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Let vx be a vector (i.e. a vector field) in an affinely connected
space Ln, VK the symbol of covariant differentiation, and r the rank
of the matrix || V. vK j | , then there exist two sets of n — r independent
vectors i" and j" (x = n — r + 1, . . . . . n) which satisfy respectively

X X

the equations

(1) *"v>A = 0,
(1') jxVct;A = O.

We denote by En_r and En_r the local linear vector spaces of n — r
dimensions spanned by iK and j" and defined at every point of Ln.

X X

Evidently any vector in En_r is a solution of (1) and any vector in
En-r is a solution of (1').

For the vector 'vx = avK where a is a scalar [i.e. a scalar function)
we have the corresponding 'En_r; 'En-r- defined by

(2) t 'V. 'wx^O,

(2') jxV,'i;x = 0,

r' being the rank of \\ VK'vK\\. The purpose of this note is to show
that the nature of the relation between the two pairs of local
linear vector spaces En_T and '-£/„_/, En^r and 'En_^, is completely
characterised by the ranks r, rj, r2, rz of the matrices

(3) M =
VJogcr, 1, '

The matrices M, M2 and the determinant of M3 have appeared in
Eisenhart's investigation on the transversals of parallelism of a given
vector, where he considered1 the aggregate of the vectors i" in the
spaces 'En_r- for all possible scalars a.

1 Eisenhart, Non-Biemannian Geometry (New York, 1927), 38-43.
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We shall now investigate how the nature of the relation between
'En_T' and En_r at any point is dependent on the values of the r's at
that point. Let us first consider the vectors common to './?„_/ and
En_r. Equation (2) when written out is

(4) t 'V,t;A= - ^ ( t ' V . l o g a ) .
X

Putting iK = c i", where c are n — r parameters, we get
X

(5) c i" V, log a = 0.
X

Comparison of (5) with (1) shows that (5) is identically satisfied or
T

gives a linear homogeneous relation between the c according as r1=r
or /•] =j= r. In the former case every vector in En_r is also a vector in
'En_r-\ in the latter case 'En_r- has an En_r_j in common with En_r..
Hence 'E,t_r' contains Eu_r or has an En_r_1 in common with Eu_r

according as rx = r or r, =j=r.
We shall now consider those vectors of 'En_y not contained in

En_r. If (4) has a solution for i" not lying in En_r, then i" V,logo-
does not vanish, as is seen from (4). If we put

(6) W = i*/(ixVKlogo),
equation (4) becomes

(7) u*VKvK= -vx.

Therefore in order that such an i" may exist it is necessary that r2 = r.
We now suppose that r2 = r. Then the solution for u" of (7) contains
n — r parameters1. In fact if W is a particular solution, the general

o
solution is

X

(8) W = u* + aiK,
o x

x

where a are n — r parameters. Comparing (6) and (8) we have

(9) i"l{ix V* log a) = W + a i",
0 x

from which it follows that
X

(10) W V,loga+ ai" V,loga = 1.
0 x

This is the necessary and sufficient condition for the existence of an
i' corresponding to a solution u" of (7).

1 Bocher, Introduction to Higher Algebra (New York, 1907), 43-46.
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/ / r1 = r (= r2), then i' V l̂ogo- = 0 and equation (10) becomes
z

(11) tt" VKloga = 1.
o

Remembering that W is a solution of (7) we see that (11) is satisfied
o

or not according as r3 = r1 or r3=|=r1. In the former case, i.e.
X

r = r1 = r%= r3, no restriction is imposed on a and therefore r'= r — 1
and '£„_/ is spanned by u" and En_r; in the latter case, i.e.

o
r = r1 = r2 =(= r3, there is no i" in 'En_^ outside En_r and therefore
r' =r and 'En_T' coincides with i/n_r.

If r1=\^r(= r2), let a be a set of particular solutions for a of
o

x

(10). Then if c is any set of parameters satisfying (5), the general
solutions of (10) and (4) are respectively

X X X

a = a + c,
o

X X •

(12) iK = «" + cii" +ci",

after omitting a scalar factor. Remembering that when the c satisfy (5)
X

c iK span the common J5/n_r_1 of 'En_r' and En^r, we see from (12)
X

X

that r' = r and 'En_y is spanned by the vector W -\- a iK and En_r_1.
0 Ox

Hence the nature of the 'En-r' of 'w = a v" is completely character-
ised by the numbers r, rl5 r2> r3.

Proceeding in an analogous manner we can start with equations
{1') and (2') and classify the nature of the '-£/„_/ according to r, rx,
r2, r3. We shall not enter into detail but write down the corre-
sponding equations which appear in the discussion. They are

(4') / V, vK = - (jx «A) V. log a,

(5') cjxi;x = O,

(7') ux WKvK = - V« log a,
x

(8') «x = ux + a j A ,
° X
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(10') uxvK + ajxvx=\,
0 x

(11') UXVX = 1)
0

(12') f = ux + af + cf.
0 0 x x

The four matrices (3) appear in the order M, M2, Mx, M3 instead of
M, Mu M2, M3.

Summing up these results we have

THEOREM. The nature of the 'En_r' and '-£„_/ of 'V = avK is com-
pletely characterised by the ranks r, rlt r2, r3 of the matrices (3). More
precisely,

(i) if r = rx=\=r2, then r' = r and '-&„_,.• coincides with En_r while

Ens has an En_r_1 in common with En_r;

(ii) ifr=\=rlt r2, then r' = r + 1 and 'En-r- and 'En^r< are contained in

En_r and En^r respectively;

(iii) if r = rx = r2 = r3, then r' = r — 1 and 'En_r> and 'En_f contain

En_r and En_r respectively;

(iv) if r = rx = r2=\=r3, then r' = r and 'En_r- and 'En_r' coincide with

En_r and En_r respectively;

(v) if r =r2-=%zru then r' = r and 'En_r- has an En_r_l in common
with En_r while 'En_r coincides with En_r.
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