ON AN AFFINE CONNECTION WHICH ADMITS A VOLUME-LIKE FORM

BY

D. P. CHI AND Y. D. YOON

ABSTRACT. A necessary and sufficient condition to obtain a volumelike form from an affine connection is given in terms of the Čech cohomology, after the volume-like form is naturally defined without a Riemannian metric. A necessary condition for an affine connection to be a Riemannian connection for some metric is also given.

1. **Introduction.** When the base manifold *M* is endowed with a Riemannian metric $ds^2 = \sum g_{ij} dx^i \otimes dx^j$, we get an affine connection *D*, called a Riemannian connection, which is locally expressed by the Christoffel symbols

$$\Gamma_{jk}^{i} = \frac{1}{2} \sum_{\alpha} g^{i\alpha} \left(\frac{\partial g_{j\alpha}}{\partial x^{k}} + \frac{\partial g_{k\alpha}}{\partial x^{j}} - \frac{\partial g_{jk}}{\partial x^{\alpha}} \right),$$

and a volume form

$$dV = \sqrt{\det(g_{ij})} dx^1 \wedge \cdots \wedge dx^n.$$

A simple computation leads us to the following formula [1, p. 294]

(1)
$$\frac{\partial}{\partial x^{\alpha}} \log \sqrt{\det(g_{ij})} = \sum_{k} \Gamma_{\alpha k}^{k}$$

The equation (1) shows the relation between a volume form and a Riemannian connection. Furthermore, the equation (1) is almost independent of the given metric ds^2 and therefore we could obtain a volume form from an affine connection without a metric.

From now on, the affine connection will be expressed by the matrix of connection 1-forms i.e., locally

$$D=d+\omega,$$

where ω is the matrix of connection 1-forms.

Then the equation (1) can be *locally* rewritten as

$$dG = \operatorname{tr} \omega,$$

where the volume form is $dV = \exp(G) dx^1 \wedge \cdots \wedge dx^n$.

AMS subject classification: 52C05.

Received March 9, 1990; revised June 22, 1990..

[©]Canadian Mathematical Society 1990.

The authors' research was supported in part by KOSEF and the ministry of education, Korea.

Note that the equation (*) is not global. Actually, if we have

$$dV = \exp(G_{\alpha}) dx_{\alpha}^{1} \wedge \dots \wedge dx_{\alpha}^{n} \quad \text{on } (U_{\alpha}, x_{\alpha})$$
$$= \exp(G_{\beta}) dx_{\beta}^{1} \wedge \dots \wedge dx_{\beta}^{n} \quad \text{on } (U_{\beta}, x_{\beta}),$$

then

$$\exp(G_{\alpha}) = \exp(G_{\beta}) \left| \frac{\partial x_{\beta}}{\partial x_{\alpha}} \right| \quad \text{on } U_{\alpha} \cap U_{\beta}.$$

Therefore we should regard the global solution of the equation (*) as the *n*-form dV. In this paper we found a local and a global obstructions which seem to be new ones in affine differential geometry.

Also note that, if G is a local solution of (*), so is G + c for any constant c. Hence the volume form is well defined up to a scalar multiple.

DEFINITION. A nowhere vanishing *n*-form dV defined on a smooth orientable manifold M of dimension n is said to be the affine volume form with respect to an affine connection D, if, when dV is locally expressed by $\pm \exp(G) dx^1 \wedge \cdots \wedge dx^n$, the equation $dG = \operatorname{tr} \omega$ is satisfied.

REMARK. When the connection arises from a Riemannian metric on a path connected manifold the Riemannian volume form is just a costant multiple of the affine volume form of the connection because of the equation (*).

2. Local solvability of $dG = \text{tr } \omega$. If *M* is orientable, which we now assume, then we may obtain a locally finite collection Φ of local charts (U_{α}, x_{α}) which satisfy

(1) the open sets cover M,

(2) each U_{α} is simply connected, and

(3) for each two $(U_{\alpha}, x_{\alpha}), (U_{\beta}, x_{\beta}) \in \Phi$, the transition matrix $A_{\alpha\beta} = (\frac{\partial x_{\alpha}}{\partial x_{\beta}})$ has positive determinant.

We choose such a collection Φ Let Ω be the curvature matrix of an affine connection D i.e., $\Omega = d\omega + \omega \wedge \omega$.

THEOREM 1. Let D be an affine connection with the curvature matrix Ω . Then the equation (*) has a local solution G_{α} on each $(U_{\alpha}, x_{\alpha}) \in \Phi$ if, and only if, tr $\Omega \equiv 0$.

Proof. (\Leftarrow)

$$0 = \operatorname{tr} \Omega = \operatorname{tr} (d\omega + \omega \wedge \omega)$$
$$= \operatorname{tr} (d\omega)$$
$$= d(\operatorname{tr} \omega).$$

Thus tr ω is a closed 1-form on each simply connected U_{α} . Since $\mathrm{H}^{\mathrm{l}}_{\mathrm{deRham}}(U_{\alpha}) \equiv 0$ because U_{α} is simply connected, tr ω is exact on U_{α} . That is, there is a smooth function G_{α} on U_{α} such that $dG_{\alpha} = \mathrm{tr} \omega_{\alpha}$.

$$(\Longrightarrow)$$

Conversely, if (*) has a local solution G_{α} on each $(U_{\alpha}, x_{\alpha}) \in \Phi$,

$$0 = ddG_{\alpha} = d(\operatorname{tr} \omega) = \operatorname{tr} \Omega.$$

Since U_{α} 's cover M, tr $\Omega \equiv 0$ on M.

Theorem 1 shows the local solvability of the equation (*).

Now we pass from the local solutions to a global solution dV which will be a special affine volume form.

Let A be an $n \times n$ non-singular matrix of smooth functions. Then the following identity is well known.

tr
$$(A^{-1}dA) = |A|^{-1}d|A|.$$

And, if |A| > 0, $|A|^{-1}dA = d(\log |A|)$.

Using this identity, we obtain

$$\operatorname{tr} \omega_{\beta} = \operatorname{tr} \left(A_{\alpha\beta}^{-1} \omega_{\alpha} A_{\alpha\beta} + A_{\alpha\beta}^{-1} dA_{\alpha\beta} \right)$$

$$= \operatorname{tr} \left(\omega_{\alpha} \right) + \operatorname{tr} \left(A_{\alpha\beta}^{-1} dA_{\alpha\beta} \right)$$

$$= \operatorname{tr} \left(\omega_{\alpha} \right) + |A_{\alpha\beta}|^{-1} d|A_{\alpha\beta}|$$

$$= \operatorname{tr} \left(\omega_{\alpha} \right) + d(\log |A_{\alpha\beta}|), \quad \text{if } |A_{\alpha\beta}| > 0.$$

From now on, we assume that tr $\Omega = 0$ i.e., the equation (*) is locally solvable.

Choose a solution G_{α} on each $(U_{\alpha}, x_{\alpha}) \in \Phi$, and consider a set $\{G_{\alpha}\}$ of such solutions.

On the intersection $U_{\alpha} \cap U_{\beta}$,

$$dG_{\alpha} = \operatorname{tr} \omega_{\alpha}$$

$$dG_{\beta} = \operatorname{tr} \omega_{\beta}$$

$$= \operatorname{tr} \omega_{\alpha} + d(\log |A_{\alpha\beta}|)$$

$$= dG_{\alpha} + d(\log |A_{\alpha\beta}|)$$

Hence we get, on $U_{\alpha} \cap U_{\beta}$,

$$G_{\beta} - G_{\alpha} - \log |A_{\alpha\beta}| \equiv \text{ constant} \quad \text{on } U_{\alpha} \cap U_{\beta}.$$

We denote this constant $c_{\alpha\beta}$, i.e.,

$$c_{\alpha\beta} \equiv G_{\beta} - G_{\alpha} - \log |A_{\alpha\beta}|.$$

LEMMA 1. The set $\{c_{\alpha\beta}\}$ is a 1-cocycle whose coefficients are in the constant sheaf $M \times R$ in the Čech cohomology sense.

PROOF. (i)

$$c_{\beta\alpha} = G_{\alpha} - G_{\beta} - \log |A_{\beta\alpha}|$$
$$= -G_{\beta} + G_{\alpha} + \log |A_{\alpha\beta}|$$
$$= -c_{\alpha\beta}$$

Therefore $\{c_{\alpha\beta}\}$ is a 1-cochain in the Čech sense.

[December

484

(ii) On $U_{\alpha} \cap U_{\beta} \cap U_{\gamma}$,

1990]

$$c_{\alpha\beta} = G_{\beta} - G_{\alpha} - \log |A_{\alpha\beta}|$$
$$c_{\beta\gamma} = G_{\gamma} - G_{\beta} - \log |A_{\beta\gamma}|$$
$$c_{\gamma\alpha} = G_{\alpha} - G_{\gamma} - \log |A_{\gamma\alpha}|$$
$$c_{\alpha\beta} + c_{\beta\gamma} + c_{\gamma\alpha} = -\log |A_{\alpha\beta}A_{\beta\gamma}A_{\gamma\alpha}|$$
$$= 0.$$

Therefore $\delta \{c_{\alpha\beta}\} = 0$ i.e., $\{c_{\alpha\beta}\}$ is a 1-cocycle in the Čech sense.

Lemma 1 means that : $\{c_{\alpha\beta}\} \in \check{H}^1(\Phi, M \times R)$. Since $\check{H}^1(U_{\alpha}) \cong 0$ for all α ,

$$\check{\mathrm{H}}^{1}(\Phi, M \times R) \cong \check{\mathrm{H}}^{1}(M, R).$$

Thus we obtain an obstruction $\theta \stackrel{\text{def}}{\equiv} [c_{\alpha\beta}] \in \check{H}^1(M, R).$

LEMMA 2. The obstruction θ is independent of the choice of the solutions G_{α} 's.

PROOF. Let \tilde{G}_{α} be another choice of the local solutions and let $\tilde{c}_{\alpha\beta} = \tilde{G}_{\beta} - \tilde{G}_{\alpha} - \log |A_{\alpha\beta}|$.

Then $\tilde{G}_{\alpha} = G_{\alpha} + c_{\alpha}$ for some constant c_{α} on U_{α} because $d\tilde{G}_{\alpha} = \text{tr } \omega = dG_{\alpha}$, and

$$ilde{c}_{lphaeta} = G_eta - G_lpha - \log |A_{lphaeta}| + c_eta - c_lpha \ = c_{lphaeta} + c_eta - c_lpha$$

i.e.,

$$\{\tilde{c}_{\alpha\beta}\} = \{c_{\alpha\beta}\} + \delta\{c_{\alpha}\}.$$

Hence $[\{\tilde{c}_{\alpha\beta}\}] = [\{c_{\alpha\beta}\}]$ in $\check{H}^1(\Phi, M \times R)$.

Therefore they give the same $\theta \in \check{H}^1(M, R)$.

LEMMA 3. θ is also independent of the choice of the locally finite collection Φ .

PROOF. Step 1: Let $\Phi = \{(U_j, x_j) \mid j \in J\}, \tilde{\Phi} = \{(V_\alpha, x_\alpha) \mid \alpha \in \Lambda\}$ be two collections as above, and let $f : \Lambda \longrightarrow J$ be a map such that

 $V_{\alpha} \subset U_{f(\alpha)}, x_{\alpha} = x_{f(\alpha)} |_{V_{\alpha}}.$

Then, taking $G_{\alpha} \equiv G_{f(\alpha)}$ on V_{α} , we easily find that the two [$\{c_{ij}\}$], [$\{\tilde{c}_{\alpha\beta}\}$], which are computed from $\Phi, \tilde{\Phi}$ respectively are the same in the cohomology group $\check{H}^{1}(M, R)$.

Step 2: Let $\mathcal{U} = \{ U_{\alpha} | \alpha \in \Lambda \}$ be a locally finite open covering of M, and $\Phi, \tilde{\Phi}$ two collections of local charts as above such that

$$\Phi = \{ (U_{\alpha}, x_{\alpha}) | \ \alpha \in \Lambda \}$$
$$\tilde{\Phi} = \{ (U_{\alpha}, \tilde{x}_{\alpha}) | \ \alpha \in \Lambda \}$$

485

On U_{α} , take G_{α} and \tilde{G}_{α} such that

$$dG_{\alpha} = \operatorname{tr} \omega_{\alpha} \quad \text{w.r.t.} (U_{\alpha}, x_{\alpha})$$
$$d\tilde{G}_{\alpha} = \operatorname{tr} \tilde{\omega}_{\alpha} \quad \text{w.r.t.} (U_{\alpha}, \tilde{x}_{\alpha}).$$

And define two 1-cocyles $\{c_{\alpha\beta}\}$, and $\{\tilde{c}_{\alpha\beta}\}$, respectively. Here,

$$\tilde{\omega}_{\alpha} = P_{\alpha}^{-1} \omega_{\alpha} P_{\alpha} + P_{\alpha}^{-1} dP_{\alpha},$$

where $P_{\alpha} = (\frac{\partial x_{\alpha}}{\partial \tilde{x}_{\alpha}})$ on U_{α} . Hence we get $\tilde{G}_{\alpha} = G_{\alpha} + \log |P_{\alpha}| + c_{\alpha}$ for some constant c_{α} on U_{α} . Then

$$\begin{split} \tilde{c}_{\alpha\beta} &= \tilde{G}_{\beta} - \tilde{G}_{\alpha} - \log |\tilde{A}_{\alpha\beta}| \\ &= G_{\beta} + \log |P_{\beta}| + c_{\beta} - G_{\alpha} - \log |P_{\alpha}| - c_{\alpha} - \log |\tilde{A}_{\alpha\beta}| \\ &= G_{\beta} - G_{\alpha} - \log |P_{\beta}^{-1}\tilde{A}_{\alpha\beta}P_{\alpha}| + c_{\beta} - c_{\alpha} \\ &= c_{\alpha\beta} + c_{\beta} - c_{\alpha}, \end{split}$$

where $\tilde{A}_{\alpha\beta} = (\frac{\partial \tilde{x}_{\alpha}}{\partial \tilde{x}_{\beta}}).$

Thus $[\{\tilde{c}_{\alpha\beta}\}] = [\{c_{\alpha\beta}\}] \in \check{H}^1(\mathcal{U}, M \times R)$. Step 3: For two coverings

$$\Phi_{1} = \{ (U_{i}, x_{i}) | i \in I \}, \Phi_{2} = \{ (V_{j}, x_{j}) | j \in J \},$$

we can construct two $\tilde{\Phi}_1, \tilde{\Phi}_2$ as follows;

$$\tilde{\Phi}_1 = \left\{ \left(U_i \cap V_j, x_i \mid_{U_i \cap V_j} \mid (i,j) \in I \times J \right\} \\ \tilde{\Phi}_2 = \left\{ \left(U_i \cap V_j, x_j \mid_{U_i \cap V_j} \mid (i,j) \in I \times J \right\} \right.$$

Then both $\tilde{\Phi}_1$ and $\tilde{\Phi}_2$ satisfy the above conditions.

Let $\theta_1, \theta_2, \tilde{\theta}_1, \tilde{\theta}_2$ be the cohomology elements with respect to $\Phi_1, \Phi_2, \tilde{\Phi}_1, \tilde{\Phi}_2$ respectively. Then they are all the same by Step 1 and Step 2. This proves our Lemma.

Note that the above Lemmas show that the obstruction θ depends only on the affine connection *D* and the base manifold *M*.

We are now ready to prove the global solvability of the equation $dG = \operatorname{tr} \omega$.

3. Global solvability of $dG = \operatorname{tr} \omega$.

THEOREM 2. Any collection of local solutions, $\{G_{\alpha}\}$, gives a globally well defined solution dV an affine volume form if, and only if, the obstruction $\theta = 0$ in $\check{H}^{1}(M, R)$.

PROOF. (<=)

If $\theta = 0$ in $\check{H}^1(M, R)$, $[\{c_{\alpha\beta}\}] = 0$ in $\check{H}^1(\Phi, M \times R)$. That is, $\{c_{\alpha\beta}\} = \delta\{c_\alpha\}$ for some 0-cochain $\{c_{\alpha}\}$, i.e.,

$$c_{\alpha\beta}=c_{\beta}-c_{\alpha}.$$

Now, define $dV \equiv \exp(G_{\alpha} - c_{\alpha}) dx^1 \wedge \cdots \wedge dx^n$ on each $(U_{\alpha}, x_{\alpha}) \in \Phi$. Then $d(G_{\alpha} - c_{\alpha}) = \text{tr } \omega$ on each U_{α} , and on every intersection $U_{\alpha} \cap U_{\beta} \neq \emptyset$,

$$\exp(G_{\alpha} - c_{\alpha})dx_{\alpha}^{1} \wedge \dots \wedge dx_{\alpha}^{n} = \exp(G_{\alpha} - c_{\alpha})|A_{\alpha\beta}| dx_{\beta}^{1} \wedge \dots \wedge dx_{\beta}^{n}$$
$$= \exp(G_{\alpha} - c_{\alpha} + \log|A_{\alpha\beta}|) dx_{\beta}^{1} \wedge \dots \wedge dx_{\beta}^{n}$$
$$= \exp(G_{\beta} - c_{\beta}) dx_{\beta}^{1} \wedge \dots \wedge dx_{\beta}^{n},$$

because $c_{\alpha\beta} = c_{\beta} - c_{\alpha} = G_{\beta} - G_{\alpha} - \log |A_{\alpha\beta}|$.

Therefore dV is a well defined n-form which satisfies the equation (*). (\Longrightarrow)

Conversely, let dV be a affine volume form. Then we may put $dV = \exp(G_{\alpha}) dx_{\alpha}^{1} \wedge$ $\cdots \wedge dx_{\alpha}^{n}$ on each (U_{α}, x_{α}) , and we know that $G_{\beta} = G_{\alpha} + \log |A_{\alpha\beta}|$ on the intersection $U_{\alpha} \cap U_{\beta}$.

Hence we have $c_{\alpha\beta} = 0$ for all α , β . Therefore $\theta = 0$ in $\check{H}^1(M, R)$.

From the Theorem 1 and Theorem 2 we obtain the complete main result.

MAIN THEOREM. An affine connection D admits an affine volume form dV if, and only if, tr $\Omega = 0$ and $\theta = 0$.

COROLLARY 1. On a orientable smooth manifold M with $\check{H}^1(M) = 0$, any affine connection D admits an affine volume form if, and only if, tr $\Omega = 0$.

PROOF. trivial.

1990]

COROLLARY 2. An affine connection D with tr $\Omega \neq 0$ or $\theta \neq 0$ can not be a Riemannian connection, i.e., any metric can not induce D as a Riemannian connection.

PROOF. If D is induced from a metric, it must give a volume form.

The obstruction θ is very far from being trivial since there are many affinely flat manifolds which can not have a volume like form. For example let $a \in D^* = \{z \in D^*\}$ $C^* ||z| < 1$ and let \mathbb{Z} act on C^* by $n(z) = a^n z$. Set $T_a^2 = C^* / \mathbb{Z}$ together the induced affine structure from the plane. Then T_a^2 is a affinely flat manifold.

Let $U_1 = \{z \in C^* | |a| + \epsilon < |z| < 1 - \epsilon\}$ and $U_2 = \{z \in C^* | |a| \le |z| < \epsilon\}$ $|a| + 2\epsilon \operatorname{orl} - 2\epsilon < |z| \le 1$. Then it is easy to see that $< \theta$, $\alpha >= 0$ and $< \theta$, $\beta >=$ $-2 \log |a|$ since the Jacobian determinant of $z \rightarrow az$ as a real linear map is $|a|^2$. We thank the refree for suggesting the above example to us.

D. P. CHI AND Y. D. YOON

REFERENCES

1. B. A. Dubrovin, A. T. Fomenko, S. P. Novikov, Modern Geometry Part 1, Springer-Verlag, 1984.

Department of Mathematics College of Natural Sciences Seoul National University Seoul 151-748 Korea