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Abstract

This paper concerns discrete-time Markov decision chains with denumerable state and
compact action sets. Besides standard continuity requirements, the main assumption on
the model is that it admits a Lyapunov function �. In this context the average reward
criterion is analyzed from the sample-path point of view. The main conclusion is that if
the expected average reward associated to �2 is finite under any policy then a stationary
policy obtained from the optimality equation in the standard way is sample-path average
optimal in a strong sense.
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1. Introduction

This paper is concerned with discrete-time Markov decision processes (MDPs) with denu-
merable state-space and time-invariant transition mechanism. Within this context, the existence
of optimal stationary policies with respect to a strong sample-path average index is analyzed.
This problem has been studied in the literature, and the available results can be briefly described
as follows: conditions on the model are imposed such that the expected average cost optimality
equation has a solution, which generates an expected average optimal stationary policy f in
the standard way. Then it is proved that such a policy f is also sample-path average optimal.
Roughly, the requirements used to obtain such a conclusion involve, either a special structure
on the cost function, or conditions on the transition law implying geometric ergodicity with
respect to a (certain weighted) norm. In this paper the average reward criterion is studied, and
the main difference with respect to the available results is that neither a special structure on the
reward function is imposed, nor the stability assumptions used in this paper imply geometric
ergodicity.

When the performance of a control strategy is measured by an expected average criterion,
the analysis of the model is based on the optimality equation, which can be solved under diverse
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communication-stability conditions (see Thomas (1980) and Arapostathis et al. (1993)) and, in
some sense, such conditions are also necessary (see Cavazos-Cadena (1988), (1989)). Among
the different requirements ensuring that the optimality equation has a solution rendering an
expected average optimal stationary policy f , the most general one is the so-called Lyapunov
function condition which, extending ideas by Foster (1953) on uncontrolled Markov chains, was
formulated by Hordijk (1974). In addition to standard continuity-compactness requirements,
the basic structural assumption in this work is that the system has a Lyapunov function �.

On the other hand, an expected average criterion is quite appropriate if the controller repeats
the underlying random dynamical experiment many times under similar conditions, but not for
a single trial. As already stated, in this paper the average index is studied from a sample-path
perspective, and the analysis involves the following idea.

A policy π∗ is average optimal in the sample-path sense if there exists a constant, say g∗,
such that under the action of π∗ and regardless of the initial state, the average of the observed
rewards over a finite horizon t converges to g∗ as t → ∞ with probability 1, whereas under
any other policy, the superior limit of such averages is always bounded above by g∗ almost
surely (a.s.).

It was recently shown in Cavazos-Cadena et al. (2014) that, under the sole assumption
that the system admits a Lyapunov function, the existence of a sample-path average optimal
stationary policy cannot be ensured. The main result of this note can be briefly described as
follows. If the MDP admits a Lyapunov function � and, regardless of the initial state and the
policy employed, the expected average reward corresponding to �2 is finite, then a stationary
policy f obtained from the optimality equation in the standard way is also sample-path average
optimal.

The theory and applications of MDPs have been extensively studied; see, for instance,
Hernández-Lerma (1989), Puterman (1994), Sennott (1999), and Bäuerle and Rieder (2010),
(2011). Concerning the idea of sample-path average optimality, it is known that if the optimality
equation has a bounded solution then the stationary policy f referred to above is optimal in the
sample-path sense (Arapostathis et al. (1993)). On the other hand, for MDPs with denumerable
state-space and endowed with the average cost criterion (see Borkar (1984), (1991)) it was
proved that if the cost function has a ‘penalized structure’, in the sense that it is sufficiently large
outside a compact set, then a sample-path average optimal stationary policy exists, a conclusion
that has been extended to models evolving on Borel spaces in Lasserre (1999) and Vega-Amaya
(1999). Under geometric ergodicity conditions, the existence of sample-path optimal stationary
policies was established in Hernández-Lerma et al. (1999) and in Zhu and Guo (2006) for
models on Borel spaces, whereas Hunt (2005) considered MDPs with denumerable state-space
and finite action sets; the sample-path perspective in a continuous-time framework is used in
Dai Pra et al. (1999).

The approach used below to establish the aforementioned result is based on (i) a dominated
convergence theorem for the average reward criterion, and (ii) a direct analysis of the trajectories
of the state-action process using Kolmogorov’s inequality and the first Borel–Cantelli lemma.

The organization of the subsequent material is as follows: in Section 2 the decision model
is presented and the superior and inferior limit expected average criteria, as well as the corre-
sponding optimality equation, are briefly discussed. Next, in Section 3 the idea of a Lyapunov
function is introduced and some basic consequences of the existence of such a mapping are
established, whereas in Section 4 the main result on sample-path average optimal stationary
policies is stated as Theorem 4.1. From this point onwards, the remainder of the paper is
dedicated to proving that result, and the rather involved argument has been divided into four
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parts: Sections 5 and 6 concern the necessary technical tools involving the expected average
reward optimality equation, whereas in Section 7 we present a direct analysis of the trajectories
of the state-action process. The final step is established in Section 8, where the proof of the
main result is presented.

Notation. Throughout this paper N stands for the set of all nonnegative integers. For a
topological space K, the class of all continuous functions defined on K and the Borel σ -field
of K are denoted by C(K) and B(K), respectively.

2. The decision model

Let M = (S, A, {A(x)}x∈S, R, P) be the usual MDP, where the state-space S is a denumer-
able set endowed with the discrete topology and the action set A is a metric space. For each
x ∈ S, A(x) ⊂ A is the nonempty subset of admissible actions, and

R ∈ C(K) (2.1)

is the reward function, where K := {(x, a) | x ∈ S, a ∈ A(x)} is the space of admissible pairs.
On the other hand, P = (Pxy{·}) is the controlled transition law on S given K, that is for all
(x, a) ∈ K and y ∈ S the relations Pxy(a) ≥ 0 and

∑
y∈S Pxy(a) = 1 are satisfied. In this

model M is interpreted as follows: at each time t ∈ N the decision maker knows the previous
states and actions and observes the current state, say Xt = x ∈ S. Using that information,
the controller selects an action (control) At = a ∈ A(x) and two things happen: a reward
R(x, a) is obtained by the controller, and the system moves to a new state Xt+1 = y ∈ S with
probability Pxy(a). In what follows several continuous reward functions will be considered,
but all of the other components of M will be fixed. The following condition will be enforced
even without explicit reference.

Assumption 2.1. (i) For each x ∈ S, A(x) is a compact subset of A.

(ii) For every x, y ∈ S, the mapping a �→ Pxy(a) is continuous in a ∈ A(x).

Policies. The set Ht of possible histories up to time t ∈ N is defined by H0 := S and
Ht := K

t ×S for t ≥ 1; a generic element of Ht is denoted by ht = (x0, a0, . . . , xi, ai, . . . , xt ),
where ai ∈ A(xi) and xi ∈ S. A policy π = {πt } is a special sequence of stochastic kernels:
for each t ∈ N and ht ∈ Ht , πt {· | ht } is a probability measure on B(A) satisfying (i)
πt {A(xt ) | ht } = 1, and (ii) for each B ∈ B(A), the mapping ht �→ πt {B | ht }, ht ∈ Ht , is
Borel-measurable. When the controller chooses actions according to π , the control At applied
at time t belongs to B ⊂ A with probability πt {B | ht }, where ht is the observed history of the
process up to time t . The class of all policies is denoted by P and, given the policy π being used
for choosing actions and the initial state X0 = x, the distribution of the state-action process
{(Xt , At )} is uniquely determined (Puterman (1994)); such a distribution and the corresponding
expectation operator are denoted by P

π
x and E

π
x , respectively. Next, define F := ∏

x∈S A(x)

and notice that F is a compact metric space, which consists of all functions f : S → A such
that f (x) ∈ A(x) for each x ∈ S. A policy π is Markovian if there exists a sequence {ft } ⊂ F

such that the probability measure πt {· | ht } is always concentrated at ft (xt ), and if ft ≡ f

for every t , the Markovian policy π is referred to as stationary. The classes of stationary and
Markovian policies are naturally identified with F and M := ∏∞

t=0 F, respectively, and with
these conventions F ⊂ M ⊂ P .

Expected average criteria. Assume that R(Xt , At ) has finite expectation with respect to
every distribution P

π
x . In this context, the (long-run superior limit) average reward criterion
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corresponding to π ∈ P at state x ∈ S is defined by

J (x, π) := lim sup
k→∞

1

k
E

π
x

{k−1∑
t=0

R(Xt , At )

}
, (2.2)

whereas the corresponding optimal value function is

J ∗(x) := sup
π∈P

J (x, π), x ∈ S;

a policy π∗ ∈ P is (limsup) expected average optimal if J (x, π∗) = J ∗(x) for every x ∈ S. The
criterion (2.2) represents an optimistic perspective of the decision maker, since the performance
of a policy is evaluated by the largest among the limit points of the expected average rewards
in finite times. The pessimistic point of view is represented by the following index, assessing
the performance of a policy in terms of the smallest of such limit points:

J−(x, π) := lim inf
k→∞

1

k
E

π
x

{k−1∑
t=0

R(Xt , At )

}
(2.3)

is the (long-run) inferior limit average index associated to π ∈ P at state x, and

J ∗−(x) := sup
π∈P

J−(x, π), x ∈ S

is the corresponding optimal value function; from this specification it follows that

J ∗−(·) ≤ J ∗(·).

3. Lyapunov functions

A fundamental instrument to analyze the above criteria is the following optimality equation:

g + h(x) = sup
a∈A(x)

[
R(x, a) +

∑
y∈S

Pxy(a)h(y)

]
, x ∈ S, (3.1)

where g ∈ R and h ∈ C(S) is a given function. Assume that the pair (g, h(·)) ∈ R × C(S)

satisfies (3.1) and that the following properties are valid. For each x ∈ S and π ∈ P ,

(i) E
π
x {|h(Xn)|} < ∞ for each n = 1, 2, 3, . . .,

(ii)
E

π
x {|h(Xn)|}

n
→ 0 as n → ∞, (3.2)

(iii) and the mapping a �→ ∑
y∈S Pxy(a)h(y), a ∈ A(x) is continuous.

Under these requirements, using that the reward function R is continuous, it can be shown that
the following conclusions (a) and (b) hold (Cavazos-Cadena and Montes-de-Oca (2012)).

(a) The superior and inferior limit average criteria render the same optimal value function,
and the optimal average cost is equal to g:

J ∗−(x) = J ∗(x) = g, x ∈ S.
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(b) There exists a stationary policy f ∈ F satisfying

g + h(x) = R(x, f (x)) +
∑
y∈S

Pxy(f (x))h(y), x ∈ S, (3.3)

and such a policy is optimal with respect to the limsup and liminf average reward criteria,
that is,

J ∗(x) = J (x; f ) = g = J−(x; f ) = J ∗−(x), x ∈ S. (3.4)

The existence of a pair (g, h(·)) satisfying (3.1) as well as (3.2) requires some communication
and stability condition (see, for instance, Thomas (1980) or Cavazos-Cadena (1988), (1989)),
and a general requirement in this direction is presented below. Throughout this paper the
remainder z ∈ S is a fixed state, whereas T stands for the first return time to state z, i.e.

T := min{n > 0 | Xn = z}, (3.5)

where, by convention, the minimum of the empty set is ∞. The following idea was introduced
in Hordijk (1974) and several alternative formulations were analyzed in Cavazos-Cadena and
Hernández-Lerma (1992).

Definition 3.1. Let D ∈ C(K) and � : S → [1, ∞) be given functions. The mapping � is a
Lyapunov function for D if the following conditions occur:

(i) 1 + |D(x, a)| + ∑
y �=z Pxy(a)�(y) ≤ �(x) for all (x, a) ∈ K,

(ii) for each x ∈ S, the mapping a �→ ∑
y Pxy(a)�(y) is continuous in a ∈ A(x),

(iii) for every f ∈ F and x ∈ S, the convergence limn→∞ E
f
x {�(Xn) 1{T >n}} = 0 holds,

where 1{·} is the indicator function.

Using condition (i) in this definition it is not difficult to see that, regardless of the initial
state, the inequality E

π
x {∑T −1

t=0 [1 +D(Xt , At )]} ≤ �(x) holds for every policy π ; in particular,

P
π
x {T < ∞} = 1, x ∈ S, π ∈ P . (3.6)

As is shown in the following result by Hordijk (1974), the existence of a Lyapunov function
for the reward function R has important implications for the analysis of the average criteria in
(2.2) and (2.3).

Lemma 3.1. Suppose that Assumption 2.1 holds, and that the reward function R ∈ C(K) has
a Lyapunov function �. In this context,

(i) there exists a unique pair (gR, hR(·)) ≡ (g, h(·)) ∈ R × C(S) such that

(a) h(z) = 0 and |h(·)| ≤ α�(·) for some constant α > 0, and

(b) the optimality equation (3.1) corresponding to R is satisfied by (g, h(·)).
(ii) The following conclusions are valid:

(a) |g| ≤ �(z), and |h(x)| ≤ (1 + �(z))�(x) for all x ∈ S,

(b) the relations in (3.2) are satisfied by hR ≡ h, so that g = J ∗(·),
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(c) there exists f ∈ F such that (3.3) holds. Such a policy is optimal and satisfies
(3.4), so that

lim
k→∞

1

k
E

f
x

{k−1∑
t=0

R(Xt , At )

}
= g, x ∈ S, (3.7)

and

lim sup
k→∞

1

k
E

π
x

{k−1∑
t=0

R(Xt , At )

}
≤ g, x ∈ S, π ∈ P . (3.8)

(iii) The function h is given by the following expression:

h(x) = sup
π∈P

E
π
x

{T −1∑
t=0

(Rt − g)

}
= E

f
x

{T −1∑
t=0

(Rt − g)

}
, x ∈ S. (3.9)

A proof of this result can be essentially found in Hordijk (1974); also, see Cavazos-Cadena
and Fernández-Gaucherand (1995) for a proof of (3.9). The remainder of this paper is dedicated
to studying the validity of the sample-path versions of (3.7) and (3.8), which are obtained by
replacing the expected averages by observed averages along sample trajectories. The following
simple properties of Lyapunov functions will be useful.

Remark 3.1. Let D1, D2 ∈ C(K) be such that D1 and D2 have Lyapunov functions �1 and �2,
respectively. In this case (Cavazos-Cadena and Montes-de-Oca (2012)),

(i) if D ∈ C(K) satisfies that |D| ≤ |D1| then �1 is a Lyapunov function for D,

(ii) for a0, a1 ∈ R, (max{|a0|, |a1|} + 1)�1 is a Lyapunov function for a0 + a1D1.

(iii) for a1, a2 ∈ R, the mapping max{|a1|, 1}|�1 +max{|a2|, 1}�2 is a Lyapunov function for
a1D1 + a2D2.

To conclude this section, sufficient conditions are given to ensure that the functional part of
a solution of the optimality equation is bounded above or below.

Lemma 3.2. Under Assumption 2.1, assume that R ∈ C(K) has a Lyapunov function � and let
(g, h(·)) be the solution of the optimality equation (3.1) as in Lemma 3.1(i).

(i) Suppose that there exists a finite set F ⊂ S such that

inf
a∈A(x)

R(x, a) ≥ g, x ∈ S \ F. (3.10)

In this case, there exists a constant b ∈ R such that h(·) ≥ b.

(ii) If for a finite set F ⊂ S the property

sup
a∈A(x)

R(x, a) ≤ g x ∈ S \ F

holds then there exists a constant b ∈ R such that h(·) ≤ b.

Proof. Let F ⊂ S be a finite set such that (3.10) holds and, without loss of generality,
assume that z ∈ F . It will be proved that for every x ∈ S,

h(x) ≥ b := −(1 + �(z)) max
y∈F

�(y), (3.11)

https://doi.org/10.1239/jap/1437658607 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1437658607


Sample-path optimal stationary policies 425

an inequality that, using the bound |h(·)| ≤ (1 + �(z))�(·) in Lemma 3.1(ii), is valid if x ∈ F .
To establish (3.11) when x is not an element of F , let TF be the time of the first visit to F , i.e.

TF := min{t ≥ 0 | Xt ∈ F },
where the minimum of the empty set is ∞; note that the inclusion z ∈ F implies that

TF ≤ T (3.12)

(see (3.5)) and then with probability 1, TF is finite regardless of the initial state and the policy
used to drive the system, by (3.6). Now, let f ∈ F be as in (3.3), select x ∈ S \ F and note that
in this case P

f
x {TF > 0} = 1; since Xt /∈ F for t < TF , it follows that (3.10) yields

R(Xt , At ) ≥ g, 0 ≤ t < TF , P
f
x -a.s. (3.13)

so that

E
f
x

{
1{TF =T }

T −1∑
t=0

[R(Xt , At ) − g]
}

= E
f
x

{
1{TF =T }

TF −1∑
t=0

[R(Xt , At ) − g]
}

≥ 0. (3.14)

Now, let k be a positive integer and note that

[TF = k < T ] ∈ Pk = σ(X0, A0, . . . , Xk−1, Ak−1, Xk);
thus, an application of the Markov property yields

E
f
x

{
1{TF =k<T }

T −1∑
t=0

[R(Xt , At ) − g]
∣∣∣∣ Pk

}

= 1{TF =k<T }
k−1∑
t=0

[R(Xt , f (Xt )) − g] + 1{TF =k<T } E
f
Xk

{T −1∑
t=0

[R(Xt , At ) − g]
}

≥ 1{TF =k<T } E
f
Xk

{T −1∑
t=0

[R(Xt , At ) − g]
}

= 1{TF =k<T } h(Xk),

where the inequality is due to (3.13), and the second equality in (3.9) was used in the last step.
Thus, since Xk ∈ F when TF = k, using the bound for h(·) in part (a) of (3.1), it follows that

E
f
x

{
1{TF =k<T }

T −1∑
t=0

[R(Xt , At ) − g]
∣∣∣∣ Pk

}
≥ − 1{TF =k<T }(1 + �(z)) max

y∈F
�(y),

and since k is arbitrary, this yields

E
f
x

{
1{TF <T }

T −1∑
t=0

[R(Xt , At ) − g]
}

≥ −P
f
x {TF < T }(1 + �(z)) max

y∈F
�(y).

Combining this inequality with (3.12) and (3.14), it follows that (3.11) is also valid when
x ∈ S \ F . This completes the proof of part (i), while assertion (ii) can be obtained along
similar lines.
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4. Sample-path optimality

In this section we formally introduce the idea of the (strong) sample-path average optimal
policy and state the main existence result of this paper.

Definition 4.1. A policy π∗ ∈ P is sample-path average optimal with optimal value g∗ ∈ R if
the following conditions hold:

(i) for each state x ∈ S,

lim
n→∞

1

n

n−1∑
t=0

R(Xt , At ) = g∗, P
π∗
x -a.s.

(ii) for every π ∈ P and x ∈ S,

lim sup
n→∞

1

n

n−1∑
t=0

R(Xt , At ) ≤ g∗, P
π
x -a.s.

The existence of sample-path optimal stationary policies will be derived under the following
condition.

Assumption 4.1. The reward function R ∈ C(K) has a Lyapunov function � such that, under
the action of any policy and regardless of the initial state, the (superior limit) average reward
corresponding to �2 is finite, that is,

lim sup
n→∞

1

n + 1
E

π
x

{ n∑
k=0

�2(Xk)

}
< ∞, x ∈ S, π ∈ P . (4.1)

Theorem 4.1. Suppose that Assumptions 2.1 and 4.1 hold, and let (g, h(·)) be the solution
of the optimality equation guaranteed by Lemma 3.1. In this case, if the stationary policy f

satisfies (3.3) then f is sample-path average optimal with optimal value g. More explicitly, for
each x ∈ S and π ∈ P ,

lim
n→∞

1

n

n−1∑
t=0

R(Xt , At ) = g, P
f
x -a.s.

and

lim sup
n→∞

1

n

n−1∑
t=0

R(Xt , At ) ≤ g, P π
x -a.s. (4.2)

Remark 4.1. (i) The above result is related to Theorem 4.1 in Cavazos-Cadena and Fernández-
Gaucherand (1995), where it was proved that the existence of a Lyapunov function for R implies,
without any additional requirement, that

lim inf
n→∞

1

n

n−1∑
t=0

R(Xt , At ) ≤ g, P
π
x -a.s.

for each π ∈ P and x ∈ S, and that the equality holds with limit instead of inferior limit
whenever π = f ∈ F satisfies (3.3). In Theorem 4.1 above, the existence of a Lyapunov
function for the reward function R is complemented with the requirement (4.1), and in that
context the conclusion (4.2) is obtained, which is stronger than the one in the above display.
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(ii) Theorem 4.1 above generalizes a result of Cavazos-Cadena and Montes-de-Oca (2012),
where the sample path average optimality of the policy f in (3.3) was obtained when the
condition (4.1) is replaced by the following requirement:

for some β > 2, the function �β has a Lyapunov function.

This condition ensures that the optimal reward function associated to �β is finite, and then,
since � ≥ 1 and β > 2 the (superior limit) optimal average index corresponding to �2 is finite;
thus, the above displayed requirement is stronger that (4.1) (costs, instead of rewards, were
considered in the aforementioned paper).

(iii) A class of queueing system satisfying the conditions of Theorem 4.1 can be constructed
along the lines of Cavazos-Cadena and Montes-de-Oca (2012).

The rather technical proof of Theorem 4.1 has been divided into four steps. The first two
steps, contained in Sections 5 and 6, involve the optimality equation (3.1). Next, the third
step concerns a direct analysis of the sample trajectories of the state-action process {(Xt , At )}
and is presented in Section 7, whereas the final step combines the tools in Sections 5–7 and is
presented in Section 8, just before the proof of the main result.

5. A continuity property

This section presents the first auxiliary result that will be used in the proof of Theorem 4.1.
The main objective is to establish a sort of dominated convergence theorem, which can be
described as follows. Suppose that a sequence {Dn} ⊂ C(K) is such that the functions Dn have
a common Lyapunov function (the dominance condition), and let {gDn} be the corresponding
sequence of optimal average rewards. In this case, if the sequence {Dn} converges in an
appropriate sense then {gDn} converges to the optimal average reward associated to the limit
function.

Throughout the remainder of the paper {Sk} is a sequence of nonempty and finite subsets
of S such that

Sk ⊂ Sk+1, k = 1, 2, 3, . . . , and
∞⋃

k=1

Sk = S. (5.1)

Theorem 5.1. Let the sequence {Dn} ⊂ C(K) and D ∈ C(K) be such that the following
conditions are satisfied:

(a) for each x ∈ S, limn→∞ supa∈A(x) |Dn(x, a) − D(x, a)| = 0,

(b) there exists � : S → [1, ∞) such that for every n ∈ N, � is a Lyapunov function for Dn.

In this context

lim
n→∞ gDn = gD, (5.2)

where gDn and gD are the optimal average rewards corresponding to the functions Dn and D,
respectively.

Proof. Since � is a Lyapunov function for each mapping Dn, from condition (a) it is not
difficult to see that � is also a Lyapunov function for D. Now, let (gDn, hDn) ≡ (gn, hn(·))
be the unique pair solving the optimality equation corresponding to the reward function Dn as
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described in Lemma 3.1, so that

gn + hn(x) = sup
a∈A(x)

[
Dn(x, a) +

∑
y∈S

Pxy(a)hn(y)

]
, x ∈ S, (5.3)

as well as

|gn| ≤ �(z), hn(z) = 0, and |hn(x)| ∈ [0, (1 + �(z))�(x)], x ∈ S. (5.4)

To establish (5.2), let g ∈ [−�(z), �(z)] be an arbitrary limit point of the sequence {gn}, and
select an increasing sequence of positive integers {nk} such that

gnk
→ g as k → ∞. (5.5)

Next, using the second inequality in (5.4), taking a subsequence (if necessary), without loss of
generality assume that

lim
k→∞ hnk

(x) = h(x) ∈ [−(1 + �(z))�(x), (1 + �(z))�(x)], x ∈ S, (5.6)

so that the pair (g, h) satisfies relations similar to those in (5.4). Now, let x ∈ S be arbitrary
and observe that

(i) for each integer k, the finiteness of Sk andAssumption 2.1 together yield that the mapping
a �→ ∑

y∈Sk
Pxy(a)�(y) is continuous in a ∈ A(x) and, because of the positivity of �,

(ii)
∑

y∈Sk
Pxy(a)�(y) ↗ ∑

y∈S Pxy(a)�(y) as k ↗ ∞ for every a ∈ A(x).

Recalling that
∑

y∈S Pxy(a)�(y) is a continuous function of a ∈ A(x), by Definition 3.1(ii),
and that the action set A(x) is compact, by Assumption 2.1, then Dini’s theorem (Ash (1972))
yields

sup
a∈A(x)

∣∣∣∣ ∑
y∈Sk

Pxy(a)�(y) −
∑
y∈S

Pxy(a)�(y)

∣∣∣∣ = sup
a∈A(x)

∣∣∣∣ ∑
y∈S\Sk

Pxy(a)�(y)

∣∣∣∣ → 0 as k → ∞.

(5.7)

Note that for all positive integers n and k,

sup
a∈A(x)

∣∣∣∣ ∑
y∈S

Pxy(a)hn(y) −
∑
y∈S

Pxy(a)h(y)

∣∣∣∣
≤ sup

a∈A(x)

∣∣∣∣ ∑
y∈Sk

Pxy(a)(hn(y) − h(y))

∣∣∣∣ + sup
a∈A(x)

∣∣∣∣ ∑
y∈S\Sk

Pxy(a)(hn(y) − h(y))

∣∣∣∣
≤

∑
y∈Sk

∣∣∣∣hn(y) − h(y)

∣∣∣∣ + 2(1 + �(z)) sup
a∈A(x)

∣∣∣∣ ∑
y∈S\Sk

Pxy(a)�(y)

∣∣∣∣,
where the inclusions in (5.4) and (5.6) were used to set the second inequality; since the set Sk

is finite, this last display and (5.6) lead to

lim sup
n→∞

sup
a∈A(x)

∣∣∣∣ ∑
y∈S

Pxy(a)hn(y) −
∑
y∈S

Pxy(a)h(y)

∣∣∣∣ ≤ 2(1 + �(z)) sup
a∈A(x)

∣∣∣∣ ∑
y∈S\Sk

Pxy(a)�(y)

∣∣∣∣,
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and letting k increase to ∞, (5.7) implies that

sup
a∈A(x)

∣∣∣∣ ∑
y∈S

Pxy(a)hn(y) −
∑
y∈S

Pxy(a)h(y)

∣∣∣∣ → 0 as n → ∞. (5.8)

Next, observe that∣∣∣∣ sup
a∈A(x)

[
Dn(x, a) +

∑
y∈S

Pxy(a)hn(y)

]
− sup

a∈A(x)

[
D(x, a) +

∑
y∈S

Pxy(a)h(y)

]∣∣∣∣
≤ sup

a∈A(x)

∣∣∣∣
[
Dn(x, a) +

∑
y∈S

Pxy(a)hn(y)

]
−

[
D(x, a) +

∑
y∈S

Pxy(a)h(y)

]∣∣∣∣
≤ sup

a∈A(x)

|Dn(x, a) − D(x, a)| + sup
a∈A(x)

∣∣∣∣ ∑
y∈S

Pxy(a)hn(y) −
∑
y∈S

Pxy(a)h(y)

∣∣∣∣.
combining this fact with (5.8) and condition (a) in the statement of the theorem, it follows that,
as n → ∞,

sup
a∈A(x)

[
Dn(x, a) +

∑
y∈S

Pxy(a)hn(y)

]
→ sup

a∈A(x)

[
D(x, a) +

∑
y∈S

Pxy(a)h(y)

]
,

and then taking the limit as n goes to ∞ in both sides of (5.3), together (5.5) and (5.6) imply
that

g + h(x) = sup
a∈A(x)

[
D(x, a) +

∑
y∈S

Pxy(a)(y)

]
, x ∈ S.

Therefore, by Lemma 3.1, g coincides with the optimal average cost gD corresponding to
the reward function D; the conclusion (5.2) follows since g is an arbitrary limit point of
{gn} ≡ {gDn}.

6. The discrepancy function

This section contains the second auxiliary result that will be used to establish Theorem 4.1.
The main conclusions stated below involve the following idea.

Definition 6.1. Suppose thatAssumption 2.1 holds and that R ∈ C(K) has a Lyapunov function
�. In this context, the discrepancy function �R : K → R corresponding to R is defined by

�R(x, a) := g + h(x) − R(x, a) −
∑
y∈S

Pxy(a)h(y), (x, a) ∈ K, (6.1)

where
(g, h(·)) ≡ (gR, hR(·))

is the unique solution of the optimality equation corresponding to R as described in Lemma 3.1.

Recalling that the function h(·) satisfies the requirements in (3.2), the continuity of R yields
�R ∈ C(K); also, observe that the optimality equation (3.1) implies that

�R(x, a) ≥ 0, (x, a) ∈ K
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and that (6.1) can be equivalently written as

g + h(x) = R(x, a) + �R(x, a) +
∑
y∈S

Pxy(a)h(y), (x, a) ∈ K. (6.2)

The simple properties below will be useful.

Lemma 6.1. The following assertions hold.

(i) The discrepancy function �R has a Lyapunov function �̃0 satisfying �̃0(·) ≤ c̃0�(·), where
c̃0 = 2(1 + �(z)).

(ii) The mapping R + �R has a Lyapunov function �0 satisfying

� ≤ �0 ≤ c0�, (6.3)

where c0 = 1 + 2(1 + �(z)).

(iii) The solution of the optimality equation corresponding to R + �R as described in
Lemma 3.1 is the pair (g, h(·)) ≡ (gR, hR(·)), the same solution of the optimality
equation associated to R.

Proof. (i) Using the relations |g| ≤ �(z) and h(z) = 0 in parts (i) and (ii) of Lemma 3.1,
from (6.2) it follows that for every (x, a) ∈ K,

h(x) ≥ R(x, a) + �R(x, a) − �(z) +
∑

y∈S\{z}
Pxy(a)h(y).

On the other hand, since � is a Lyapunov function for R, the inequality in Definition 3.1(i)
yields

(1 + �(z))�(x) ≥ |R(x, a)| + 1 + �(z) +
∑

y∈S\{z}
Pxy(a)(1 + �(z))�(y).

Adding the last two inequalities it follows that

�̃0(x) ≥ �R(x, a) + 1 +
∑

y∈S\{z}
Pxy(a)�̃0(y), (x, a) ∈ K, (6.4)

where
�̃0(y) := h(y) + (1 + �(z))�(y), y ∈ S.

Observe that the second inequality in Lemma 3.1(ii) yields �̃0(·) ≤ c̃0�(·) where c̃0 = 2(1 +
�(z)), as well as �̃0 ≥ 0; since �R is nonnegative, (6.4) immediately implies that �̃0(x) ≥ 1,
and that �̃0 satisfies the first property characterizing a Lyapunov function for �R . Concerning
the verification of the second and third requirements in Definition 3.1 for the function �̃0, via
the inequality �̃0 ≤ c̃0�, they follow from the corresponding properties of �.

(ii) By Remark 3.1, the mapping �0 = �+ �̃0 is a Lyapunov function for R+�R; the conclusion
follows since, using part (i), � ≤ �0 ≤ � + c̃0� = (1 + c̃0)�.

(iii) Note that, by Lemma 3.1(i), the pair (g, h(·)) ≡ (gR, hR(·)) satisfies that:

(a) h(z) = 0 and |h(·)| ≤ α�(·) ≤ α�0 for some constant α, whereas (6.2) implies that
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(b)

g + h(x) = sup
a∈A(x)

[
R(x, a) + �R(x, a) +

∑
y∈S

Pxy(a)h(y)

]
, x ∈ S,

that is, the pair (g, h(·)) ≡ (gR, hR(·)) satisfies the optimality equation corresponding to
R +�R; the conclusion follows, since a pair (g, h(·)) satisfying the above properties (a)
and (b) is uniquely determined, by Lemma 3.1(i).

Next, the finite sets Sk in (5.1) will be used to truncate the mapping R + �R .

Definition 6.2. Let R ∈ C(K) be such that R has a Lyapunov function �, and let �R be the
discrepancy function introduced in Definition 6.1.

(i) For each positive integer k the mapping �k ∈ C(K) is given by

�k(x, a) :=
{

0, x ∈ Sk, a ∈ A(x),

|g| + 1 + |R(x, a) + �R(x, a)|, x ∈ S \ Sk, a ∈ A(x).

(ii) For u = 1, −1 and k = 1, 2, 3, . . ., �k,u : K → R is defined as follows:

�k,u(x, a) := u[�k(x, a) + ��k
] + R(x, a) + �R(x, a), (x, a) ∈ K,

where ��k
is the discrepancy function corresponding to �k .

Note that Lemma 6.1 and Remark 3.1 yield that �k admits a Lyapunov function, and then
the functions �k,u are well-defined. The main result of this section is concerned with properties
of the solutions of the optimality equations corresponding to the functions �k and �k,u.

Theorem 6.1. Suppose that Assumption 2.1 holds, and that R ∈ C(K) has a Lyapunov
function �. In this context, the following assertions hold.

(i) There exists a mapping �∗ : S → [1, ∞) such that

� ≤ �∗(·) ≤ c∗�(·) (6.5)

for some c∗ > 0 and for each positive integer k, �∗(·) is a Lyapunov function for �k .

(ii) If (gk, hk(·)) is the unique solution of the optimality equation corresponding to the reward
function �k as in Lemma 3.1 then

lim
k→∞ gk = 0, (6.6)

and there exists a positive integer N and constants bk ∈ R such that

hk(·) ≥ bk for k ≥ N. (6.7)

(iii) There exists �̃ : S → [1, ∞) such that � ≤ �̃(·) ≤ c̃�(·) for some c̃ > 0 and for each
u = 1, −1 and k = 1, 2, 3, . . ., the mapping �̃(·) is a Lyapunov function for �k,u.

(iv) Let (gku, hku(·)) be the unique solution of the optimality equation corresponding to the
reward function �k,u as in Lemma 3.1. With this notation, the following assertions hold:

|hku(·)| ≤ β�(·) for some constant β, (6.8)
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and

(gku, hku(·)) = u · (gk, hk(·)) + (g, h(·)), u = −1, 1, k = 1, 2, 3, . . . , (6.9)

where (g, h(·)) is the solution of the optimality equation corresponding to R as in
Lemma 3.1. Also, there exists a positive integer N and constants bk,u ∈ R such that
if k ≥ N then

hk,u(·) ≥ bk,u if u = 1, hk,u(·) ≤ bk,u if u = −1. (6.10)

Proof. (i) By Remark 3.1(i), if �0 is the Lyapunov function for R + �R in Lemma 6.1(ii)
then

�∗ := (|g| + 2)�0

is a Lyapunov function for |g|+1+|R +�R|; since |�k| ≤ |g|+1+|R +�R|, Remark 3.1(i)
yields �∗ is a Lyapunov function for every mapping �k , and the conclusion follows, since (6.3)
implies that � ≤ �∗ ≤ c∗� where c∗ = c0(|g| + 2).

(ii) Recalling that the sets Sk increase to the state-space S, the definition of functions �k yields
for each x ∈ S, supa∈A(x) |�k(x, a) − 0| → 0 as k → ∞. Since �∗ is a Lyapunov function for
each mapping �k , Theorem 5.1 implies that limk→∞ gk = 0. Now select an integer N such
that

|gk| ≤ |g| + 1
2 , k ≥ N, (6.11)

and note that
inf

a∈A(x)
�k(x, a) ≥ |g| + 1 > gk, x ∈ S \ Sk, k ≥ N,

so that, since Sk is finite, an application of Lemma 3.2(i) yields for some constant bk , hk(·) ≥ bk

if k ≥ N .

(iii) Given a positive integer k note that, using part (i), an application of Lemma 6.1(ii) to the
reward function �k yields �k + ��k

has a Lyapunov function �∗
0 satisfying

�∗(·) ≤ �∗
0(·) ≤ (1 + 2(1 + �∗(z)))�∗(·),

and then
� ≤ �∗

0(·) ≤ β�

for some positive constant β.

Combining this fact with Lemma 6.1(ii), it follows from Remark 3.1 that |�k + ��k
| +

|R + �R| has the Lyapunov function �̃ = �0 + �∗
0 which satisfies

� ≤ �̃(·) ≤ c̃�

for some constant c̃ > 0. Observing that |�k,u| ≤ |�k + ��k
| + |R + �R| for every positive

integer k and u = −1, 1, Remark 3.1(i) yields �̃ is a Lyapunov function for each mapping �k,u.

(iv) The definition of the discrepancy function ��k
corresponding to the reward function �k

yields for every positive integer k,

gk + hk(x) = �k(x, a) + ��k
(x, a) +

∑
y∈S

Pxy(a)hk(y), (x, a) ∈ K, (6.12)
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where
hk(z) = 0 and |hk(·)| ≤ α∗�∗(·) (6.13)

for some positive constant α∗. Combining (6.12) with (6.2) and Definition 6.2(ii), it follows
that for u = −1, 1, and k = 1, 2, 3, . . .,

ugk +g +uhk(x)+h(x) = �k,u(x, a)+
∑
y∈S

Pxy(a)[uhk(y)+h(y)], (x, a) ∈ K (6.14)

and then

ugk + g + uhk(x) + h(x) = sup
a∈A(x)

[
�k,u(x, a) +

∑
y∈S

Pxy(a)[uhk(y) + h(y)]
]
, x ∈ S.

Thus, the pair (ugk + g, uhk(·) + h(·)) satisfies the optimality equation corresponding to �k,u.
On the other hand, using that h(z) = 0 and |h(·)| ≤ α�(·) for some α > 0, via (6.13) it is not
difficult to see that |uhk(·) + h(·)| is bounded above by a multiple of �̃, the Lyapunov function
of �k,u, and then assertions (6.8) and (6.9) follow from Lemma 3.1(i). To conclude, note that
Definition 6.2 yields for x ∈ S \ Sk and a ∈ A(x),

�k,1(x, a) = �k(x, a) + ��k
(x, a) + R(x, a) + �R(x, a)

= |g| + 1 + |R(x, a) + �R(x, a)| + ��k
(x, a) + R(x, a) + �R(x, a)

≥ |g| + 1

and

�k,−1(x, a) = −[�k(x, a) + ��k
(x, a)] + R(x, a) + �R(x, a)

= −|g| − 1 − |R(x, a) + �R(x, a)| − ��k
(x, a) + R(x, a) + �R(x, a)

≤ −|g| − 1.

Thus, selecting the positive integer N such that (6.11) holds, it follows that

inf
a∈A(x)

�k,1(x, a) ≥ |g| + 1 ≥ g + gk = gk,1, x ∈ S \ Sk, k ≥ N,

and
sup

a∈A(x)

�k,−1(x, a) ≤ −|g| − 1 ≤ g + gk = gk,−1, x ∈ S \ Sk, k ≥ N.

Since Sk is finite, Lemma 3.2 yields that there exists constants bk,u such that (6.10) holds,
completing the proof.

7. Innovations

The previous preliminaries are related to the optimality equation (3.1) and rely on the
existence of a Lyapunov function for the reward function R. In this section a result involving
the behavior of the trajectories of the state-action process {(Xt , At )} will be established.
Throughout, h : S → R is a given function and it is supposed that

E
π
x {(h(Xn))

2} < ∞, x ∈ S, π ∈ P , n = 1, 2, 3, . . . , (7.1)

whereas the sigma-field Pn is given by

Pn := σ(Xt , At , 0 ≤ t ≤ n), n = 1, 2, 3, . . . . (7.2)
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Definition 7.1. Let h : S → R be such that (7.1) holds. The sequence of {Yk, k ≥ 1} of
innovations associated to h is given by

Yn = h(Xn) −
∑
y∈S

PXn−1,y(An−1)h(y), n = 1, 2, 3, . . . .

Note that this specification and (7.2) together yield that Yn is Pn-measurable, whereas an
application of the Markov property immediately implies that for every x ∈ S and π ∈ P ,

Yn = h(Xn) − E
π
x {h(Xn) | Pn−1}, P

π
x -a.s. (7.3)

Therefore,

(a) Yn has null expectation with respect to P
π
x and

(b) Yn is uncorrelated with the σ -field Pn−1, that is,

E
π
x {YnW } = 0 if W is Pn−1-measurable and YnW is P

π
x -integrable. (7.4)

Since ∞ > E
π
x {h(Xn)

2} ≥ E
π
x {Eπ

x {h(Xn)|Pn−1})2}, (7.3) implies that E
π
x {Y 2

n } < ∞ and then
YnE

π
x {h(Xn)|Pn−1} is integrable with respect to each measure P

π
x , by the Cauchy–Schwarz

inequality; thus, (7.4) leads to E
π
x {YnE

π
x [h(Xn)|Pn−1]} = 0, and combining this relation with

h(Xn) = Yn + E
π
x {h(Xn)|Pn−1} it follows that

E
π
x {h(Xn)

2} ≥ E
π
x {Y 2

n } + E
π
x {(Eπ

x [h(Xn)|Pn−1])2} ≥ E
π
x {Y 2

n }. (7.5)

Now, let n and k be positive integers with n > k. In this case (7.5) and the Cauchy–Schwarz
inequality together imply that YnYk is always P

π
x -integrable, whereas (7.2) and (7.3) yield that

Yk is Pn−1-measurable; therefore, by (7.4),

E
π
x {YnYk} = 0, n �= k, x ∈ S, π ∈ P ,

an orthogonality property that leads to the following classical result by Kolmogorov.

Lemma 7.1. If n and k are two positive integers such that n > k then for every α > 0,

P
π
x

{
max{r : k≤r≤n}

∣∣∣∣
r∑

t=k

Yt

∣∣∣∣ ≥ α

}
≤ 1

α2

n∑
t=k

E
π
x {Y 2

t }.

This conclusion is established as Theorem 22.4 of Billingsley (1995) for the case in which
the Yns are independent; however, the same arguments used in this theorem show that the
conclusion holds in the context described above. The main result of this section provides
sufficient conditions to ensure that the sequence of innovations converges to 0 in the Cèsaro
sense.

Theorem 7.1. If

lim sup
k→∞

1

k
E

π
x

{ k∑
t=1

h2(Xt )

}
< ∞, x ∈ S, π ∈ P , (7.6)

then

lim
n→∞

1

n

n∑
k=1

Yk = 0, P
π
x -a.s. x ∈ S, π ∈ P . (7.7)
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Proof. Let x ∈ S and π ∈ P be arbitrary but fixed, and note that (7.6) yields

b := sup
k≥1

1

k
E

π
x

{ k∑
t=1

h2(Xt )

}
< ∞,

and then, by (7.5),

E
π
x

{ n∑
t=1

Y 2
t

}
< nb, n = 1, 2, 3, . . . .

This fact and Lemma 7.1 together lead to

P
π
x

{
max{r : k≤r≤n}

∣∣∣∣
r∑

t=k

Yt

∣∣∣∣ > δ

}
≤ nb

δ2 , δ > 0, n, k ∈ N \ {0}, n > k. (7.8)

Now, given that ε > 0, note that this relation with k = 1, n = m2, and δ = εm2 yields

qm := P
π
x

{
m−2

∣∣∣∣
m2∑
t=1

Yt

∣∣∣∣ > ε

}
≤ P

π
x

{
max

{r : 1≤r≤m2}

∣∣∣∣
r∑

t=1

Yt

∣∣∣∣ > m2ε

}
≤ m2b

ε2m4 ,

which yields
∑∞

m=1 qm < ∞. By the first Borel–Cantelli lemma,

P
π
x

{
m−2

∣∣∣∣
m2∑
t=1

Yt

∣∣∣∣ > ε i.o.

}
= 0,

where i.o. stands for infinitely often. Since ε > 0 is arbitrary, it follows that

lim
m→∞

1

m2

m2∑
t=1

Yt = 0, P
π
x -a.s. (7.9)

Next, let m be a positive integer and note that

[
max{j : 0≤j≤2m}

∣∣∣∣(m2 + j)−1
m2+j∑
t=m2

Yt

∣∣∣∣ ≥ ε

]
⊂

[
max

{r : m2≤r<(m+1)2}

∣∣∣∣
r∑

t=m2

Yt

∣∣∣∣ ≥ m2ε

]

is an inclusion that using (7.8) leads to

pm := P
π
x

{
max{j : 0≤j≤2m}

∣∣∣∣(m2 + j)−1
m2+j∑
t=m2

Yt

∣∣∣∣ ≥ ε

}

≤ P
π
x

{
max

{r : m2≤r<(m+1)2}

∣∣∣∣
r∑

t=m2

Yt

∣∣∣∣ ≥ m2ε

}

≤ (m + 1)2b

ε2m4 .
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Therefore,
∑∞

m=1 pm < ∞, and the first Borel–Cantelli lemma yields

lim
m→∞

{
max{j : 0≤j≤2m}

∣∣∣∣(m2 + j)−1
m2+j∑
t=m2

Yt

∣∣∣∣
}

= 0, P
π
x -a.s. (7.10)

To conclude, let n be a positive integer and let m be the integral part of
√

n, so that n = m2 + i

where 0 ≤ i ≤ 2m. Observe that for i > 0,

∣∣∣∣1

n

n∑
t=1

Yt

∣∣∣∣ ≤ m2

n

∣∣∣∣ 1

m2

m2∑
t=1

Yt

∣∣∣∣ + 1

m2 + i

∣∣∣∣
m2+i∑

t=m2+1

Yt

∣∣∣∣,
and then ∣∣∣∣1

n

n∑
t=1

Yt

∣∣∣∣ ≤
∣∣∣∣ 1

m2

m2∑
t=1

Yt

∣∣∣∣ + max{j : 0≤j≤2m}

{
1

m2 + j

∣∣∣∣
m2+j∑

t=m2+1

Yt

∣∣∣∣
}
,

an inequality that is also valid when i = 0, that is, if n = m2. After taking the limit as n goes
to ∞ in both sides of this equation, (7.9) and (7.10) together imply that (7.7) holds.

8. Proof of Theorem 4.1

In this section the proof of Theorem 4.1 is finally presented. The argument relies on the
auxiliary tools in Sections 5–7 and, by convenience, the main part of the argument is stated
separately in the following result using the notation in Definition 6.1 and Theorem 6.1.

Theorem 8.1. Suppose that Assumptions 2.1 and 4.1 hold, so that the reward function R has
a Lyapunov function � satisfying (4.1). In this context, the following assertions hold.

(i) Let the positive integer N be as in (6.7). For every x ∈ S, π ∈ P and k > N ,

lim sup
n→∞

1

n

n−1∑
t=0

[�k(Xt , At ) + ��k
(Xt , At )] ≤ gk, P

π
x -a.s.

(ii) For every initial state x ∈ S and π ∈ P ,

lim
n→∞

1

n

n−1∑
t=0

[R(Xt , At ) + �R(Xt , At )] = g, P
π
x -a.s. (8.1)

Proof. (i) Observe that the definition of the discrepancy function associated to the reward
function �k yields

�k(x, a) + ��k
(x, a) − gk = hk(x) −

∑
y∈S

Pxy(a)hk(y), (x, a) ∈ K,
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so that for every positive integer t ,

�k(Xt−1, At−1) + ��k
(Xt−1, At−1) − gk

= hk(Xt−1) −
∑
y∈S

PXt−1y(At−1)hk(y)

= hk(Xt−1) − hk(Xt ) + hk(Xt ) −
∑
y∈S

PXt−1y(At−1)hk(y)

= hk(Xt−1) − hk(Xt ) + Yk,t ,

where {Yk,n}n=1,2,3,... is the sequence of innovations associated to the function hk(·). Therefore,

1

n

n∑
t=1

[�k(Xt−1, At−1) + ��k
(Xt−1, At−1)] − gk

= hk(X0) − hk(Xn)

n
+ 1

n

n∑
t=1

Yk,t

≤ hk(X0) − bk

n
+ 1

n

n∑
t=1

Yk,t , k ≥ N, (8.2)

where the inequality stems from (6.7). Now, recall that |hk(·)| is bounded above by a positive
multiple of the Lyapunov function �∗ for �k , and then (6.5) yields |hk(·)| ≤ β�(·) for some
constant β. From this point, the property (4.1) implies that the condition (7.6) is satisfied by
hk(·), and an application of Theorem 7.1 yields for every x ∈ S and π ∈ P ,

1

n

n∑
t=1

Yk,t → 0, P
π
x -a.s.

Taking the limit superior as n goes to ∞ in (8.2), this equation immediately implies that

lim sup
n→∞

1

n

n∑
t=1

[�k(Xt−1, At−1) + ��k
(Xt−1, At−1)],

≤ gk, P
π
x -a.s., x ∈ S, π ∈ P , k > N.

(ii) Combining (6.9) and (6.14), it follows that for every positive integer k and u = −1, 1,

gk,u + hk,u(x) + h(x) = �k,u(x, a) +
∑
y∈S

Pxy(a)hk,u(y), (x, a) ∈ K

and proceeding as in part (i), this equality leads to

1

n

n∑
t=1

�k,u(Xt−1, At−1) − gk,u = hk,u(X0) − hk,u(Xn)

n
− 1

n

n∑
t=1

Yk,u,t , (8.3)

where {Yk,u,t }t=1,2,3,... is the sequence of innovations corresponding to the function hk,u, which
is bounded above by a positive multiple of the Lyapunov function �̃ (see (6.8)), and then
Theorem 6.1(iii) implies that |hk,u(·)|| ≤ c�(·) for some constant c. Therefore, the property
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(4.1) of the function � implies that the condition (7.6) is satisfied by hk,u(·), and then an
application of Theorem 7.1 yields for every x ∈ S and π ∈ P

1

n

n∑
t=1

Yk,u,t → 0 as n → ∞, P
π
x -a.s. (8.4)

Now, let N be the positive integer in Theorem 6.1(iv) and note that (6.10) and (8.3) together
imply that for every k ≥ N and n = 1, 2, 3, . . .,

1

n

n∑
t=1

�k,1(Xt−1, At−1) − gk,1 ≤ hk,u(X0) − bk,1

n
− 1

n

n∑
t=1

Yk,1,t ,

and
1

n

n∑
t=1

�k,−1(Xt−1, At−1) − gk,−1 ≥ hk,−1(X0) − bk,−1

n
− 1

n

n∑
t=1

Yk,−1,t ;

thus, via (8.4), it follows that for every x ∈ S and π ∈ P ,

lim sup
n→∞

1

n

n∑
t=1

�k,1(Xt−1, At−1) ≤ gk,1, P
π
x -a.s., k > N, (8.5)

and

lim inf
n→∞

1

n

n∑
t=1

�k,−1(Xt−1, At−1) ≥ gk,−1, P
π
x -a.s., k > N. (8.6)

Next, from Definition 6.2 and observing that �k ≥ 0, and then, since a discrepancy function is
nonnegative,

�k,1 = �k + ��k
+ R + �R ≥ R + �R,

and

�k,−1 = −[�k + ��k
] + R + �R ≤ R + �R,

are relations that when combined with (8.5) and (8.6) yield for every x ∈ S, π ∈ P , and k > N ,

lim sup
n→∞

1

n

n∑
t=1

[R(Xt−1, At−1) + �R(Xt−1, At−1)] ≤ gk,1, P
π
x -a.s. (8.7)

and

lim inf
n→∞

1

n

n∑
t=1

[R(Xt−1, At−1) + �R(Xt−1, At−1)] ≥ gk,−1, P
π
x -a.s. (8.8)

Finally, using (6.6) and (6.9), note that gk,u → g as k → ∞ for u = −1, 1, so that, after taking
the limit as k goes to ∞, (8.7) and (8.8) lead to

lim sup
n→∞

1

n

n∑
t=1

[R(Xt−1, At−1) + �R(Xt−1, At−1)] ≤ g, P
π
x -a.s. x ∈ S, π ∈ P ,
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and

lim inf
n→∞

1

n

n∑
t=1

[R(Xt−1, At−1) + �R(Xt−1, At−1)] ≥ g, P
π
x -a.s. x ∈ S, π ∈ P ,

establishing the desired conclusion.

Proof of Theorem 4.1. Since a discrepancy function is nonnegative, from Theorem 8.1(ii) it
follows that

lim sup
n→∞

1

n

n∑
t=1

R(Xt−1, At−1) ≤ g, P
π
x -a.s. x ∈ S, π ∈ P .

On the other hand, because the policy f ∈ F satisfies (3.3), from Definition 6.1 it follows
that �(x, f (x)) = 0 for every state x. Thus, using that At = f (Xt ) when the system is
running under the policy f it follows that for every initial state x and t ∈ N, the equality
�(Xt , At ) = �(Xt , f (Xt )) = 0 holds with probability 1 with respect to P

f
x . Therefore, from

Theorem 8.1(ii) it follows that

lim
n→∞

1

n

n∑
t=1

R(Xt−1, At−1) = g, P
f
x -a.s. x ∈ S;

thus, f is sample-path average optimal in the sense of Definition 4.1.

Remark 8.1. Determining the sample-path average optimal stationary policy f ∈ F in (3.3)
requires the knowledge of the solution (g, h(·)) of the optimality equation (3.1). When
such a solution is not available, approximation schemes can be used to obtain a sequence
{(gr , hr(·))}r=0,1,2,... converging to (g, h(·)), as well as a sequence {fr}r=0,1,2,... ⊂ F with the
following property:

lim
r→∞ �R(x, fr(x)) = 0, x ∈ S;

see, for instance, Montes-de-Oca and Hernández-Lerma (1996) and the references therein.
Using (8.1), it can be shown that the property in the above equation implies that a Markov
policy {ft } is sample-path optimal in the sense of Definition 4.1 (Cavazos-Cadena and Montes-
de-Oca (2012)).
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