t+c_{0}^{\prime}-x t\right)\right\}+m\left(t+t^{\prime}\right) \\
& =g_{0}^{\prime}\left[\left(x r+x r^{\prime}\right)-x r^{\prime}+c_{0}+x r^{\prime}\right]+g_{0}^{\prime}\left[\left(x t+c_{0}^{\prime}-x t\right)+x t+x t^{\prime}\right] \\
& =g_{0}^{\prime}\left[x r+c_{0}+x r^{\prime}\right]+g_{0}^{\prime}\left[x t+c_{0}^{\prime}+x t^{\prime}\right],
\end{aligned}
$$

hence g_{0}^{\prime} is well defined and additive.
Now since g_{0}^{\prime} is additive and $(N,+)$ is generated by a set of distributive elements, it can be checked that g_{0}^{\prime} is N-linear, which gives us that g_{0}^{\prime} is a N-homomorphism.

Moreover

$$
g_{0}^{\prime} / C_{0}=g_{0} \quad \text { and } \quad g_{0}^{\prime} \circ f=g .
$$

Let P be the N-submodule of B generated by $x N+C_{0}+x N$.
Then

$$
P=\left\{\sum_{i=1}^{n}\left[-b_{i}+\left(x r_{i}+c_{0 i}+x r_{i}^{\prime}\right)+b_{i}\right] / b_{i} \in B, r_{i}, r_{i}^{\prime} \in N, c_{0 i} \in C_{0}, 1 \leq i \leq n\right\},
$$

and clearly $C=f(A) \subseteq C_{0} \subseteq x N+C_{0}+x N \subseteq P \subseteq B$. Consider the mapping $g_{0}^{\prime \prime}: P \rightarrow M$ given by

$$
g_{0}^{\prime \prime}\left[\sum_{i=1}^{n}-b_{i}+\left(x r_{i}+c_{0 i}+x r_{i}^{\prime}\right)+b_{i}\right]=\sum_{i=1}^{n} g_{0}^{\prime}\left(x r_{i}+c_{0 i}+x r_{i}^{\prime}\right)
$$

As before it can be seen that $g_{0}^{\prime \prime}$ is well defined and is a N-homomorphism and $g_{0}^{\prime \prime} \circ f=g$.

Hence we have $\left(P, g_{0}^{\prime \prime}\right) \in X$ and $\left(C_{0}, g_{0}\right)<\left(P, g_{0}^{\prime \prime}\right)$ which contradicts the choice of (C_{0}, g_{0}). Hence $C_{0}=B$, which proves the result.

References

1. Carlton J. Maxson, Dickson near-rings, J. Algebra 14 (1970), 152-169.
2. J. C. Beidleman, Quasi-regularity in near-rings, Math, Z. 89 (1965), 224-229.

Indian Institute of Technology, Kanpur, India

