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Abstract

Hand, foot and mouth disease (HFMD) is a common infection in the world, and its epidemics
result in heavy disease burdens. Over the past decade, HFMD has been widespread among
children in China, with Shanxi Province being a severely affected northern province.
Located in the temperate monsoon climate, Shanxi has a GDP of over 2.5 trillion yuan. It
is important to have a comprehensive understanding of the basic features of HFMD in
those areas that have similar meteorological and economic backgrounds to northern China.
We aimed to investigate epidemiological characteristics, identify spatial clusters and predict
monthly incidence of HFMD. All reported HFMD cases were obtained from the Shanxi
Center for Disease Control and Prevention. Overall HFMD incidence showed a significant
downward trend from 2017 to 2020, increasing again in 2021. Children aged < 5 years
were primarily affected, with a high incidence of HFMD in male patients (relative risk:
1.316). The distribution showed a seasonal trend, with major peaks in June and July and sec-
ondary peaks in October and November with the exception of 2020. Other enteroviruses were
the predominant causative agents of HFMD in most years. Areas with large numbers of
HEMD cases were primarily in central Shanxi, and spatial clusters in 2017 and 2018 showed
a positive global spatial correlation. Local spatial autocorrelation analysis showed that hot
spots and secondary hot spots were concentrated in Jinzhong and Yangquan in 2018.
Based on monthly incidence from September 2021 to August 2022, the mean absolute
error (MAE), mean absolute percentage error (MAPE), and root mean square error
(RMSE) of the long short-term memory (LSTM) and seasonal autoregressive integrated mov-
ing average (SARIMA) models were 386.58 vs. 838.25, 2.25 vs. 3.08, and 461.96 vs. 963.13,
respectively, indicating that the predictive accuracy of LSTM was better than that of
SARIMA. The LSTM model may be useful in predicting monthly incidences of HFMD,
which may provide early warnings of HFMD epidemics.

Introduction

Hand, foot and mouth disease (HFMD) is an acute infectious disease caused by enterovirus 71
(EV71), coxsackievirus A16 (CVA16) and other enteroviruses. As is well known, EV71 and
CVA16 are the most common aetiological agents causing HFMD epidemics, but several studies
have shown that other enteroviruses (non-EV71 and non-CVA16 enteroviruses), such as
CVA6 and CVA10, appear to be on the rise since 2008 [1, 2]. Although approximately 30-
90% of infections may be asymptomatic, some may result in severe manifestations such as
myocarditis, neurological complications, and pulmonary oedema, which may eventually lead
to death [3, 4]. HFMD has caused widespread social concern, especially in Asia and the
Pacific Rim, such as China [5], Singapore [6], and Japan [7]. In mainland China, HFMD
was first detected and reported in Shanghai in 1981, followed by large-scale epidemics in
Shandong and Anhui provinces in 2007 and 2008 [8, 9]. According to the statutorily notifiable
infectious disease epidemic report in July 2022, influenza, HFMD, and other infectious diar-
rhoeal diseases ranked the top three in the number of reported cases of Class C infectious dis-
eases. Experts from the Chinese Center for Disease Control and Prevention (CCDC) have
estimated that the transmission coefficient of HFMD is as high as 6.5, approximately three
times that of early COVID-19, indicating the severity of HFMD as a public health hazard
in China [10].

Comprehensive descriptions of the epidemiological characteristics and spatial clusters of
infectious diseases, particularly at the provincial level, facilitate the implementation of targeted
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public health measures. In terms of epidemiological characteris-
tics, researchers have investigated the epidemiology of HFMD in
some areas of China, including Jiangsu Province [11], Shandong
Province [12], and Qinghai Province [13]. Spatial autocorrelation
analysis has recently been widely used in disease prevention and
control, and researchers have applied this analytical method to
explore the geographical distribution patterns of infectious dis-
eases, including dengue fever [14], tuberculosis [15], as well as
HEMD [16, 17]. Shanxi, located in northern China (34°58'-40°
72'N, 110°25’-114°55'E), has a population size of 34.91 million
and a GDP of over 2.5 trillion yuan in 2022. This province
belongs to the temperate monsoon climate, characterised by
hot, humid summers and cold, dry winters, which is conducive
to the spread of HFMD [18, 19]. There is therefore a need to sys-
tematically understand the epidemiological and spatial distribu-
tion of HEMD in areas that are similar to northern China.

In recent years, the incidence of HFMD in Shanxi has been at
the forefront of notifiable infectious diseases [20]. Although an
inactivated monovalent EV71 vaccine was launched in 2016,
HFMD remains a considerable public health challenge due to
the vaccine being highly efficient against EV71-associated infec-
tion, but not against other aetiologies [21]. Therefore, establishing
accurate prediction models is critical in estimating the trends of
HEMD, which may strengthen prevention and control measures
against epidemic. Early warning models are regarded as important
tools for forecasting the occurrence of infectious diseases, among
which the seasonal autoregressive integrated moving average
(SARIMA) and long short-term memory (LSTM) models are par-
ticularly popular [22, 23]. Concerning specified time series, the
SARIMA model is one of the optimal linear models that considers
seasonality, periodicity, and long-term trends of the data. The
LSTM network is a deep learning method that has been widely
used for video classification, speech recognition, and disease pre-
diction [24, 25]. LSTM can alleviate the problem of gradient dis-
appearance or gradient explosion that occurs in traditional
recurrent neural networks (RNN) or nonlinear autoregressive
neural networks, which otherwise struggle to build long-term
dependency structures in time-series. At present, LSTM model
has been successfully applied to incidence prediction of Class C
infectious diseases with slower transmission rate and lower preva-
lence and pathogenicity, such as influenza and mumps [26, 27].
Therefore, the use of LSTM model to forecast the incidence of
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Fig. 1. The structure of the LSTM model. f, i, O; stand for the forget, input, and out-
put gates, respectively; C, is the candidate memory cell state at time t; C, is the cell
state at time t; h; is the hidden state at time t; W is the weight matrix; and o is the
sigmoid activation function.
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HFMD, which is also a Class C infectious disease, is considered
to be a beneficial exploration. In this study, we constructed an
LSTM network, motivated by the high burden of HFMD in
Shanxi, and compared its predictive accuracy with the SARIMA
method to find the proper time-series modelling technique.

To develop appropriate provincial public health precautions, a
comprehensive investigation of the fundamental characteristics of
HFMD is needed. Our aims were to characterise the epidemiology
of HFMD, explore global and local spatial autocorrelations, and
build accurate prediction models to estimate the monthly inci-
dence of HFMD in Shanxi. Our findings can provide beneficial
reference for the prevention and control of HFMD in regions
worldwide with similar meteorological and economic back-
grounds to northern China.

Methods
Data collection

The monthly surveillance data of HFMD in Shanxi Province from
2017-2022 were obtained from 110 sentinel hospitals in 11
prefecture-level cities, providing a reasonably representative sam-
ple of HEMD cases during the study period. The responsible
reporter should fill in the Infectious Disease Report Card imme-
diately after the initial diagnosis of patients, and all hospitals are
obliged to report HFMD cases to the local Center for Disease
Control and Prevention (CDC) within 24 h. Surveillance data
included information on sociodemographic and clinical charac-
teristics, such as age (<1 year/1-3 years/3-5 years/>5 years), sex
(male/female), place of residence, month of onset, and disease
severity (mild/severe/death). Cases with unknown addresses and
no laboratory diagnoses were excluded. In addition, the demo-
graphic data of permanent residents were gathered from the
Shanxi Provincial Bureau of Statistics.

Specimen testing

Virological surveillance was carried out by the CDC in 11 prefecture-
level cities in Shanxi, and all testing methods were conducted in
accordance with relevant regulations and guidelines [28]. Throat
swabs, anal swabs, and herpes test samples were collected from out-
patients and inpatients at local hospitals. Real-time RT-PCR tests
were performed to identify the enterovirus using ABI 7 500 fluores-
cence quantitative PCR instruments (ThermoFisher Scientific,
Singapore) and enterovirus universal nucleic acid detection Kkits
(DA AN GENE, Sun Yat-sen University, China). Without further
serotype identification, the test results were divided into four groups:
(1) enterovirus-negative, (2) EV71 positive, (3) CVA16 positive, and
(4) positive with other enteroviruses. The exact names and propor-
tions of the most frequently detected other enteroviruses [29] are
listed in Supplementary Table S1. On the basis of the diagnostic cri-
teria of HFMD, cases were classified as severe if they experienced
cardiorespiratory failure, pulmonary oedema, and/or encephalitis;
otherwise, they were classified as mild [30].

Data analysis

Basic epidemiological and statistical analysis

Descriptive statistics, including demographic, seasonal, and aetio-
logical distributions, were used to describe the epidemiological
characteristics of HFMD. Chi-square tests were applied to com-
pare differences in age, sex, and incidence rate of HFMD.
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Spatial autocorrelation analysis

Spatial autocorrelation, divided into global and local autocorrela-
tions, refers to the potential interdependence between the
observed data of certain variables within the same distribution
area. To understand the geographic characteristics of infections,
we used the natural break method to divide the number of
HFMD cases in 11 prefecture-level cities in Shanxi into four
grades, draw spatial distribution maps with different colours,
and then performed global and local spatial autocorrelation ana-
lysis using Moran’s I index and Gj(d) as research indicators. All
analyses were conducted using ArcGIS (version 10.8, ESRI,
Redlands, CA, USA).

Global spatial autocorrelation analysis

Our global spatial autocorrelation analysis used Moran’s I index
to reflect the degree of disease aggregation in the entire region.
Moran’s I index ranges from -1 to +1, indicating either a spatial
positive correlation (aggregation distribution) or a spatial negative
correlation (discrete mutually exclusion distribution) within the
study area. The calculation formula is as follows:

L TL YL (=D - D)
§ Z?:l Z?:l Wi

where 7 is the number of spatial units studied; X; and X; are the
attribute values of regions i and j; X is the mean value of spatial
units in the region; S” is the variance; and Wi; is the spatial weight

matrix, with adjacent values of 1 and non-adjacent values of 0.

Local spatial autocorrelation analysis

Our local spatial autocorrelation analysis reflected the spatial rela-
tionships of different element indicators in local areas. We used
hotspot analysis to examine local spatial autocorrelation, which
can distinguish the distribution characteristics of local spatial
clusters using cold spots and hot spots. The model formula is
as follows:

Z;:l XU(d)XJ
Y X

The higher the G} (d) score (greater than 0), the closer the high-
dimensional clustering of the target object attributes (forming hot
spots); the lower the Gj(d) score (less than 0), the closer the
low-dimensional clustering of the target object attributes (form-
ing cold spots).

Gi(d) =

Monthly incidence prediction

SARIMA model
The SARIMA model ( p,d,q) x (P,D,Q), is a common forecasting
model for infectious diseases and can be used to fit seasonal
time series. In the model, ‘S’ is the seasonal cycle, ‘AR’ is the auto-
regressive, ‘MA’ is the moving average, ‘p’ and ‘P’ are the number
of autoregressive and seasonal autoregressive terms, respectively,
‘d and ‘D’ are the order of non-seasonal and seasonal differences,
respectively, and ‘g and ‘Q are the number of moving average
and seasonal moving average terms, respectively.

The prediction process of the SARIMA model is divided into
four steps. The first step is stabilisation of the time series. The
Augmented Dickey-Fuller (ADF) unit root test was used to
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Fig. 2. Number of HFMD cases and annual incidence rates in
Shanxi Province from 2017-2021. Year

judge whether the time series is stable. If not stationary, log trans-
formations, differences, or seasonal differences are utilised to
induce stationarity. The second step is model identification. The
diagrams of the autocorrelation function (ACF) and partial cor-
relation function (PACF) are plotted to preliminarily determine
model patterns. The third step is model diagnosis. The optimal
model was selected through parameter estimation and model test-
ing. The normalised Bayesian information criterion (BIC) and
coefficient of determination (R?) are used to compare the
goodness-of-fit of models, and the Ljung-Box test is applied to
determine whether the residual series is white noise. The fourth
step is model prediction. The optimal combination of parameters
is used to make predictions, and the errors between the predicted
and actual values are calculated [22, 31]. The SARIMA model was
developed by the R software (version 4.1.1, R Foundation for
Statistical Computing, Vienna, Austria) with packages ‘forecast’
and ‘tseries’.

LSTM model

The LSTM, proposed by Hochreiter and Schmidhuber in 1997,
has been extensively used to solve time-series problems with long-
term dependencies [32]. The three gates (input, output and for-
get) and cell state are the core concepts of the LSTM. The
LSTM is special type of RNN that can overcome the defect of
RNN sensitive to short-term inputs by introducing gate structures
and a well-defined cell state [33]. These gates can determine what
information should be added and stored, or forgotten and
removed during training. Figure 1 displays the structure of the
LSTM model, and the following equations are used to define it:

Sfi =a(Wylhi—1, Xi] + by)
iy =o(Wilhi—1, X¢] + b;)
Cr =tanh(W,[h;_y, X;] + b.)

G :ﬁQCt—l‘f’it@a
Oy =a(Wo[hi—1, Xi] + bo)
ht :Ot © tanh(Ct)

where f,, i, O, stand for the forget, input, and output gates,
respectively; C; is the candidate memory cell state at time t; C;

https://doi.org/10.1017/50950268823000389 Published online by Cambridge University Press

is the cell state at time t; h, is the hidden state at time #; W is
the weight matrix; b is the bias term; and o is the sigmoid activa-
tion function.

We utilised Python software (version 3.7.1, Python Software
Foundation, Python Language Reference) to construct the
LSTM model with packages ‘tensorflow’ and ‘keras.” To shorten
the training time of the network and accelerate the gradient des-
cent, the source data were processed by adopting the maximum
and minimum normalisation method to restrict the values
between 0 and 1. Additionally, the data of the last 12 months
were split as the test set in the prediction, while the rest were
split for the training set. We then used the different time steps,
hidden neurons, and optimisers to choose the optimal model
depended on the minimum root mean square error (RMSE) of
the test set. The best set of hyperparameters was selected to pro-
duce out-of-sample predictions, and the predicted values were
normalised inversely.

Measuring for accuracy

We limited the data analysis from January 2017 to August 2021 in
order to develop prediction models, using the subsequent 12
months for testing. The mean absolute error (MAE), mean abso-
lute percentage error (MAPE), and RMSE were used to evaluate
the predictive performance and accuracy of the established mod-
els. The MAE, MAPE, and RMSE are defined as follows:

1 .
MAE=;Z|yi—yi|
i=1

1Ny — 5,
MAPE:—ZMX 100%
ni= Yi

RMSE — i i — j’i)z
n
where y; and J; represent the actual and predicted values, respect-

ively; » is the number of simulations and predictions in the mod-
els used.
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Fig. 3. Seasonal distribution of HFMD in Shanxi Province
Month from 2017-2021.
Results attacking enterovirus, other enteroviruses were the predominant

Epidemiological characteristics of HFMD

Demographic distribution of HFMD

In Shanxi, 129 288 HFMD cases were reported to the surveillance
system from 2017 to 2021. Of these, 554 cases were diagnosed
with severe cases and there were no fatal case. The incidence of
reported HFMD cases showed a significant downward trend
from 2017-2020 (y° =13 689.397, P <0.001); however, the inci-
dence increased in 2021, with an annual average incidence of
71.34/100 000 in the entire population. The incidence rates of
HFMD showed broad age-specific variation (y°=465.937, P<
0.001). The proportion of patients with HFMD aged <5 years
accounted for 86.78% of the total number of cases.
Furthermore, the most severe cases were in patients aged <3
years, accounting for 78.16%. During the five years, higher
HFMD incidence rates were noted in male patients (y° = 28.608,
P <0.001), and the male-to-female relative risk (RR) was 1.316
(Table 1 and Figure 2).

Seasonal distribution of HFMD

HFMD was epidemic throughout the year in Shanxi, with a single
peak in November 2020. In the other four years, annual epidemic
waves were observed, with major peaks in early summer (June and
July), followed by secondary peaks in autumn (October and
November). Moreover, with the exception of 2020, the summer
and autumn peaks were lower in height than in previous years
(Figure 3).

Aetiologic distribution of HFMD

From 2017-2021, the successive annual positive rates of HFMD
enterovirus infection in Shanxi were 68.35%, 59.43%, 63.32%,
64.78%, and 71.08%, all exceeding or close to 60.00%. Of these,
14049 (16.72%), 23586 (28.06%), and 52643 (62.64%) cases
were associated with EV71, CVA16, and other enteroviruses
(including 22 cases positive for both EV71 and CVAlse, 2 272
cases positive for both EV71 and other enteroviruses, 3951
cases positive for both CVA16 and other enteroviruses, and 11
cases positive for EV71, CVA16, and other enteroviruses), respect-
ively. With the exception of 2019, when CVA16 was the primary

https://doi.org/10.1017/50950268823000389 Published online by Cambridge University Press

causative agents of HFMD, with percentages increasing from
51.75% to 90.37%. In addition, fewer cases of infection with
two enteroviruses during the study period were noted, with
only 11 cases simultaneously having multiple enteroviruses
(Table 2).

Spatial autocorrelation analysis

Spatial distribution of HFMD

There are 11 prefecture-level cities in the province of Shanxi, and
the number of HFMD cases varied substantially among these cit-
ies (Figure 4). From 2017 to 2021, the number of cases ranged
from 0 (Shuozhou in 2020) to 6600 (Taiyuan in 2019), and
although the epidemic intensity differed, trends were similar.
From 2017 to 2021, areas with a large number of HFMD cases
were primarily concentrated in central Shanxi, such as Taiyuan,
whereas the number of HFMD cases in northern areas, such as
Xinzhou, was relatively small. The regional, demographic, eco-
nomic, and meteorological profiles of the 11 prefecture-level cities
are displayed in Table 3.

Global spatial autocorrelation analysis

The successive annual global Moran’s I index values of HFMD in
Shanxi from 2017 to 2021 were 0.508, 0.502, 0.025, -0.160, and
0.053. In 2017 and 2018, the P-values were less than 0.05, indicat-
ing global autocorrelation. As the Moran’s I index values in 2017
and 2018 were greater than 0, the spatial clusters of HFMD man-
ifested a certain global spatial positive correlation. Conversely, the
P-values of the other years were greater than 0.05, indicating no
statistical significance.

Local spatial autocorrelation analysis

Hotspot analysis divided the spatial distribution of HFMD cases
into seven levels: (1) high hot spots, (2) hot spots, (3) secondary
hot spots, (4) high cold spots, (5) cold spots, (6) secondary cold
spots, and (7) no significant spots. As shown in Figure 5, from
2017 to 2018, the cold spots and secondary cold spots in
Shanxi were concentrated in Shuozhou and Datong. In 2018,
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contrastingly, the hot spots and secondary hot spots were concen-
trated in Jinzhong and Yangquan.

Monthly incidence prediction

SARIMA model

According to the sequence diagram, the data presented an obvious
seasonal trend, requiring the use of first-order seasonal difference
(Figure 6). The seasonal decomposition diagram is displayed in
Supplementary Figure S1. After the first-order seasonal difference,
the time sequence was stationary (ADF=-4.936, P<0.01).
Figure 7 shows the ACF and PACF of the source data, and
Figure 8 shows the ACF and PACEF after the first-order seasonal dif-
ference. Based on the comparative results of the various
goodness-of-fit tests, our study identified the optimal SARIMA
(2,0,0)(1,1,0);, model, which had the lowest BIC (14.100) and
the highest R? (0.901). The Q-Q plot shows that the residuals
were essentially normally distributed (Supplementary Figure S2).
The Ljung-Box test demonstrated that the residuals were white
n0ise (Pjung-pox = 0.988), verifying that the fitted data was com-
pletely summarised. Table 4 displays the parameter estimation for
the SARIMA(2,0,0)(1,1,0),, model, which were found to be statis-
tically significant.

LSTM model

In the LSTM network, the time-slice steps of the data sample were
set to three/six, indicating that we used the data of the previous
three/six months to predict the incidence of the next month. A
neural network structure with one hidden layer was adopted
with neuron options of 16/32/64/128, and the alternative optimi-
sers were Adaptive Moment Estimation (Adam) and Stochastic
Gradient Descent (SGD). In addition, a fully connected layer
was created with an output dimension of one. The model used
a training wheel designed for 200 rounds with a batch size of
one, and the mean square error (MSE) was chosen as the loss
function. To avoid overfitting, the dropout method was applied
to the non-circular part of the hidden layer to randomly deacti-
vate neurons with a dropout value of 0.1. The ten alternative
LSTM models are listed in Supplementary Table S2. Finally, we
confirmed that the preferred model with six time steps, one hid-
den layer involving 128 hidden neurons, and the Adam optimiser
had the lowest RMSE for the test set (RMSE = 461.96), compared
with models using other combinations of hyperparameters.

Model comparison

The simulated and predicted performances of the SARIMA and
LSTM models were compared using multiple statistical indicators.
Figure 9 shows that the simulation and prediction trends of
HFMD using both models were relatively consistent with the
actual situation, verifying that the established models were reliable
in assessing the epidemic trend. Among the two techniques, the
LSTM model performed well in the prospective forecasting of
HEMD prevalence over the following 12 months, with a lower
MAE (386.58 vs. 838.25), MAPE (2.25 vs. 3.08), and RMSE
(461.96 vs. 963.13). This indicated that the LSTM model was
more appropriate than the SARIMA model in predicting the
monthly incidence of HFMD (Table 5).

Discussion

We studied the data of HEMD in Shanxi from 2017 to 2021 which
contained 129 288 HFMD cases. The dataset used in our study
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Fig. 4. Spatial distribution of HFMD in Shanxi Province from 2017-2021.

was the most comprehensive dataset describing the latest charac-
teristics of HFMD in Shanxi. This study confirmed that the preva-
lence of HFMD in this province had significant demographic,
seasonal, aetiologic, and spatial characteristics, and that the
LSTM model was a useful technology for building an early warn-
ing system for HFMD. Although the epidemic tendency was simi-
lar with the findings reported in the vast majority of northern
China, some differences were observed in a few areas [19, 34].
For example, though with similar demographic and seasonal dis-
tributions to Shanxi Province, EV71, rather than other entero-
viruses, has been the predominant enterovirus serotype in Xi'an,
Shaanxi Province since 2011.

From 2017 to 2020, the incidence of HFMD in Shanxi showed
a significant trend of decrease, and the overwhelming majority of
patients experienced only mild symptoms, indicating that the pre-
vention and control measures in place for HFMD had achieved
some success. Compared to the world, Shanxi had a relatively
low incidence rate [35]. However, the incidence appeared to
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rebound in 2021. In the face of a severe epidemic across the coun-
try [36], every effort to reduce the spread of HFMD is vital.

By summarising the demographic data over the five-year per-
iod, we found that the incidence of HFMD was higher in males
than in females. This may be due to males being naturally more
active and having a wider range of activities. These factors greatly
increase the chances of exposure to the virus and easily cause
cross infection [37]. In addition, the majority of patient with
HFMD in Shanxi were young children aged <5 years, with
those aged <3 years most affected by severe HFMD. This may
be due to low resistance in children in this age group as well as
a lack of basic knowledge for HFMD prevention among parents
[38]. Therefore, improving vaccination rates for HFMD among
young children and increasing HFMD health knowledge among
parents is critical.

With the exception of 2020, the largest number of outbreaks of
HEMD in Shanxi primarily occurred in the months of June and
July, followed by October and November. Temperature and
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Table 3. Regional, demographic, economic, and meteorological profiles of the 11 prefecture-level cities in Shanxi Province

Regional profile

Demographic profile

Economic profile

Meteorological profile

Average Average
City Location Minimum Maximum Median GDP per capita Average latitude  altitude (m)  temperature (°C)
Taiyuan Central Shanxi 4984 000 5391000 5232000 95 600 37°87 791 8.1-11
Datong Northern Shanxi 3099 000 3161000 3128000 54400 40°08’ 1052 6.5-8.6
Yangquan Central-eastern Shanxi 1311000 1326000 1321000 69 700 37°85' 657 8-12
Changzhi Southeastern Shanxi 3152000 3213000 3186 000 73000 36°20' 930 6-17
Jincheng Southeastern Shanxi 2189 000 2202 000 2195000 87300 35°50' 711 10.2-12
Shuozhou Northern Shanxi 1590 000 1632000 1604 000 89300 39°33' 1094 3.6-7.3
Jinzhong Central Shanxi 3348000 3390000 3375000 54 500 37°68' 828 5-19
Yuncheng Southwestern Shanxi 4733000 4 855 000 4789 000 43200 35°02 374 10-21
Xinzhou Northern Shanxi 2663000 2811000 2720000 50300 38°42 789 4.3-9.2
Linfen Southwestern Shanxi 3912000 4076 000 4000 000 48 400 36°08 459 10-21
Lvliang Central-western Shanxi 3375000 3497 000 3418000 61200 37°52' 945 6-18
2017 2018 }N\
Datong
Xinzhou Xinzhou
Taiyuan Fangquiy Taiyuan .
Lvliang Lvliang Eiot Spod
Maahiond - Cold Spot - 99% Confidence
- Cold Spot - 95% Confidence
Cold Spot - 90% Confidence
Changzhi Changzhi Not Significant
Linfen finfen Hot Spot - 90% Confidence
I Hot Spot - 95% Confidence
Jincheng Jincheng - Hot Spot - 99% Confidence
Yuncheng Yuncheng 0 90 180 360 Miles
T T Y Y

Fig. 5. Results of local spatial autocorrelation analysis in Shanxi Province from 2017-2018.

humidity influence the enterovirus activity. A systematic review
found a statistically significant positive relationship between
HEMD cases and both temperature and humidity [39]. The
increase in temperature and humidity in summer accelerates the
growth and reproduction of the enterovirus, which is conducive
to the spread of HFMD. However, the seasonal distribution of
HEMD in 2020 showed a ‘single-peak’ pattern, with only one out-
break in November. This situation was speculated to be related to
the COVID-19 pandemic in the first half of 2020. The govern-
ment took comprehensive intervention measures, including strict
restrictions on the movement of people and short-term closing of
kindergarten, thereby cutting off the transmission route of
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COVID-19 and HFMD. These results suggest that intervention
efforts should be vigorously pursued prior to expected HFMD
infection peaks. Furthermore, according to the average growth
from the previous year (/44.87 /110.72), the epidemics were suc-
cessively smaller, indicating that HFMD may have gradually been
controlled.

In terms of transmissibility, EV71 can cause widespread epi-
demics of HFMD, and in terms of pathogenicity, EV71 is consist-
ently the predominant pathogen in severe cases and deaths, with
74% of severe cases and 93% of deaths associated with EV71 [40].
CVA16 has a broad spectrum of pathogenicity and can cause a
variety of diseases such as herpetic angina, myocarditis, and
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aseptic meningitis, but the clinical symptoms are relatively mild
[41]. The incidence of HFMD caused by other enteroviruses has
increased significantly in recent years, with CVA6 causing a
more extensive rash than CVA1l6 and EV71. In a Japanese
study, CVA6 and CVA10 were shown to be less virulent than
EV71 during the HFMD epidemic [42]. In the present study,
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other enteroviruses were the predominant causative agents of
HFEMD in Shanxi during the study period, with the exception
of 2019, when CVA16 was the primary attacking enterovirus.
This is contrary to the conclusion that EV71 is more transmis-
sible, virulent, and pathogenic than CVA16 and other entero-
viruses [43]. We conjectured that this may be associated with
the reduction in the number of susceptible people caused by
large-scale EV71 epidemics in previous years. At present, people
may have established a certain degree of immune barrier against
EV71, but may be more sensitive to CVA16 and other entero-
viruses. Moreover, the incidence of HFMD has decreased signifi-
cantly with the launch of the inactivated monovalent EV71
vaccine. However, while this vaccine may reduce the occurrence
of EV71-associated HEMD, it is not effective against other aeti-
ologies. Enterovirus serotype replacement highlighted the import-
ance of laboratory-based surveillance and suggested that a focus
on CVA16 and other enteroviruses by the CDC may be needed.

This study also indicated that, from 2017-2021, the areas with
large numbers of HFMD cases were primarily concentrated in the
central part of Shanxi, such as the provincial capital of Taiyuan
and its neighbour cities. In contrast, the number of HFMD
cases in northern areas, such as Xinzhou, was relatively small.
These findings may be mainly related to high population dens-
ities, large floating populations, relatively developed economies,
and relatively high temperatures in the central regions. In 2017
and 2018, the spatial clusters of HFMD manifested a certain glo-
bal spatial positive correlation, showing that the areas with higher
incidence were adjacent to each other and the areas with lower
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Table 4. Parameter estimation for SARIMA(2,0,0)(1,1,0);, model Table 5. Comparison of the predicted and actual values of the SARIMA(2,0,0)
(1,1,0)1, model and LSTM model
Variable B SE t P
Actual SARIMA LSTM
AR(1) 1.183 0.130 9.110 <0.001 Month/Year values model model
AR(2) -0.559 0.131 -4.273 <0.001 September 2021 353 887 645
SAR(1) -0.703 0.127 -5.555 <0.001 October 2021 667 2019 398
November 2021 753 2691 319
incidence were also adjacent to each other. The global Moran’s I December 2021 368 1588 1153
index cannot accurately orient the spatial cluster location of the January 2022 125 879 442
i 5 h r, in practice, it i n n rmin
d sease; however, in practice t is often necessary to dete ine February 2022 38 351 105
which areas are high-incidence clusters (hot spots) and which
areas are low-incidence clusters (cold spots). The results of hot- March 2022 64 239 432
spot analysis showed that cold and secondary cold spots were April 2022 64 444 680
concentrated in Shuozhou and Datong in 2017 and 2018, whereas
N May 2022 295 1064 387
hot and secondary hot spots were concentrated in Jinzhong and
Yangquan only in 2018. After 2018, in order to prevent the emer- June 2022 1026 1856 654
gence of aggregated epidemics and severe cases, the health and July 2022 1799 755 1750
family planning departments of 11 cities in Shanxi Province
: . . . . August 2022 1320 570 2222
worked in collaboration with the education sectors, focusing on
schools and childcare institutions to vigorously carry out preven- MAE 518.36 383.80
tion and treatment of HFMD, while strengthening publicity and Simulated performance MAPE 1.60 155
education for key populations and providing standardised vaccin- RMSE 752,50 578.00
ation services. The cases of HFMD in 11 cities showed a certain i :
‘uniform distribution’ characteristic, so no cold spots or hot MAE 838.25 386.58
spots appeared. Predicted performance MAPE 3.08 225
At present, ARIMA model has been widely used to simulate
. . . . . RMSE 963.13 461.96
and forecast the epidemic tendency of infectious diseases and
has achieved satisfactory effects [26, 44]. In this work, we estab- ) MAE 25.96%
. e . i Simulated performance
lished a multiplicative ARIMA model due to the seasonal varia- reduced percentage (%) MAPE 3.13%
tions and annual periodicity of HFMD in Shanxi. Based on the LSTM vs. SARIMA
. . RMSE 23.19%
comparative results of the various goodness-of-fit tests, the
SARIMA(2,0,0)(1,1,0);, model was optimal, with the lowest BIC Predicted performance MAE 53.88%
and highest R? and could reliably forecast the number of [‘?;;/Ted Pse;;mfge (%) MAPE 26.95%
HEMD patients. However, the SARIMA model may have difficul- v .
ties capturing the nonlinear characteristics of infectious disease RMSE 52.04%
data [25]. We also used the LSTM network for prediction due
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to its flexible capacity to determine what to add or remove during
the training as well as it having the ability to effectively address
the nonlinear dynamics and long-term temporal dependencies
present in sequential data [23]. Given that LSTM model has per-
formed well in predicting the incidence of other infectious dis-
eases with similar epidemiological mechanisms to HFMD, the
application of LSTM technique to HFMD in this study is consid-
ered practical and feasible. A neural network structure of six time
steps, 128 hidden neurons, and the Adam optimiser were found to
provide optimal predictive performance with an RMSE of 461.96.
Our results implied that the MAE, MAPE, and RMSE of the
LSTM model were lower than those of the SARIMA model in
both the training and test sets. The LSTM method may reduce
the values of the three statistical indicators mentioned above in
the training set by 25.96%, 3.13%, and 23.19%, respectively, and
decrease the corresponding values in the test set by 53.88%,
26.95%, and 52.04%, respectively, compared with the SARIMA
model. This indicated that the LSTM model had better forecast
accuracy of HFMD for time series with periodic characteristics
and may provide a clearer perspective of popular trends. The
SARIMA model is constructed on the premise of differencing
the original series to eliminate seasonal trends, which could
potentially lead to under-utilisation of information and result in
forecasting errors, whereas the LSTM network has no require-
ment for the data itself to be stable. Therefore, we inferred that
the LSTM method should be emphasised when predicting the
prevalence of infectious diseases.

This study had several limitations. First, only EV71 and
CVA16 serotypes were detected by the local CDC, and other spe-
cific serotypes, such as CVA6 and CVA10, were not tested.
Second, the incidence of HFMD is complex and changeable,
and may be affected by climatic factors, social development,
and population immunity levels [45, 46]. The influence of these
exogenous variables was not considered in this study when con-
structing the prediction models. Third, prediction is a continuous
dynamic process, and its results are sensitive to the choice of para-
meters for each module of the model. Therefore, the model
should be updated in practice according to different conditions
and time periods to ensure its strength in predictive performance.
Finally, both the SARIMA model and the LSTM model we con-
structed were driven by the surveillance data of HFMD under
real-world conditions, so it was difficult to take into account
the impact of the COVID-19 pandemic in the prediction.
Efforts must be made to comprehensively identify the serotypes
of enteroviruses, explore an optimal forecasting model in combin-
ation with exogenous variables, and quantitatively measure the
impact of anti-COVID-19 nonpharmaceutical interventions in
predicting the number of HFMD cases.

Conclusion

Our study was the first to explore the three aspects of HFMD: epi-
demiological characteristics, spatial clusters, and monthly inci-
dence prediction, fully investigating the fundamental
characteristics of the disease. We found that the incidence of
HFMD in Shanxi has generally declined, and that children
younger than five years of age, particularly boys, were the main
group affected. Seasonal outbreaks occurred in summer and
autumn, and other enteroviruses were the predominant causative
agents of HFMD. Additionally, the central regions of Shanxi were
hot spots for HEMD incidence. The LSTM model proposed in
this study reliably forecasted the monthly incidence of HFMD,
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which may provide technical support in constructing an HFMD
early warning system. These findings may help policymakers allo-
cate health resources reasonably and preemptively prepare for
possible epidemics of HFMD in Shanxi and other parts of nor-
thern China.

Supplementary material. The supplementary material for this article can
be found at https:/doi.org/10.1017/S0950268823000389.
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