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On the Singular Points of Plane Curves.

By T. B. SPEAGUE, M.A., LL.D.

In the general equation of a curve that passes through the origin,

... =0, - (1)

which we may write u^ + u2 + u3 + ut + . . .= 0, - (2)

, = a-p + 6,y = 0 is the equation to the tangent at the origin; for,y q g
when x and y are very small, we may neglect all the terms in com-
parison with those involving the first powers of x and y. If neither
aj nor bl vanishes, we may, without loss of generality, write the
equation in the form

y = mx + ui + us + u4 + - - - - (3)
Suppose that, when y is put equal to mx, the right hand member
becomes mx + ~U,x2 + '[J3x

3 + 'Uix
4 + Then, putting y = mx

in the terms of two dimensions in (3), we have approximately
y = mx + U,*".

By means of this equation we find the radius of curvature at the
origin to be

The curve will, in the neighbourhood of the origin, lie wholly
above or wholly below the tangent at the origin, according as U» is
positive or negative. If this quantity vanishes, Ro is infinite. In
this case y — mx is a factor of u2. Putting y = mx in equation (3),
and neglecting terms that involve higher powers of x than the third,
we have now y = nix + Ujjc3. Here the term involving x3 changes
sign as x passes through the value zero; and the curve, therefore,
no longer lies on the same side of the tangent on both sides of the
origin, but there is a point of inflection. The tangent at the origin
meets the curve in three coincident points. In this case the normal
at the origin is an asymptote to the evolute. (See Fig. 8.)* If we
draw a line through the origin, cutting the curve in two neighbour-

* In all the figures the darker lines represent the evolute.
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ing points, and the line then moves so as to become the tangent at
the origin, those two points move up and coincide with the origin,
so that the three coincident points are fully accounted for.

If it should happen, however, that y - mx is a factor also of
M,, we have T73 = 0; the term involving a? vanishes, and we have to
take the next higher term. Reasoning as above, we now get the
approximate equation to the curve, y — mx + XJ4x

4. In this case,
since \J,x* does not change sign as x passes through zero, the curve
lies wholly on one side of the tangent in the neighbourhood of the
origin; and there is no point of inflection, but we have a point of
" undulation ". The radius of curvature is still infinite, since U2 is
still zero, and the normal at the origin is still an asymptote to the
evolute; but now both branches of the evolute touch the normal at
infinity on the same side of the tangent; in fact, there is a cusp
at infinity on the evolute. (See Pig. 9.) The tangent at the origin
meets the curve in four coincident points ; but it is not possible to
explain these as in the former case.

If further terms in the expansion of y vanish, and the first that
does not vanish when mx is put for y, is the one involving x", then
there will be a point of inflection or not at the origin, according as
r is odd or even. The tangent at the origin will meet the curve in
r coincident points; but any other line through the origin, will
meet it there in only one point.

I t may now be useful to consider the case where R, is a maximum
or minimum. If y = mx + Aa? + Bx3 + Cx* + ..., we find that

R = Ro| 1 +1 -. ^ —— la; + terms involving ar8, x3, etc. !• - (4)
v \1 T mi A I )

When x is small, R - Ro changes sign with x; but if the coefficient
of x in the above value of R, vanishes, and the coefficient of x2

remains finite, R - Ro will no longer change sign, and Ro will be a
maximum or minimum value of K. In consequence of this, there
will be a cusp in the evolute at the point corresponding to the origin.
(See Fig. 10.) The equation (4) shows that the condition for this is

2mA2

B

The origin is in this case a special kind of point; but, as its
properties are generally lost on projection, it is not reckoned among
the singular points. I propose to call such a point an " apse".
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Kegarding only the real portions of the curves, the parobola has one
apse, and its evolute has one cusp; the hyperbola has two apses,
and its evolute has two cusps ; and the ellipse has four apses, and
its evolute four cusps. If m = 0, we must have B = 0 when there is
an apse, and the equation becomes y = Ax* + Cx* + ... .

If both a, and 6, vanish, so that the equation reduces to

ttj, + «3 + Ut + . .. = 0,
the form of the curve in the neighbourhood of the origin is deter-
mined by equating to zero the terms of lowest degree ; thus, w2 = 0 ;
and this shows that any line through the origin meets the curve
there in two coincident points. We then get two values of yjx,
which may be real and unequal, or equal, or imaginary. First,
suppose that the values are real and unequal, namely, m and p;
then we may, without loss of generality, take the equation to the
curve to be (y - mx)(y -px) = u3 + u1+ ... .

This indicates that there are two tangents at the origin, y — mx = 0,
and y ~ px = 0, each of which meets the curve in three coincident
points there ; in other words, the origin is a double point or " node ".

Taking the former of the two tangents, and putting y = mx in — ,
y - px

we get approximately y = mx H — x
2.

TO - p
The radius of curvature of this branch at the origin is

YYh —* T) —

(1 +mr)'. If m-p = 0 and U3 is finite, which is a case we

shall consider presently, the radius of curvature is zero. If, on the
other hand, TJ3 = 0, and m-p not =0, then the radius of curvature
is infinite. In this case, y - mx is a factor of u3, and the equation
to the curve becomes (y - mx)(y - px) = (y - mx)v.. + M4 + . . . ,

whence y = mx + •
y-px- v,

and approximately y = mx + -——a;3.

This shows that the branch has a point of inflection at the origin;
and the tangent y - mx = 0 will therefore meet the origin in three
coincident points; but it also cuts the other branch, and therefore
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meets the curve in four coincident points at the origin. If y - px
also is a factor of w,, then the second branch also has a point of
inflection at the origin.

Figure 11 represents a case where one branch has a point of
inflection at the origin, and the other has not; and fig. 12 represents
a case where each branch has such a point. Salmon calls these
points " flecnode " and " biflecnode ", respectively.

If y-mx is also a factor of w4, the origin will be a point of
undulation in the branch ; and if y-px also is a factor of u,, there
will be an undulation in each branch. The effect of these singularities
on the evolute is evident from what was said above.

Next suppose that the roots of M2 = 0 are imaginary, so that
there are two imaginary tangents at the origin. The equation to
the curve cannot then be satisfied by any very small real values of
x and y except x = 0, y = 0 ; there are therefore no real points
adjacent to the origin, which is thus an isolated point on the curve,
and is called a " conjugate " point, or, by Salmon an " acnode ". The
former of these terms is objectionable, because it puts out of sight
the fact that the point must always, like a node, count as two
points. I propose to call such a point a " doublet". Any real line
through the origin meets the curve in two coincident real points
there; but each of the imaginary tangents meets the curve in three
coincident real points at the origin.

Lastly, suppose that the roots of w2 = 0 are equal, so that
in =p; then we may take the equation of the curve to be
(y - mxf = «j + ut + ; and putting y = mx in u3, we get approxi-
mately (y - mxf = TJsa--", and

3

y = mx + sJX^z. x^.

If U3 is positive, x cannot be negative; and the equation shows
that the curve has two branches, each of which touches y - mx = 0
at the origin. The origin is therefore a cusp: (see Fig. 13). The

value of -r4- at the origin is infinite, unless TJ3 = 0; and the radius

of curvature is therefore zero, and the evolute of the curve passes
through the origin. The tangent at the origin still meets the curve
in three coincident points. If U3 is negative, x cannot be positive;
but there is still a cusp at the origin, with its angle pointed in the
opposite direction.
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If it should happen that U3 = 0, so that y - mx is a factor of u3,

the equation to the curve takes the form

(y - mxf = (y- mx)i\ + u4+ ...

whence (y - mx - }/v,,y = -\v.? + ut+ ...

and y = mx + $vt± J±vf + u4+... - - • (5)

or approximately y = mx + J VjX2 ± v -\ V,s + U4. a;2

- - (6)

where V2 is the value of vja? when y is put equal to mx. In this
case the curve has two branches, which are of finite and different
curvatures; and both touch the line y - mx = 0 at the origin. This
singularity has been called a tacnode. In this case the normal at
the origin is a bitangent to the evolute : (see Fig. 14). The tangent
at the origin meets the curve in four coincident points; and any
other line through the origin meets it in two coincident points. If
we take a line, parallel to the tangent, and cutting the curve in
four points, and this line moves parallel to itself and becomes the
tangent at the origin, then all these four points coincide with the
origin, and the four coincident points are thus fully accounted for.
In some other cases the full number of coincident points can be
similarly accounted for, by means of the real branches of the curve;
for instance, in the cases of the inflection, as we have already seen,
in the node, and the cusp.

There may be an apse in either or both of the branches. For
the sake of simplicity, we will now put m = 0, so that the equation

becomes y = i«,± \/ivn" + n. + ui+ . . . . - - - (7)

Suppose that c, = Aar + Bxy + Cy".

Then, putting y = 0 in the right-hand member of (7) we get as a first

approximation y = i A.-<r +

«<iA±

= Har, suppose.
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Then, giving y this value in the equation (7), we have for a second
approximation

\A8 + at

In order that there may be an apse, the co-efficient of a? must

vanish, or BH *J\A? + at ± (JABH + 64H + o5) = 0;

which, on substituting for H its value, becomes

± (AB + bt) V^A2 + o4 + £ A*B + o4B + £A64 + as = 0.

The one or the other of the branches has an apse, according as
we take the upper or lower sign. But if

AB + &4 = 0; and £A2B + o4B + £A64 + o5 = 0,

the co-efficient of x3 will vanish, whichever sign is taken, and there
is an apse on each branch. The above equations are equivalent to

bt = - AB, o5 = - a4B ;
and the equation to the curve becomes

f - y(Aa? + Bxy + Cy>) + a4x* - ABafy + c.ary2

+ djcy3 + erf - afist + bj&y + ... = 0.

If there is one apse, the evolute has one cusp, as shown in Fig. 15;
and if there are two apses, the evolute has two cusps, as shown in
Fig. 16.

If U4 is negative and |U4|>JVa
2, the value of y given by

equation (6) is imaginary except when x = 0, y = 0; any line through
the origin meets the curve there in two coincident points, and the
line y - mx = 0 meets the curve there in four coincident points:—just
as in the case of a tacnode. The curve has thus an isolated point
at the origin, but it is not a doublet, and there is a real bitangent
at the origin, y -mx = 0 ; or, rather, two coincident tangents, which
both touch the imaginary branch at the origin.

We have a particular case of this when u, is absent from the
equation in consequence of its coefficients vanishing, and «4 is a
negative square, so that the equation takes the form

(y - mxf + (pa? + qxy + ry*)* = «*s + ... .
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If TJt=>0, so that y-mx is a factor of u4, and

we have (y-mx- %vt- \vtf = \(v2 + v3)
2 + MB + ...

and

vt + vt + - ^ 7 + . . . - .

Taking the upper sign, we get

v + + ... = mx + Y^ approximately.

v2 + v3

But, taking the lower sign, we have

u. U6 , .
«/ = ma; ^ ... = ma; - —ar, approximately.

V2 + V3 V 2

This shows that one branch has an inflection at the origin, which
maybe therefore called a " tacflecnode". (See Fig. 17.) In this
case the tangent at the origin meets the curve in five coincident
points. The normal touches one branch of the evolute, and is an
asymptote to another branch.

If Va = 0, so that v2 = (y - mxfa, we have

and we may neglect (y - mxfvx in comparison with (y - mxf, so that

y = mx ± JTJt. a? approximately.

In this case the two branches have the same curvature, but are
turned in opposite directions, as in Fig. 18.

If U4 and V2 both = 0, so that ut = (y - mx)v3, we have

In this case the method we have followed hitherto is not applicable.
In order to get an approximate equation to the curve, we must
neglect those terms which are of a higher degree than the others :
thus, as already mentioned, we may neglect (y - ma;)2?;, in comparison
with (y - mxy; but we cannot say which of the remaining terms
above written down is of highest degree, and may be neglected,
until we know the degree of (y - mx). We may determine this by
trial. Assume that (y - mxf and (y - mx)vs are of the same degree;

https://doi.org/10.1017/S0013091500034568 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500034568


103

then y - mx must be of the third degree, and each of the two terms is
of the sixth degree : but M5 is only of the fifth degree, and therefore
must not be neglected. Our assumption, that (y - mxf and (y - mx)vs

are of the same degree, is therefore inadmissible. Next assume that
(y — mx)" and ws are of the same degree; then y — mx is of the
degree 2J, and each of these terms is of the degree 5 : then (y - mx)v3

is of the degree 5J, and may be neglected in comparison with the
other two. Lastly, assume that (y — mx)v3 and w6 are of the same
degree; then y — mx is of the second degree; but this makes
{y - mx)* of the fourth degree, which is lower than the other two,
and this assumption is therefore inadmissible.

The only assumption therefore that is admissible is that (y - mx)2

and M5 are of the same degree ; and putting y = mx in the latter, we
get _ B

y — mx = + V/Ur,. X
s.

In this case there is a cusp at the origin; but the radius of
curvature is infinite, and I propose to call such a point a " flat
cusp ". The normal at the origin is an asymptote to the evolute ;
and as the infinite branches lie on the same side of the normal,
there is an inflection at infinity in the evolute. (See Fig. 19.)

If JV2
! + U4 = 0, but V2, U4, are not separately = 0, the approxi-

mate equation (6) becomes y = mx + ^ V^t?, and both branches have
the same curvature at the origin. In order to distinguish between
them, we must carry our approximation further. Resuming equation

(5) we have y — mx + \v« ± J\vn- + «, + M5 + ...

and putting y = mx + £V2%
s in v2t u4, us,

we get a result of the form

y = mx + £V2.r
2 + Mar* + N.-B4± V P ^ + Qa* + Sx7 + T.r8.

If P is finite and positive, the approximate equation to the curve is

y = mx + ^V^r± JP.x*.

In this case there is a cusp with both branches on the same side of
the tangent. This has been called a ramphoid cusp, as it somewhat
resembles the beak of a bird; and I venture to suggest that it
should be called a " beak ". Salmon calls it a node-cusp.

By applying the formula for R, we find that, as already men-
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tioned, the two branches have the same finite radius of curvature at
the origin ; also that the curvature of one branch increases, and that
of the other diminishes, as we recede from the origin.

For, putting y' for -j- and y" for -~,

-
3

+ terms involving x*} JC2, etc.,

= Ro( 1 + T 5 - y a ? ) approximately ;

where we retain only the lowest power of x, as all the others may be
neglected when x is very small. Bearing in mind that the term

JP .x* in the value of y, has a double sign, and denoting by R,,
R2, the radii of curvature in the two branches near the origin, we
have approximately

There is thus an inflection in the evolute at the point correspond-
ing to the origin. The form of the curve at the origin and of the
evolute at the corresponding point, are shown in Fig. 20.

There is, in general, as Salmon points out, no point of inflection
in the evolute. (The same is the case in any envelop, and the
evolute is a particular kind of envelop). The above is, therefore,
one of the exceptional cases in which the evolute has an inflection.
I have hitherto been unable to identify this exceptional case with
one of those indicated by Salmon; but I hesitate to suggest that
there has been any oversight on his part, as I have found the whole
of his reasoning as to the singular points of the evolute, extremely
difficult to follow.
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If P = 0, the approximate equation to the curve takes the form
y = mx + JVia* + (M ± J Q).r<

and there is now no cusp, but a tacnode at the origin; and as both
branches of the curve have the same radius of curvature at the
origin, there is a tacnode in the evolute. (See Fig. 21).

If

there is an apse in one branch of the curve, and a cusp in the
evolute. (See Fig. 22).

But if Q also = 0, the equation takes the form

y = mx + \Y#? + M.X-3 ± JS. &>.

In this case there is again a ramphoid cusp or "beak"; but it
differs from the one considered above, inasmuch as the radius of
curvature is now a maximum or minimum at the cusp. For we now
have

3n»V2 6M\ 35

\T 2

and this shows that, unless M = • 2 , so that the co-efficient of
2(1 + m )

x vanishes, I^ and B, are either both greater or both less than B.
In this case there is a " beak " in the erolute, as shown in Fig. 23.

If M has this value, B is no longer a maximum or minimum at
the cusp, and there is now again an inflection in the evolute, as in
Fig. 20.

If «2) 6,, c2 all vanish, as well as a,, i,, the equation becomes
Wj + tt4 + M6 + .. . = 0.

Equating M3 to zero, we have three values of yjx, or the origin is
a triple point. The three values may be (1) all real and unequal, or
(2) two of them may be equal, or (3) two of them may be imaginary,
or (4) all three may be equal. I t is unnecessary to investigate
cases (1), (2), or (3), as the branches may have the singularities we
have investigated above, and no others. The only case that remains
is that in which the three values of y/x are equal. We may then
take th« equation to be

https://doi.org/10.1017/S0013091500034568 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500034568


106

Proceeding in the usual way, we get the approximate equation to
the curve 4

There is only one real branch to the curve, and the tangent at the
origin meets the curve in four coincident points; while any other
line through the origin meets the curve in three coincident points.
There is not, however, a doublet at the origin; for the tangent at a
doublet is imaginary, the equation in that case being of the form

(y -mx){(ax + byf + c y } +M4 + MS+ ... =0.

The radius of curvature at the origin vanishes, and the evolute
passes through the origin, and has a cusp there. (See Fig. 24.) The
origin would be a point of " undulation " if the radius of curvature
were infinite; perhaps we may call the present singularity a point
of " condensation ".

If U4 = 0, so that y -mx is a factor of w4) then the equation takes

the form (y - mx)3 = (y - mx)vs + ui + u6+ ...

and we have to determine by trial which of these terms may be

neglected in comparison with the others.

Since y = mx is the tangent at the origin, x and y are of the same
degree, and we may neglect M6 in comparison with ws, if the latter
does not contain the factor y - mx. The equation therefore becomes
approximately

(y - mx)s = (y - mx)v3 + «5.

If now we assume provisionally that «5 may be neglected in
comparison with the other terms, we get (y - mx)2 = v3; and putting

mx for y in v3 we get y = mx ± J V:1. x'L. The terms we have kept
are of the degree 4J, and it is therefore correct to reject MB in
comparison with them.

Next assume that (y - mx)vs may be neglected. This gives
(y - ma;)3 = UjX5. The terms retained are now of the degree 5, but
the one neglected is of the degree 4 | , and our assumption is there-
fore inadmissible.
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Lastly, assume that (y - mxf may be neglected; then we have

y-mx= — - ; and when we put y = mx on the right hand side,

XL
y — mac - TT-V. This makes the degree of the terms kept, 5 , while

V 3
the degree of the other is 6, and it is therefore rightly neglected.

It does not seem worth while to give the working out of other
cases, and I will therefore only give some results. For brevity put
y - mx = Z. We have seen that when U4 = 0, or the equation takes
the form

the curve has three real branches, for which we have approximately
at the origin

Z = + S/V3. a? or - ^ ? . a*. (See Fig. 25.)

If now V3 = 0, the equation becomes

and there is only one real branch to the curve, for which Z = ^/Uo. x3.
In this case there is a point of inflection at the origin ; but it is not
an ordinary inflection, as the radius of curvature is not infinite, but
vanishes. I would propose to call such a point a " twist". In this
case the evolute passes through the origin, and has an inflection
there. (See Fig. 26.)

If TJ, = O, but V34=0, we have

Z3 = Z(va + vt) + M6 + ...

?and Z = ± yv . .a? or - — ..x'1. - (See Fig. 27.)
» 3

If V3 and U5 both = 0, the equation becomes

and if the roots of Z3 - V2Z
2 - V4Z - U6 = 0 - - - .. .(8)

are «,, zit zs, and real, the curve has three branches for which

Z = z]a52, z#?, z3x*, respectively.

In this case the normal at the origin will touch three branches of
the evolute. (See Fig. 28.) If z, = s2 = z3, so that all three branches
of the curve have the same radius of curvature at the origin, the
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three points of contact of the normal with the evolute, will coincide;
and we shall have what may be called a triple tacnode in the
evolute (see Fig. 29), which, if the origin should be an apse in each
branch of the curve, will become a triple cusp. (See Fig. 30.)

If U6 = 0, so that one of the roots of the cubic vanishes, we have

and Z = zlx>, z&", or - = V . - (See Fig. 31.)
V4

If U- also = 0, we have

and the third branch becomes

Z--5-8.*1. - - - (See Fig. 32.)
V 4

In these last two cases the values of s,, «„ are

If V4 = 0, but U7 * 0, we have
Z3 = Z-(v, + v3) + Zv6 + u- + ...

and Z = V2a
2 or ± J - ^ - ' . . « 2 . - (See Fig. 33.)

Going back to equation (8), if ex = Zj = s3, we have

and Z = iV2a.-2+ 3JU..x*. - (See Fig. 34.)

If Vs and U, both = 0, we have

Z3 = Z\\ + Z(v4 + »3) + «,+ ...

and Z = ± JV,.!)? or -^-r.a-». - (See Fig. 35.)

If both V4 and U, = 0, we have

Z3 = Z2(t)2 + u3) + Zi), + M7+ ...

and Z =Y& or + ^ - — ' . 9 ^ . - (See Fig. 36.)

If V., V4, and U6, all =0, we have

and Z = y U 7 . a ? . - (See Fig. 37.)
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If here U? = 0, we have

Z3 = Z:V, + Wv, + Z(v, + v,) + «„ + ...

and Z=± JV6.x* or -I^a?. . . (See Fig. 38.)
» B

If V5 also = 0, we have

Z3 = Z3«, + Z\v,. + v4) + Zvt + «g + ...

and Z = ; / U 8 . « » . . . . (See Fig. 39.)

Again, supposing the equation to be reduced to

M4 + M5 + ... = 0,

the only case which it is necessary to consider, is the one where
there are four real branches at the origin, which all have the same
tangent; so that the equation may be written

Z4 = (y - mxf = M3 + M6 + —

Proceeding in the usual way, we get as a first approximation

Z E= y - mo; = *JV:,. x
T.

This represents a cusp, at which the radius of curvature is zero; so
that the evolute passes through the origin, as in Fig. 13.

If U} = 0, so that

we have Z=yVt.J
s or -~~. a? - - (See Fig. 40.)

If V4 = 0, so that

we have Z2 = pu? or qo?, where p , q are the roots of a2 - V^s - U , = 0,

and Z= Jp.J> or Jq.-J£.- - - (See Fig. 41.)

The curve now has two cusps at the origin, with the same tangent;
and there is a tacnode in the evolute.

8 Vol. 21
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If V, = 0, we have

and Z=±l/Ul.x%,

which represents a common cusp as in Fig. 13.

But if U6 = 0, we have

and Z = ± JVS. x%, or pxs, or qxs, - (See Fig 42.)

where p, q are the roots of V^2 + Vs« + U, = 0.

If both V3 and U8 = 0, we have Z4 = Z\ + Zvs + v-+ ...

and Z = i/V7. x*. - (See Fig. 43.)

If here U7 = 0, we have

Z* =.Z"«, + Z(», + vt) + u% + ...

and Z= yV, . a* or -^-".ar1. - (See Fig. 44.)

But if Vs also = 0, we have

and Z=pa?, or gar2, or rxs, or gai2,

where />, q, r, s are the roots of z* - Vj*3 - V4«
2 - V,a - U8 = 0.

One other kind of singular point may be mentioned, namely a
beak (or ramphoid cusp) at which the radius of curvature is
infinitely small. We have such a point at the origin when

+ ... - - (See Fig. 45.)

The singularity in this case is of a much higher order than any we

have considered above; for, on clearing the equation of radicals,

there are no terms in it of lower degree than the sixth.

In all cases the figures are drawn as if m were = 0.
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