On two linear vector spaces associated with a vector in an \mathbf{L}_{n}

By Yung-Chow Wong.

(Received 4th February, 1940. Read 2nd March, 1940.)
Let v_{λ} be a vector (i.e. a vector field) in an affinely connected space L_{n}, ∇_{κ} the symbol of covariant differentiation, and r the rank of the matrix $\left.\right|_{\mid} \nabla_{\kappa} v_{\lambda}$!|, then there exist two sets of $n-r$ independent vectors i_{x}^{κ} and $j_{x}^{k}(x=n-r+1, \ldots, n)$ which satisfy respectively the equations

$$
\begin{align*}
& i^{\kappa} \nabla_{\kappa} v_{\lambda}=0 \tag{1}\\
& j^{\lambda} \nabla_{\kappa} v_{\lambda}=0
\end{align*}
$$

We denote by E_{n-r} and \bar{E}_{n-r} the local linear vector spaces of $n-r$ dimensions spanned by ${\underset{x}{\kappa}}^{\kappa}$ and j_{x}^{κ} and defined at every point of L_{n}. Evidently any vector in E_{n-r} is a solution of (1) and any vector in \bar{E}_{n-r} is a solution of (1^{\prime}).

For the vector ' $v_{\lambda}=\sigma v_{\lambda}$ where σ is a scalar (i.e. a scalar function) we have the corresponding ' $E_{n-r^{\prime}}, \bar{E}_{n-r^{\prime}}$ defined by

$$
\begin{align*}
& i^{\kappa} \nabla_{\kappa}^{\prime} v_{\lambda}=0, \tag{2}\\
& j^{\lambda} \nabla_{\kappa}^{\prime} v_{\lambda}=0,
\end{align*}
$$

r^{\prime} being the rank of $\left\|\nabla_{\kappa}{ }^{\prime} v_{\lambda}\right\|$. The purpose of this note is to show that the nature of the relation between the two pairs of local linear vector spaces E_{n-r} and ' $E_{n-r^{\prime}}, \bar{E}_{n-r}$ and ' $\bar{E}_{n-r^{\prime}}$, is completely characterised by the ranks r, r_{1}, r_{2}, r_{3} of the matrices
(3) $M=\left\|\nabla_{\kappa} v_{\lambda}\right\|, M_{1}=\begin{gathered}\nabla_{\kappa} v_{\lambda} \\ \nabla_{\kappa} \log \sigma\end{gathered}, M_{2}=\left\|\nabla_{\kappa} v_{\lambda}, v_{\lambda} \mid, M_{3}=\right\| \begin{aligned} & \nabla_{\kappa} v_{\lambda},-v_{\lambda} \\ & \nabla_{\kappa} \log \sigma, 1_{1}\end{aligned}$.

The matrices M, M_{2} and the determinant of M_{3} have appeared in Eisenhart's investigation on the transversals of parallelism of a given vector, where he considered ${ }^{1}$ the aggregate of the vectors i^{κ} in the spaces ' E_{n-r} for all possible scalars σ.

[^0]We shall now investigate how the nature of the relation between ' E_{n-r} and E_{n-r} at any point is dependent on the values of the r 's at that point. Let us first consider the vectors common to ${ }^{\prime} E_{n-r^{\prime}}$ and E_{n-r}. Equation (2) when written out is

$$
\begin{equation*}
i^{\kappa} \nabla_{\kappa} v_{\lambda}=-v_{\lambda}\left(i^{\kappa} \nabla_{\kappa} \log \sigma\right) . \tag{4}
\end{equation*}
$$

Putting $i^{\kappa}=\stackrel{x}{c} i_{x}^{\kappa}$, where c are $n-r$ parameters, we get

$$
\begin{equation*}
{ }_{x}^{x} i_{x}^{x} \nabla_{\kappa} \log \sigma=0 . \tag{5}
\end{equation*}
$$

Comparison of (5) with (1) shows that (5) is identically satisfied or gives a linear homogeneous relation between the ${ }_{c}^{x}$ according as $r_{1}=r$ or $r_{1} \neq r$. In the former case every vector in E_{n-r} is also a vector in ' E_{n-r}; in the latter case ' E_{n-r} has an E_{n-r-1} in common with E_{n-r}. Hence ' E_{n-r} contains E_{n-r} or has an E_{n-r-1} in common with E_{n-r} according as $r_{1}=r$ or $r_{1} \neq r$.

We shall now consider those vectors of ' E_{n-r} not contained in E_{n-r}. If (4) has a solution for i^{κ} not lying in E_{n-r}, then $i^{\kappa} \nabla_{\kappa} \log \sigma$ does not vanish, as is seen from (4). If we put

$$
\begin{equation*}
u^{\kappa}=i^{\kappa} /\left(i^{\lambda} \nabla_{\lambda} \log \sigma\right) \tag{6}
\end{equation*}
$$

equation (4) becomes

$$
\begin{equation*}
u^{\kappa} \nabla_{\kappa} v_{\lambda}=-v_{\lambda} . \tag{7}
\end{equation*}
$$

Therefore in order that such an i^{k} may exist it is necessary that $r_{2}=r$. We now suppose that $r_{2}=r$. Then the solution for u^{κ} of (7) contains $n-r$ parameters ${ }^{1}$. In fact if u^{κ} is a particular solution, the general solution is

$$
\begin{equation*}
u^{\kappa}=\underset{0}{u^{\kappa}}+\stackrel{x}{a} \underset{x}{i^{\kappa}}, \tag{8}
\end{equation*}
$$

where $\stackrel{x}{a}$ are $n-r$ parameters. Comparing (6) and (8) we have

$$
\begin{equation*}
i^{\kappa} /\left(i^{\lambda} \nabla_{\lambda} \log \sigma\right)=\underset{0}{u^{\kappa}}+\stackrel{x}{a i^{\kappa}}, \tag{9}
\end{equation*}
$$

from which it follows that

This is the necessary and sufficient condition for the existence of an i^{κ} corresponding to a solution u^{κ} of (7).

[^1]\[

$$
\begin{gather*}
\text { If } r_{1}=r\left(=r_{2}\right), \text { then }{\underset{x}{x}}_{x}^{i_{\kappa}} \nabla_{\kappa} \log \sigma=0 \text { and equation (10) becomes } \\
\qquad \begin{array}{c}
u^{\kappa} \nabla_{\kappa} \log \sigma=1 .
\end{array} . \tag{11}
\end{gather*}
$$
\]

Remembering that u^{*} is a solution of (7) we see that (11) is satisfied or not according as $r_{3}=r_{1}$ or $r_{3} \neq r_{1}$. In the former case, i.e. $r=r_{1}=r_{2}=r_{3}$, no restriction is imposed on $\stackrel{x}{a}$ and therefore $r^{\prime}=r-1$ and ' E_{n-r} is spanned by u_{0}^{κ} and E_{n-r}; in the latter case, i.e. $r=r_{1}=r_{2} \neq r_{3}$, there is no i^{κ} in ' $E_{n-r^{\prime}}$ outside E_{n-r} and therefore $r^{\prime}=r$ and ${ }^{\prime} E_{n-r^{\prime}}$ coincides with E_{n-r}.

If $r_{1} \neq r\left(=r_{2}\right)$, let $\underset{0}{a}$ be a set of particular solutions for $\stackrel{x}{a}$ of (10). Then if $\underset{c}{x}$ is any set of parameters satisfying (5), the general solutions of (10) and (4) are respectively

$$
\begin{align*}
& \stackrel{x}{a}=\stackrel{x}{a}+\stackrel{x}{c} \\
& \tag{12}\\
& i^{\kappa}=\underset{0}{u^{\kappa}}+\underset{0}{a} \underset{x}{a} i^{\kappa}+\underset{x}{c} \underset{\underset{x}{i^{\kappa}},}{x}
\end{align*}
$$

after omitting a scalar factor. Remembering that when the ${ }_{c}^{x}$ satisfy (5) ${ }^{x} c i^{\kappa}$ span the common E_{n-r-1} of ${ }^{\prime} E_{n-r^{\prime}}$ and E_{n-r}, we see from (12) that $r^{\prime}=r$ and ' $E_{n-r^{\prime}}$ is spanned by the vector $u_{0}^{\kappa}+\begin{gathered}x \\ 0 \\ 0\end{gathered} i^{\kappa}$ and E_{n-r-1}.

Hence the nature of the ' $E_{n-r^{\prime}}$ of ' $v=\sigma v^{\kappa}$ is completely characterised by the numbers r, r_{1}, r_{2}, r_{3}.

Proceeding in an analogous manner we can start with equations (1^{\prime}) and (2') and classify the nature of the ' \bar{E}_{n-r} according to r, r_{1}, r_{2}, r_{3}. We shall not enter into detail but write down the corresponding equations which appear in the discussion. They are

$$
\begin{align*}
& j^{\lambda} \nabla_{\kappa} v_{\lambda}=-\left(j^{\lambda} v_{\lambda}\right) \nabla_{\kappa} \log \sigma \\
& x \\
& c j_{x}^{\lambda} v_{\lambda}=0, \\
& u^{\lambda}=j^{\lambda} /\left(j^{\mu} v_{\mu}\right) \\
& u^{\lambda} \nabla_{\kappa} v_{\lambda}=-\nabla_{\kappa} \log \sigma, \\
& u^{\lambda}=u^{\lambda}+\underset{x}{a} j_{x}^{\lambda} \\
& j_{x}^{\lambda} /\left(j^{\mu} v_{\mu}\right)=u_{0}^{\lambda}+\underset{x}{a} j_{x}^{\lambda}
\end{align*}
$$

$$
\begin{align*}
& u_{0}^{\lambda} v_{\lambda}+\stackrel{x}{a j_{x}^{\lambda}} v_{\lambda}=1 \\
& u^{\lambda} v_{\lambda}=1, \\
& 0 \tag{2}\\
& j^{\lambda}=\underset{0}{u^{\lambda}}+\underset{0}{a} \underset{x}{j^{\lambda}}+\underset{x}{c} \underset{j^{\lambda}}{x} .
\end{align*}
$$

The four matrices (3) appear in the order M, M_{2}, M_{1}, M_{3} instead of M, M_{1}, M_{2}, M_{3}.

Summing up these results we have
Theorem. The nature of the ${ }^{\prime} E_{n-r^{\prime}}$ and ${ }^{\prime} \bar{E}_{n-r^{\prime}}$ of ${ }^{\prime} v^{\kappa}=\sigma v^{\kappa}$ is completely characterised by the ranks r, r_{1}, r_{2}, r_{3} of the matrices (3). More precisely,
(i) if $r=r_{1} \neq r_{2}$, then $r^{\prime}=r$ and ' E_{n-r} coincides with E_{n-r} while ' \bar{E}_{n-r} has an \bar{E}_{n-r-1} in common with \bar{E}_{n-r};
(ii) if $r \neq r_{1}, r_{2}$, then $r^{\prime}=r+1$ and ' $E_{n-r^{\prime}}$ and ${ }^{\prime} \bar{E}_{n-r^{\prime}}$ are contained in E_{n-r} and \bar{E}_{n-r} respectively;
(iii) if $r=r_{1}=r_{2}=r_{3}$, then $r^{\prime}=r-1$ and ' $E_{n-r^{\prime}}$ and ' $\bar{E}_{n-r^{\prime}}$ contain E_{n-r} and \bar{E}_{n-r} respectively;
(iv) if $r=r_{1}=r_{2} \neq r_{3}$, then $r^{\prime}=r$ and ${ }^{\prime} E_{n-r^{\prime}}$ and ${ }^{\prime} \bar{E}_{n-r^{\prime}}$ coincide with E_{n-r} and \bar{E}_{n-r} respectively;
(v) if $r=r_{2} \neq r_{1}$, then $r^{\prime}=r$ and ' $E_{n-r^{\prime}}$ has an E_{n-r-1} in common with E_{n-r} while \bar{E}_{n-r} coincides with \bar{E}_{n-r}.

King's College,
London.

[^0]: ${ }^{1}$ Eisenhart, Non-Riemannian Geometry (New York, 1927), 38-43.

[^1]: ${ }^{1}$ Bocher, Introduction to Higher Algebra (New York, 1907), 43-46.

