On two linear vector spaces associated with a vector in an L_n

By YUNG-CHOW WONG.

(Received 4th February, 1940. Read 2nd March, 1940.)

Let v_{λ} be a vector (*i.e.* a vector field) in an affinely connected space L_n , ∇_{κ} the symbol of covariant differentiation, and r the rank of the matrix $||\nabla_{\kappa} v_{\lambda}||$, then there exist two sets of n - r independent vectors i^{κ} and j^{κ} $(x = n - r + 1, \ldots, n)$ which satisfy respectively the equations

(1)
$$i^{\kappa} \nabla_{\kappa} v_{\lambda} = 0,$$

$$(1') j^{\lambda} \nabla_{\kappa} v_{\lambda} = 0.$$

We denote by E_{n-r} and \overline{E}_{n-r} the local linear vector spaces of n-r dimensions spanned by i^*_x and j^*_x and defined at every point of L_n . Evidently any vector in E_{n-r} is a solution of (1) and any vector in \overline{E}_{n-r} is a solution of (1').

For the vector $v_{\lambda} = \sigma v_{\lambda}$ where σ is a scalar (*i.e.* a scalar function) we have the corresponding $E_{n-r'}$, $\overline{E}_{n-r'}$ defined by

(2)
$$i^{\kappa} \nabla_{\kappa} v_{\lambda} = 0,$$

$$(2') j^{\lambda} \nabla_{\kappa} v_{\lambda} = 0,$$

r' being the rank of $||\nabla_{\kappa}' v_{\lambda}||$. The purpose of this note is to show that the nature of the relation between the two pairs of local linear vector spaces E_{n-r} and $E_{n-r'}$, \overline{E}_{n-r} and $\overline{E}_{n-r'}$, is completely characterised by the ranks r, r_1 , r_2 , r_3 of the matrices

(3)
$$M = \| \nabla_{\kappa} v_{\lambda} \|, M_1 = \begin{bmatrix} \nabla_{\kappa} v_{\lambda} \\ \nabla_{\kappa} \log \sigma \end{bmatrix}, M_2 = \| \nabla_{\kappa} v_{\lambda}, v_{\lambda} |, M_3 = \begin{bmatrix} \nabla_{\kappa} v_{\lambda}, -v_{\lambda} \\ \nabla_{\kappa} \log \sigma, 1 \end{bmatrix}$$

The matrices M, M_2 and the determinant of M_3 have appeared in Eisenhart's investigation on the transversals of parallelism of a given vector, where he considered¹ the aggregate of the vectors i^* in the spaces $E_{n-r'}$ for all possible scalars σ .

https://doi.org/10.1017/S0013091500024706 Published online by Cambridge University Press

¹ Eisenhart, Non Riemannian Geometry (New York, 1927), 38-43.

We shall now investigate how the nature of the relation between E_{n-r} and E_{n-r} at any point is dependent on the values of the r's at that point. Let us first consider the vectors common to E_{n-r} and E_{n-r} . Equation (2) when written out is

(4)
$$i^{\kappa} \nabla_{\kappa} v_{\lambda} = -v_{\lambda} (i^{\kappa} \nabla_{\kappa} \log \sigma).$$

Putting $i^{x} = c i^{x} i^{x}$, where c are n - r parameters, we get

(5)
$$\sum_{x}^{x} c_{\kappa}^{i \kappa} \nabla_{\kappa} \log \sigma = 0.$$

Comparison of (5) with (1) shows that (5) is identically satisfied or

gives a linear homogeneous relation between the r according as $r_1 = r$ or $r_1 \pm r$. In the former case every vector in E_{n-r} is also a vector in E_{n-r} ; in the latter case E_{n-r} has an E_{n-r-1} in common with E_{n-r} . Hence E_{n-r} contains E_{n-r} or has an E_{n-r-1} in common with E_{n-r} according us $r_1 = r$ or $r_1 \pm r$.

We shall now consider those vectors of E_{n-r} not contained in E_{n-r} . If (4) has a solution for i^{κ} not lying in E_{n-r} , then $i^{\kappa} \nabla_{\kappa} \log \sigma$ does not vanish, as is seen from (4). If we put

(6)
$$u^{\kappa} = i^{\kappa}/(i^{\lambda} \nabla_{\lambda} \log \sigma),$$

equation (4) becomes

(7)
$$u^{\kappa} \nabla_{\kappa} v_{\lambda} = -v_{\lambda}.$$

Therefore in order that such an i^{κ} may exist it is necessary that $r_2 = r$. We now suppose that $r_2 = r$. Then the solution for u^{κ} of (7) contains n - r parameters¹. In fact if u^{κ} is a particular solution, the general solution is

(8)
$$u^{\kappa} = u^{\kappa} + a^{\kappa} i^{\kappa} a^{i \kappa} a^{\kappa} a^{i \kappa} a^{\kappa} a^{\kappa$$

where a^{x} are n - r parameters. Comparing (6) and (8) we have

(9)
$$i^{\kappa}/(i^{\lambda} \nabla_{\lambda} \log \sigma) = u^{\kappa} + a^{\star} i^{\kappa},$$

from which it follows that

(10)
$$u^{\kappa} \nabla_{\kappa} \log \sigma + a^{x} i^{\kappa} \nabla_{\kappa} \log \sigma = 1.$$

This is the necessary and sufficient condition for the existence of an i^{*} corresponding to a solution u^{*} of (7).

¹ Bocher, Introduction to Higher Algebra (New York, 1907), 43-46.

(11)
If
$$r_1 = r (= r_2)$$
, then $i^{\kappa}_{x} \nabla_{\kappa} \log \sigma = 0$ and equation (10) becomes
 $u^{\kappa}_{x} \nabla_{\kappa} \log \sigma = 1$.

Remembering that u^{*} is a solution of (7) we see that (11) is satisfied or not according as $r_{3} = r_{1}$ or $r_{3} \neq r_{1}$. In the former case, *i.e.* $r = r_{1} = r_{2} = r_{3}$, no restriction is imposed on $\stackrel{x}{a}$ and therefore r' = r - 1and $E_{n-r'}$ is spanned by u^{*} and E_{n-r} ; in the latter case, *i.e.* $r = r_{1} = r_{2} \neq r_{3}$, there is no i^{*} in $E_{n-r'}$ outside E_{n-r} and therefore r' = r and $E_{n-r'}$ coincides with $E_{n-r'}$.

If $r_1 \neq r (= r_2)$, let a = a be a set of particular solutions for a = a of

(10). Then if c is any set of parameters satisfying (5), the general solutions of (10) and (4) are respectively

(12)
$$\begin{array}{c}
x & = x & + x \\
a & = a & + c \\
0 & \\
i^{\kappa} & = u^{\kappa} + a & i^{\kappa} + c & i^{\kappa} \\
0 & x & - c & x \\
0 & x & x & x
\end{array},$$

after omitting a scalar factor. Remembering that when the \ddot{c} satisfy (5) \ddot{c} i^{κ} span the common E_{n-r-1} of $E_{n-r'}$ and $E_{n-r'}$, we see from (12) that r' = r and $E_{n-r'}$ is spanned by the vector $u^{\kappa} + \ddot{a}_{0} i^{\kappa}$ and E_{n-r-1} .

Hence the nature of the E_{n-r} of $v = \sigma v^{\kappa}$ is completely characterised by the numbers r, r_1, r_2, r_3 .

Proceeding in an analogous manner we can start with equations (1') and (2') and classify the nature of the $\overline{E}_{n-r'}$ according to r, r_1, r_2, r_3 . We shall not enter into detail but write down the corresponding equations which appear in the discussion. They are

(4')
$$j^{\lambda} \nabla_{\kappa} v_{\lambda} = - (j^{\lambda} v_{\lambda}) \nabla_{\kappa} \log \sigma,$$

(5')
$$\tilde{c} j^{\lambda} v_{\lambda} = 0$$

(6')
$$u^{\lambda} = j^{\lambda}/(j^{\mu} v_{\mu}),$$

(7')
$$u^{\lambda} \nabla_{\kappa} v_{\lambda} = - \nabla_{\kappa} \log \sigma_{\mu}$$

(8')
$$u^{\lambda} = \underbrace{u^{\lambda}}_{\odot} + \underbrace{a}_{x}^{j\lambda},$$

(9')
$$j^{\lambda}/(j^{\mu} v_{\mu}) = u^{\lambda} + a j^{\lambda},$$

174

Two Linear vector spaces associated with a vector in an L_n 175

(10')
$$u^{\lambda}v_{\lambda} + \overset{x}{a}j^{\lambda}v_{\lambda} = 1,$$

(11')
$$\begin{array}{ccc} & & & & x \\ & & & & u^{\lambda} v_{\lambda} = 1, \\ & & & & & 0 \end{array}$$

(12')
$$j^{\lambda} = u^{\lambda} + a^{\lambda} j^{\lambda} + c^{\lambda} j^{\lambda}.$$

The four matrices (3) appear in the order M, M_2, M_1, M_3 instead of M, M_1, M_2, M_3 .

Summing up these results we have

THEOREM. The nature of the ' $E_{n-r'}$ and ' $\overline{E}_{n-r'}$ of ' $v^{\kappa} = \sigma v^{\kappa}$ is completely characterised by the ranks r, r_1, r_2, r_3 of the matrices (3). More precisely,

- (i) if $r = r_1 \pm r_2$, then r' = r and $E_{n-r'}$ coincides with E_{n-r} while $\overline{E}_{n-r'}$ has an \overline{E}_{n-r-1} in common with \overline{E}_{n-r} ;
- (ii) if $r \neq r_1$, r_2 , then r' = r+1 and $E_{n-r'}$ and $\overline{E}_{n-r'}$ are contained in E_{n-r} and \overline{E}_{n-r} respectively;
- (iii) if $r = r_1 = r_2 = r_3$, then r' = r 1 and $E_{n-r'}$ and $\overline{E}_{n-r'}$ contain E_{n-r} and \overline{E}_{n-r} respectively;
- (iv) if $r = r_1 = r_2 \ddagger r_3$, then r' = r and $E_{n-r'}$ and $\overline{E}_{n-r'}$ coincide with E_{n-r} and \overline{E}_{n-r} respectively;
- (v) if $r = r_2 \ddagger r_1$, then r' = r and $E_{n-r'}$ has an E_{n-r-1} in common with E_{n-r} while $\overline{E}_{n-r'}$ coincides with \overline{E}_{n-r} .

KING'S COLLEGE, LONDON.