A NOTE ON BLASCHKE PRODUCTS WITH ZEROES IN A NONTANGENTIAL REGION

BY
MIROLJUB JEVTIĆ

Abstract

We show that if B is a Blaschke product with nontangential zero set $\left\{z_{k}\right\}$ and $0<p<1,1 / 2<\alpha p<1$, then the condition $\sup _{0<r<1}(1-r) M_{p}\left(r, D^{1+\alpha} B\right)<\infty$ is equivalent to the condition $\left\{\left(1-\left|z_{k}\right|\right)^{(1 / p)-p_{\alpha}} k^{\alpha}\right\} \in \ell^{\infty}$.

1. Introduction. Let f be holomorphic in the open unit disc U (abbreviated $f \in H(U)$). For any $p, 0<p \leqq \infty$, we define

$$
\begin{aligned}
M_{p}(r, f)= & \left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{p} d \theta\right)^{1 / p}, \quad 0 \leqq r<1,0<p<\infty \\
& M_{\infty}(r, f)=\sup _{\theta}\left|f\left(r e^{i \theta}\right)\right|, \quad 0 \leqq r<1
\end{aligned}
$$

The Hardy space $H^{p}, 0<p \leqq \infty$ consists of all functions $f \in H(U)$ for which

$$
\|f\|_{p}=\sup _{0 \leqq r<1} M_{p}(r, f)
$$

is finite.
If $f(z)=\sum a_{k} z^{k}$ is holomorphic in U and $\alpha>0$, following Flett ([4]), we define the fractional derivative of order α by

$$
\left(D^{\alpha} f\right)(z)=\sum(k+1)^{\alpha} a_{k} z^{k}
$$

If $0<p<\infty$ and $\alpha>0$, then a function $f \in H(U)$ is said to belong to the space $\Lambda^{p, \alpha}$ if

$$
\|f\|_{p, \alpha}=\sup _{0<r<1}(1-r) M_{p}\left(r, D^{1+\alpha} f\right)<\infty
$$

If $\left\{z_{k}\right\}$ is a sequence of complex numbers in U for which $\sum\left(1-\left|z_{k}\right|\right)<\infty$, then the Blaschke product

$$
B(z)=\prod_{k=1}^{\infty} \frac{\left|z_{k}\right|}{z_{k}} \frac{z_{k}-z^{2}}{1-\bar{z}_{k} z}
$$

[^0]converges uniformly on compact subsets of U and has $\left\{z_{k}\right\}$ as its zero set. See [3].

In this note we deal with Blaschke products whose zeroes $\left\{z_{k}\right\}$ lie in a fixed nontangential region $G=\{z \in U:|1-z|<C(1-|z|)\}$ for some $C>1$. The class of all such infinite Blaschke products will be denoted by \mathscr{B}.

In [6], Theorem 3, J. Verbitski proved that if $B \in \mathscr{B}$ with zeroes $\left\{z_{k}\right\}$ then the condition $B \in \Lambda^{p, \alpha}$ is equivalent to the condition $\left\{\left(1-\left|z_{k}\right|\right)^{(1 / p)-\alpha} k^{\alpha}\right\} \in \ell^{\infty}$, under the assumptions $1 \leqq p<\infty, 1 / 2<\alpha p<1$. In this note we extend this result to the case $0<p<1$.

In [7] J. Verbitski showed that if $1 \leqq p<\infty$ then $\mathscr{B} \subset \Lambda^{p, 1 / 2 p}$. We improve this by showing that

$$
H^{\infty} \cap \Lambda^{p, 1 / 2 p} \subset H^{\infty} \cap \Lambda^{q, 1 / 2 q}, \text { for all } p \leqq q
$$

and $\mathscr{B} \subset \Lambda^{p, 1 / 2 p}$ for all $0<p<\infty$.
2. As stated in the Introduction we want to extend the results of [6] and [7] to the case $0<p<1$. Here and elsewhere the quantity $1-\left|z_{k}\right|$ will be denoted by d_{k}.

Theorem 2.1. Let $B \in \mathscr{B}$, with zeroes $\left\{z_{k}\right\}$. If $0<p<1$ and $1 / 2<\alpha p<1$ then $\left\{d_{k}^{(1 / p)-\alpha} k^{\alpha}\right\} \in \ell^{\infty}$ if and only if $B \in \Lambda^{p, \alpha}$.

Proof. Let n be the positive integer such that $1 /(n+1) \leqq p<1 /(n)$. Note that $\alpha<1 / p \leqq 1 /(1-n p)$ and hence the condition $M_{p}\left(r, D^{1+\alpha} B\right)=$ $O\left((1-r)^{-1}\right)$ is equivalent to the condition $M_{p}\left(r, D^{1+\alpha n p} B\right)=$ $O\left((1-r)^{-1-\alpha n p+\alpha}\right)([4]$, Theorem 6). Since B is bounded.

$$
\left|\left(D^{1+\alpha n p} B\right)(z)\right| \leqq C(1-|z|)^{-1-\alpha n p} .
$$

Thus,

$$
\begin{aligned}
M_{1 / n}\left(r, D^{1+\alpha n p} B\right) & =\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\left(D^{1+\alpha n p} B\right)\left(r e^{i t}\right)\right|^{1 / n} d t\right)^{n} \\
& \leqq C(1-r)^{-(1+\alpha n p)(1-n p)} M_{p}^{n p}\left(r, D^{1+\alpha n p} B\right) \\
& \leqq C(1-r)^{-1}
\end{aligned}
$$

Then the successive application of the above argument proves that

$$
M_{1}\left(r, D^{1+\alpha p} B\right)=0\left((1-r)^{-1}\right)
$$

By a result of J. Verbitski cited in the introduction

$$
d_{k}=0\left(k^{\alpha p /(\alpha p-1)}\right) .
$$

To prove the converse, we may suppose that

$$
d_{k} \leqq k^{\alpha p /(\alpha p-1)}, \quad \text { for } k=1,2, \ldots
$$

Let $n \geqq 2$ be the positive integer such that $1 / n<p \leqq 1 /(n-1)$. An easy calculation shows that

$$
M_{p}\left(r, D^{n} B\right) \leqq C M_{p}\left(r, B^{(n)}\right)
$$

In [4] it is proved that the condition

$$
M_{p}\left(r, D^{n} B\right)=0\left((1-r)^{\alpha-n}\right)
$$

is equivalent to

$$
M_{p}\left(r, D^{1+\alpha} B\right)=0\left((1-r)^{-1}\right)
$$

(Note that $\alpha<1 / p<n$). So the theorem will be proved if we show that

$$
M_{p}\left(r, B^{(n)}\right)^{p}=0\left((1-r)^{\alpha p-n p}\right)
$$

Since B is bounded,

$$
\begin{equation*}
\left|B^{(n)}(z)\right|=0\left((1-|z|)^{-n}\right) \tag{2.1}
\end{equation*}
$$

From Lemma 3.4 of [5] and Lemma 3 of [1] (see also [2]) it follows that

$$
\begin{equation*}
\left|B^{(n)}(z)\right| \leqq C \Sigma \prod_{j=2}^{n+1}\left(g_{j}(z)\right)^{\alpha_{j}} \tag{2.2}
\end{equation*}
$$

where the sum is over the (finite) set of all n-tuples $\left(\alpha_{2}, \ldots, \alpha_{n+1}\right)$ of non-negative integers such that

$$
\sum_{j=1}^{n} j \alpha_{j+1}=n
$$

and

$$
g_{j}(z)=\sum_{k=1}^{\infty} \frac{1-\left|z_{k}\right|^{2}}{\left|1-\left|z_{k}\right| z\right|^{j}}
$$

(Here we have used the fact that $\left\{z_{k}\right\} \subset G$.) Using (2.1) and (2.2) we find that

$$
\begin{align*}
M_{p}^{p}\left(r, B^{(n)}\right) & \leqq C \int_{0}^{2 \pi} \min \left\{(1-r)^{-n p}, \sum \prod_{j=2}^{n+1}\left(g_{j}\left(r e^{i t}\right)\right)^{\alpha_{j} p}\right\} d t \tag{2.3}\\
& \leqq C \int_{|t| \leqq(1-r)^{\alpha p}}(1-r)^{-n p} d t \\
& +C \int_{|t|>(1-r)^{\alpha p}}\left(\sum \prod_{j=2}^{n+1}\left(g_{j}\left(r e^{i t}\right)\right)^{\alpha, p}\right) d t \\
& \leqq C(1-r)^{\alpha p-n p}+C \Sigma \int_{|t|>(1-r)^{\alpha \cdot p}}\left(\prod_{j=2}^{n+1}\left(g_{j}\left(r e^{i t}\right)\right)^{\alpha_{j} p}\right) d t .
\end{align*}
$$

We will show that each term of the finite sum on the right hand side of (2.3) is also $0\left((1-r)^{\alpha p-n p}\right)$. For $j=2,3, \ldots, n+1$ we let $\beta_{j}=n /(j-1) \alpha_{j}$. Then $\sum_{j=2}^{n+1} 1 / \beta_{j}=1$ so it follows from Holder's inequality that

$$
\begin{equation*}
\int_{|t|>(1-r)^{\alpha p}}\left(\prod_{j=2}^{n+1}\left(g_{j}\left(r e^{i t}\right)\right)^{\alpha_{j} p}\right) d t \leqq \prod_{j=2}^{n+1}\left(\int_{|t|>(1-r)^{\alpha p}}\left(g_{j}\left(r e^{i t}\right)\right)^{\alpha_{j} \beta_{j} p} d t\right)^{1 / \beta_{j}} \tag{2.4}
\end{equation*}
$$

Next we estimate the factors of the product on the right hand side of (2.4).

$$
\begin{align*}
& \left(\int_{|t|>(1-r)^{\alpha p}}\left(g_{j}\left(r e^{i t}\right)\right)^{\alpha_{j} \beta_{j} p} d t\right)^{1 / \beta_{j}} \tag{2.5}\\
& \leqq C\left(\int_{|t|>(1-r)^{\alpha p}}\left(\sum_{k=1}^{\infty} \frac{d_{k}}{\left(d_{k}^{2}+t^{2}\right)^{j / 2}}\right)^{\alpha_{j} \beta_{j} p} d t\right)^{1 / \beta_{j}} \\
& \leqq C\left(\int_{t>(1-r)^{\alpha p}}\left(\sum_{E_{j}(t)} \frac{d_{k}}{\left(d_{k}^{2}+t^{2}\right)^{j / 2}}+\sum_{E_{j}^{\prime}(t)} \frac{d_{k}}{\left(d_{k}^{2}+t^{2}\right)^{j / 2}}\right)^{\alpha_{j} \beta_{j} p} d t\right)^{1 / \beta_{j}}
\end{align*}
$$

where

$$
E_{j}(t)=\left\{k: k \text { is an integer, } \sqrt{j-1} \leqq t k^{\alpha p /(1-\alpha p)}\right\}
$$

and

$$
E_{j}^{\prime}(t)=\left\{k: k \text { is an integer, } \sqrt{j-1}>t k^{\alpha p /(1-\alpha p)}\right\}
$$

To deal with the sum over $E_{j}(t)$ we note that the function $f_{j}(x)=x /\left(x^{2}+t^{2}\right)^{j / 2}$ is increasing in the interval $[0, t / \sqrt{j-1}]$.

$$
\begin{align*}
\sum_{E_{j}(t)} \frac{d_{k}}{\left(d_{k}^{2}+t^{2}\right)^{j / 2}} & \leqq \sum_{E_{j}(t)} k^{\alpha p /(\alpha p-1)}\left(k^{2 \alpha p /(\alpha p-1)}+t^{2}\right)^{-j / 2} \leqq t^{-j} \sum_{E_{j}(t)} k^{\alpha p /(\alpha p-1)} \tag{2.6}\\
& =t^{-j} \sum_{k=n_{j}}^{\infty} k^{\alpha p /(\alpha p-1)} \leqq C t^{-j} n_{j}^{(1-2 \alpha p) /(1-\alpha p)}
\end{align*}
$$

where $n_{j}=\min E_{j}(t)$. (Here we have used the fact that $\alpha p>1 / 2$). From $\sqrt{j-1} \leqq t n_{j}^{\alpha p /(1-\alpha p)}$ we see that $n_{j}^{(1-2 \alpha p) /(1-\alpha p)} \leqq C t^{(2 \alpha p-1) / \alpha p}$. Combining this with (2.6) we obtain

$$
\begin{equation*}
\sum_{E_{j}(t)} \frac{d_{k}}{\left(d_{k}^{2}+t^{2}\right)^{j / 2}} \leqq C t^{2-j-(1 / \alpha p)} \tag{2.7}
\end{equation*}
$$

Now we deal with the sum over $E_{j}^{\prime}(t)$.

$$
\begin{align*}
\sum_{E_{j}^{\prime}(t)} \frac{d_{k}}{\left(d_{k}^{2}+t^{2}\right)^{j / 2}} & \leqq \max _{0<x<\infty} f_{j}(x) \sum_{E_{j}^{\prime}(t)} 1 \tag{2.8}\\
& \leqq C t^{1-j} \sum_{E_{j}^{\prime}(t)} 1 \leqq C t^{2-j-1 /(\alpha p)}
\end{align*}
$$

Now we substitute (2.7) and (2.8) into (2.5) to get

$$
\begin{align*}
& \left(\int_{|t|>(1-r)^{\alpha p}}\left(g_{j}\left(r e^{i t}\right)\right)^{\alpha_{j} \beta_{j} p} d t\right)^{1 / \beta_{j}} \tag{2.9}\\
& \leqq C\left(\int_{t>(1-r)^{\alpha p}} t^{(2-j-(1 / \alpha p)) \alpha_{j} \beta_{j} p} d t\right)^{1 / \beta_{j}} \\
& \leqq C(1-r)^{\alpha p\left([2-j-(1 / \alpha p)) \alpha_{j} \beta_{j} p+1\right] \beta_{j}^{\prime}} .
\end{align*}
$$

Using (2.9) and (2.4) we find that

$$
\begin{aligned}
& \int_{|t|>(1-r)^{\alpha p}}\left(\prod_{j=2}^{n+1}\left(g_{j}\left(r e^{i t}\right)\right)^{\alpha_{j} p}\right) d t \\
& \leqq C(1-r)^{\alpha p \cdot \sum_{j=2}^{n+1}\left[(2-j-(1 / \alpha p)) \alpha_{j} \beta_{j} p+1\right] \beta_{j}^{-1}} \\
& \leqq C(1-r)^{\alpha p-p \cdot \sum_{j=2}^{n+1}[1+(j-2) \alpha p] \alpha_{j}} \\
& \leqq C(1-r)^{\alpha p-p \cdot \sum_{j=2}^{n+1}(j-1) \alpha_{j}}=C(1-r)^{\alpha p-n p} .
\end{aligned}
$$

This finishes the proof of the theorem.
Lemma 2.2. If $0<p \leqq q<\infty$, then $H^{\infty} \cap \Lambda^{p, 1 / 2 p} \subset H^{\infty} \cap \Lambda^{q .1 / 2 q}$.
Proof. Suppose $f \in H^{\infty} \cap \Lambda^{p, 1 / 2 p}$. First assume $(1 / 2 p)-(1 / 2 q)<1$. Since f is bounded,

$$
\begin{equation*}
\left|\left(D^{1+(1 / 2 q)} f\right)(z)\right| \leqq C(1-|z|)^{-1-(1 / 2 q)} . \tag{2.10}
\end{equation*}
$$

From $f \in \Lambda^{p, 1 / 2 p}$ it follows
(2.11) $M_{p}\left(r, D^{1+(1 / 2 q)} f\right)=0\left((1-r)^{-1+(1 / 2 p)-(1 / 2 q)}\right) \quad([4]$, Theorem 6).

Using (2.10) and (2.11) we find that

$$
\begin{aligned}
M_{q}^{q}\left(r, D^{1+(1 / 2 q)} f\right) & \leqq C(1-r)^{(-1-(1 / 2 q))(q-p)} M_{p}^{p}\left(r, D^{1+(1 / 2 q)} f\right) \\
& \leqq C(1-r)^{-q}
\end{aligned}
$$

i.e., $f \in \Lambda^{q, 1 / 2 q}$. Then the successive application of the above argument proves the lemma.

Theorem 2.3. $\mathscr{B} \subset \Lambda^{p, 1 / 2 p}$, for all $0<p<\infty$.
Proof. Let $B \in \mathscr{B}$. In view of Lemma 2.2 it is sufficient to show that

$$
\begin{equation*}
M_{p_{n}}\left(r, D^{1+\left(1 / 2 p_{n}\right)} B\right)=0\left((1-r)^{-1}\right) \tag{2.12}
\end{equation*}
$$

for a sequence p_{n} going to zero. We take $p_{n}=1 / 2(n-1), n \geqq 3$.
Then (2.12) becomes $M_{p_{n}}\left(r, D^{n} B\right)=0\left((1-r)^{-1}\right)$. So the theorem will be proved if we show that

$$
\begin{equation*}
M_{p_{n}}\left(r, B^{(n)}\right)=0\left((1-r)^{-1}\right) . \tag{2.13}
\end{equation*}
$$

The proof is similar to that of Theorem 2.1.

$$
\begin{align*}
M_{p_{n}}^{p_{n}}\left(r, B^{(n)}\right) & \leqq C \int_{|t| \leqq \sqrt{1-r}}(1-r)^{-n p_{n}} d t \tag{2.14}\\
& +C \int_{|t|>\sqrt{1-r}}\left(\sum \prod_{j=2}^{n+1}\left(g_{j}\left(r e^{i t}\right)\right)^{\alpha_{j} p_{n}}\right) d t \\
& \leqq C(1-r)^{-p_{n}}+C \sum \int_{|t|>\sqrt{1-r}}\left(\prod_{j=2}^{n+1}\left(g_{j}\left(r e^{i t}\right)\right)^{\alpha_{j} p_{n}}\right) d t .
\end{align*}
$$

We estimate

$$
\begin{aligned}
g_{j}\left(r e^{i t}\right) & \leqq C \sum_{k=1}^{\infty} \frac{d_{k}}{\left(d_{k}^{2}+t^{2}\right)^{j / 2}} \\
& \leqq C\left(t^{-j}\left(\sum_{d_{k} \leqq t} d_{k}\right)+\sum_{d_{k}>t} d_{k}^{1-j}\right) \leqq C t^{-j} .
\end{aligned}
$$

Using this we find that

$$
\begin{align*}
& \int_{|t|>\sqrt{1-r}}\left(\prod_{j=2}^{n+1}\left(g_{j}\left(r e^{i t}\right)\right)^{\alpha_{j} p_{n}}\right) d t \tag{2.15}\\
& \leqq C \int_{t>\sqrt{1-r}} t^{-\left(\sum_{j-2}^{n+1} j \alpha_{j}\right) p_{n}} d t \\
& \leqq C \int_{t>\sqrt{1-r}} t^{-2 n p_{n}} d t \leqq C(1-r)^{-p_{n}}
\end{align*}
$$

Combining (2.14) and (2.15) we obtain (2.13).

References

1. P. Ahern, D. Clark, On inner functions with H^{p} derivative, Michigan Math. J. 21 (1974), pp. 115-127.
2. P. Ahern, M. Jevtić, Mean Modulus and the Fractional Derivative of an Inner Function, Complex Variables 3 (1984), pp. 431-445.
3. P. Duren, Theory of H^{p} spaces, Academic Press, New York, 1970.
4. T. Flett, The dual of an inequality of Hardy and Littlewood and some related inequalities, J. Math. Analysis and Appl. 38 (1972), pp. 746-765.
5. H. Kim, Derivatives of Blaschke products, Pacific J. Math. 114 (1984), pp. 175-190.
6. J. Verbitski, On Taylor coefficients and L^{p}-continuity moduli of Blaschke products, LOMI, Leningrad Seminar Notes 107 (1982), pp. 27-35.
7. -, Inner functions, Besov spaces and multipliers, DAN SSSR, 276 (1984), No. 1, pp. 11-14. Soviet Math. Doklady, Vol. 29, No. 3 (1984), AMS translation.

Department of Mathematics
University of Wisconsin
Madison, Wisconsin 53706

[^0]: Received by the editors October 7, 1986, and, in final revised form, April 28, 1988.
 AMS Subject Classification (1980): Primary 30D50.
 (c) Canadian Mathematical Society 1986.

