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Low enriched uranium alloyed with 10 wt. % molybdenum (U-10Mo) has been identified as a promising 

alternative to highly enriched uranium oxide dispersion fuels for use in high performance research and 

test reactors. Manufacturing U-10Mo alloy fuel involves several complex thermomechanical processing 

steps, as schematically described in Figure 1, and understanding of the microstructure and its evolution 

throughout the various fabrication steps is critical to enable the deployment of a reliable fuel production 

capability. 

This work explores the applicability of image-driven machine learning methods [1] to developing 

microstructure–processing relationships. Specifically, we seek to understand the role of several 

thermomechanical processing steps in the microstructure evolution observed in the U-10Mo system. An 

improved approach to determining microstructure–processing relationships is developed and presented, 

involving feature extraction, segmentation, and classification using a random forest model [2]. 

Microstructure image data are segmented to identify microstructural features of interest and quantify area 

fraction of these features, including the γ-UMo matrix, uranium carbide, and DP reaction transformation 

products. 

Several experiments were considered to explore metrics of microstructure representations, specifically 

how well information such as area fractions of phases, their spatial arrangement, and micrograph texture 

impact classification accuracies. We refer to these metrics as area and spatial features. Area features are 

the area fraction of each phase/microstructural feature of interest. Spatial features are computed by first 

measuring the following for each region (matrix, carbide, lamellar transformation products): 

the x and y coordinates of the centroid, area (in square pixels), and the ratio of area of the region to the 

area of its bounding box. Spatial features are simply a concatenation the following measures: the number 

of regions in a bounding box, the mean and standard deviation of the areas, the standard deviation of the 

centroid coordinates, and the mean and standard deviation of area ratios. 

Experimentation revealed that in a 10-class classification problem, characterization of micrographs using 

area features only resulted in a F1 score of 62.4 %. When spatial and area features are combined, the 

model performance is improve and a F1 score of 78.9 % is achieved. Next, area and spatial features were 

combined with image texture (e.g., Haralick, local binary patterns, etc.) to describe image data, resulting 

in the highest F1 score of 95.1 %. This increased performance indicates that although the area features 

have long been regarded as a strong indication of the microstructure-processing relationships, we find that 

the predictive power of area features is actually very limited, and increased performance can be obtained 

by including spatial and texture information. 

The application of generative adversarial networks (GANs) is also discussed as an emerging method for 

microstructure image generation. Our work has implications for quantitative microstructure analysis and 
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development of microstructure–processing relationships in limited datasets typical in materials science 

studies, particularly in the nuclear materials domain. 

Two different GAN architectures were tested (progressively growing GAN, or pg-GAN and Pix2Pix 

GAN). Example micrographs generated from pg-GAN are given in Figure 2. We find that although the 

synthetic images have reasonable qualitative agreement with real images, we cannot interpret the role of 

the input noise vectors in the generation of synthetic images. This lack of understanding prevents us from 

understanding how samples from different processing histories are distributed in the learned space of 

microstructure images or possibly revealing their underlying connections. The ability of GANs to generate 

realistic microstructures was tested by training a model to identify whether a microstructure is either 

synthetic or real. With fivefold cross-validation, an accuracy of ~ 50% is achieved. Since the model fails 

to distinguish between features collected from real images and synthetic images, this finding suggests that 

the pg-GAN learned the underlying distribution of microstructure well. 

In addition to the discriminative and generative methods developed, several challenges and best practices 

associated with recognition and quantification of microstructure image data in the interdisciplinary of 

machine learning for materials science will be discussed. 

 
Figure 1. (a) Schematic of U-10Mo fuel fabrication, where the steps shown in the bracket were used to generate 

microstructure imaged and analyzed in this work. Sample conditions are indicated by homogenization treatment 

(HT) number, where HT-1 refers to 900°C−48h and HT-2 refers to 1000∘C−16h. The processing condition (C) the 

micrographs represent is indicated by C followed by a number that corresponds to the number processing condition 

(e.g., C1 is a sample in the as-cast condition). 
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Figure 2. Example synthetic images generated by the trained progressive growing GAN. Images given in 

(a)–(f) show varying microstructural features, specifically different extent of lamellar transformation 

products, and distribution of carbides. The micrograph in (f) shows the edge of a fuel plate. 
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