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A SHORT PROOF OF VLADIMIRSKII'S THEOREM ON 
PRECOMPACT PERTURBATIONS IN LOCALLY 

CONVEX SPACES 
BY 

LE QUANG CHU 

1. Introduction and notations. Let T, P denote two continuous operators from 
E into F, where E and F are locally convex spaces. It is proved by L. Schwartz [8] 
and G. Kôthe [6] that if E and F are Fréchet spaces, T is a 0_-operator and P a 
compact operator, then T+P is a <D_-operator. 

In [9], Ju. N. Vladimirskii shows that for arbitrary locally convex spaces, this 
result is no longer true, but the following holds: if r i s an almost open operator, 
with a closed graph, such that the closure of its range has a finite codimension in 
F, and P is a precompact operator, then T+P is almost open and the closure of 
the range of T+P has a finite codimension in F. 

Ju. N. Vladimirskii's proof of this latter result is based upon an involved tech
nique to reduce it to that of L. Schwartz and G. Kôthe, and is rather long. 

The aim of this paper is to present a much shorter proof of Ju. N. Vladimirskii's 
theorem, using standard techniques of duality and a simple method developed in 
[2]. These considerations also lead to a result on the dimension of the kernel 
(null space) and the codimension of the closure of the range of T+P when T 
is open and P is bounded (i.e. P maps a neighbourhood into a bounded set) and 
"small" enough. 

We adopt the following notations. Unless otherwise specified, E and F always 
denote two general locally convex HausdorfT spaces and T, P two linear operators 
from E into F such that D{T)^D{P), where D(T) is the domain of definition 
of T We denote by N(T), R(T), and G(T) respectively the kernel, range and graph 
(in Ex F) of T. 

If A is a subset of E, then (A), )A( and [A]~ denote the absolutely convex hull, 
the linear hull and the closure of A in E respectively. An absolutely convex set 
is also called a disk. A finite disk is the absolutely convex hull of a finite set of 
points. If A is a disk, )A{ equipped with the topology defined by the Minkowski's 
gauge of A is referred to as the space generated by A. A set B is A-compact (resp. 
A-precompact) if 5 c )A{ and B is compact (resp. precompact) in the space gener
ated by A. 

By neighbourhood, we always mean an absolutely convex open neighbourhood 
of the origin. An operator 7" is open (resp. almost open)9 if for any neighbourhood 
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UinE, there is a neighbourhood F in F such that TU=> V n R(T) (resp. [TU\-=> 
V n R(T)). 

An operator T is called a 0 + (resp. Q)_) -operator if Tis open, G(r ) and i*(r) 
are closed and dim N(T) <oo (resp. codim R(T)< oo), where dim (resp. codim) 
is an abbreviation of dimension (resp. codimension). 

If A is a set then we write 

T~\A) = {xe D(T):Tx e A}, 

Finally we denote by E* the space of continuous linear functional defined on 
E (dual of E), T* the adjoint operator of T, acting from F* into E* when D(T) 
is dense in E, and A0 the polar of A in the duality. 

2. Ju. N. Vladimirskii's theorem. We recall first two important results due 
to I. C. Gokhberg, M. G. Krein [3] and T. Kato [5]. 

THEOREM 2.1. Let TandP be two operators from a Banach space E into a Banach 
space F, such that D(T) c D(P). 

If T is a <S)+-operator and P a compact operator, then T+P is a <f)^-operator. 
Moreover, dim N(T+XP)—n is constant for all X e C , except for at most a 

countable set of isolated points A4- where dim iV(J'+2 iP)>«. 

THEOREM 2.2. Let TandP be two operators from a Banach space E into a Banach 
space F such that D(T) c D(P). 

If T is a 0 + (resp. <$>_)-operator and if there are C and C such that 0 < C < C 
andTJJ^CV C\ R(T), PU^CV9 where U and V are the unit balls of E and F, then 
T+P is a 0 + (resp. Q>_)-operator and 

dim N(T+P) < dim N(T), 

codim R(T+P) < codim R(T). 

In Theorem 2.1, it could be seen that the set of the exceptional isolated points 
has no accumulation point at finite distance because n is the minimum of dim 
N(T+XP). See [7] and [4, Theorems V. 1.8 and V. 2.1]. 

We also need the following lemma. 

LEMMA 2.3. If L is a closed subspace of E, then d imL<oo if and only if 
codim L°< oo in £*, and in this case, dim L=codim LP. 

In particular, if T is an operator from E into F with D(T)=E and G(T) closed, 
then 

dim N(T) = codim[£(T*)r, 

dim N(T*) = codim[JR(T)r, 

when either side is finite, and where the closure is relative to the weak (pointwise) 
topologies. 
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Proof. The first part is an easy application of Hahn-Banach Theorem. The 
second follows from the fact that 

N(T)° = [R(T*)r> R(T)° = N(T*)-

The second relation is trivial. For the first, we need to prove that 

N(T) => R(T*f, 

which will imply that N(T)=R(T*)°, the inverse inclusion being trivial. If x $ N(T) 
then TXy£0. Since T has a closed graph, it is well known that D(T*) is (weak) 
dense in F*9 hence there is T e D(T*) such that r(75c)^0. Therefore x $ R(T*)°. 

THEOREM 2.4. (Ju. N. Vladimirskii [9]). Let E, F be locally convex spaces and 
T, P operators from E into F such that D(T) c D(P). 

IfTis almost open, G{T) closed, codim[jR(r)]~<oo, andP isprecompact, then 
T+P is almost open, G(T+P) closed and codim[R(T+P)]~< oo. 

Moreover, coàim[R(T+ÀP)]~=n is constant for all X e C except for at most a 
countable set of exceptional points ^ with no accumulation point at finite distance. 
At these points, codim[JR(JT+AP)]~>«. 

Proof. That G(T+P) is closed is trivial, since P is continuous. 
Let U be an arbitrary neighbourhood in F. We may suppose without loss of 

generality that D(T)=E and PU^K, where K is precompact in F. 
There is a neighbourhood V in E such that V n R(T) e [TU]-. Since V n R(T) 

is dense in V C\ [R(T)]~, we have V n [R(T)]~c [TU]-. This relation may be 
improved as 

[vr n [R(Dr c [Kn [Rixyrr c [run 
because F is a disk and [R(T)]~ is linear. 

Taking the polars, we obtain successively 

(TUf c [<F° U R(T)0)]-, 

T*-ivo c 7 0 + j V ( T * ) ? 

(7° n H(T*) <= T*F°, 

where the closure is taken with respect to the weak topology and V° is weakly 
compact. 

Since PU is precompact, V°k (Pt/)°-precompact. Hence P*V° is C/°-precompact. 
On the other hand, dimN(T*)=codim[R(T)]-<oo, by Lemma 2.3. Let D 

be a finite disk generating N(T*). 
Consider 

It is a Banach disk (i.e. generating a Banach space) since U° and F° are weakly 
compact and G(T*) is weakly closed in F*xE*. 
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Let L (resp. M) denote the Banach space generated by B+D (resp. U°). We 
haveT*LcM,P*Lc=M. 

As a matter of fact, P ( P * ) c M , because P^W^K0, hence P*K0^ U\ where 
K° is absorbent in F*. 

Let 7" and P ' denote the restrictions of F* and P* to L with range space M. 
We have 

T'(B+D) ^ U° n R(T'). 

Moreover, N(T') is finite dimensional, G(T') closed in LxM, R(T) closed in 
M (as r is open), D(T')^D(P') (as D(P*)=F*), and P\B+D) is *7°-compact 
(P'CP) is a finite disk). 

By Theorem 2.1, T'+P' is open and dimN(T'+P')<oo. For a l U e C except 
for at most a countable set with no finite accumulation value, dim N(T'+XP') is 
constant and minimum. From this we may derive the desired conclusions of the 
statement by duality. This is possible due to the following remarks. 

We have iV<T*+P*)<=Z,, and thus 

N(T*+P*) = N(V+P'). 

Indeed, if x e iV(F*+P*), then F*x= -P*x is an element of P(F*) n M=R{T). 
Thus x e L+i^(F*). But L+N(T*)=L. 

Similarly, R(T*+P*) C\ M=R(T'+P'). For if y e P(F*+P*) n M, then 
j = ( r * + P * ) x , and P * x = j - P * x G P(F*) n M. We conclude as above. 

Notice that 

dim N(T*+P*) = codim[R(T+P)]- < oo, 

dim iV(T*+;iP*) = codim[i^(T+AP)]-. 

On the other hand, there is / />0 such that 

(T'+P')(B+D) => juU° n JR(T'+P') 

^ pu0 n P(T*+P*). 
Therefore, 

/ / ( T ^ ' + P T 1 ^ 0 c £+F>+iV(T*+P*) 

c 3<P U D U iV(r*+P*)>, 
and 

[(T+P)t/]~ => W3 B° nD° n R(T+P) 

=> ̂ /3 F H i ) 0 P i P ( T + P ) . 

Since D° is a (weak) closed neighbourhood in F, it follows that T+P is almost 
open. 

3. Bounded perturbation. When P is only bounded, similar considerations 
yield the following. 

Suppose that there exist two neighbourhoods U and V in E and F such that 

[TU]~ => V n P(T), PU c £ , 
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where K is a bounded set in F, and that T has a closed graph. 
Then there is p>0 Such that, for all A e C Satisfying |A|</>, 
(a) j/codim[iÊ(r)]-<oo then 

codim[jR(T+AP)]- < codim[P(T)r, 

(b) if aim N(T) <oo and T is weakly open, then 

dim N(T+kP) <> dim N(T). 

In general, we may take 
/> = sup{A>0:A£c: v). 

IfR(P)c:R(T) then we may take 

p = sup{A > 0: IK n R(T) c [TUT}. 

In particular, (a) and (b) hold if T is open. 

Proof. We keep the same notations as in §2. We suppose that D(T)=E, and 
we have 

T*B 3 U° n JR(T*), P*X° c 17°, 

where B=V° n r* - 1^0 is a Banach disk, bounded for the weak topology, and 
K° is absorbent. Therefore K° absorbs B. Write />=sup{A>0:A£ <=#<>}. For any 
A e C, with \X\<p9 there is f such that |A|<f </>. 

In case (a), dim JV(r*)=codim[P(r)]-<oo. Let 2) be a finite disk generating 
N(T*) such that S(B+D)^K°. 

As in §2, let L and M denote the Banach spaces generated by B+D and U° 
respectively and T, P', the corresponding restrictions of T* and P*. Then, 

T'(B+D) D [ / ° n K(T'), 

AP^J3+Z))c=A/|P'[|(£+Z))], 

c A/£ £7°. 

Since dim N(T')<oo and |A/||<1, Theorem 2.2 applies to yield 

dim N(T*+2.P*) = dim N(T'+XP') < dim tf(T') 

^ dim AT(T*). 
By duality, 

codim[R(T+AP)r < codim[£(T)]-. 

In case (b), R(T*) is closed (for the weak topology) because r i s weakly open 
(R(T*)=N(T)°), and codim P(!T*)<oo. 

Now let L denote the Banach space generated by B. The other notations are 
unchanged. We have 

TB => U° n P(T'), AP'B c A/£ U°, 
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with codim R(T')<co (in M) and |A/ | |<1 . By Theorem 2.2, in M9 

codim R(T+1P') < codim R(V), 
and a fortiori 

codim K(T*+AP*) n M ^ codim R(T*) n M. 

Notice that # ( T * + ; i P * ) + M = # ( r * ) + M . It can be seen therefore that, in E*9 

codim JR(T*+AP*) < codim H(T*), 

hence (weak topology) 

codim[P(T*+AP*)]- < codim R(T*) 

< codim[«(T*)r. 
By duality, 

dim N(T+XP) < dim N(T). 

Both (a) and (b) are direct applications of Proposition 4.2 in [2]. This proposition 
in fact gives the further relationship that K(T*+ÀP*)=K(T*), where K(T)= 

dim N(T)—codim JR(T) when at least one term is finite (K(T) is the index of T) 
Hence in case (b), if codim[P(r)]~=oo then 

/c(T*+AP*) = *(T*) = oo, 
thus 

codim[P(T+lP) r = oo. 

If we have the assumptions of both (a) and (b) then 

dim iV(T+AP)-codim[P(T+AP)]- < dim JV(T)-codim[«(T)]" 

The equality holds if and only if jR(r*+AP*) is weakly closed in £*, i.e. if and 
only if T+XP is weakly open (T+AP has a closed graph). Some conditions to 
ensure that T+1P is almost open or open are discussed in a paper to appear 
in Bull. Soc. Royale Se. Liège. 

We wish to point out that M. De Wilde has communicated to us still another 
short proof of the first part of Theorem 2.4 (that T+P is almost open and 
codim[jR(T+P)]"~<oo), using only his results on "perturbation of disks" [1,2]. 
We wish also to thank him for many helpful discussions. 
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