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Isomorphism Invariants for
Projective Configurations
I knew of Donald Coxeter’s work on regular polytopes when I was a schoolboy, and this greatly
encouraged my love of geometry. I first met him in 1951 when he was external examiner for
my doctorate, and I have remained in touch with him ever since. It is therefore with greatest
pleasure that I dedicate this paper to him. I believe the subject matter is the sort of geometry
that he enjoys.

G. C. Shephard

Abstract. An isomorphism invariant is an expression, defined for a configuration in the projective plane,
which takes the same value for all isomorphic configurations. Examples are given as well as a general method
(Nehring sequences) for constructing such invariants.

0 Introduction

The purpose of this paper is to define isomorphism invariants of configurations in the pro-
jective plane and to show how such invariants can be constructed.

To introduce the topic, consider Menelaus’ theorem. The classical form of the theorem
(Figure 1(a)) concerns a triangle [V0,V1,V2] and a transversal, by which we mean any line
which does not pass through a vertex, which cuts the side ViVi+1 in the point Wi . Here all
subscripts are reduced modulo 3. Menelaus’ theorem states that

‖V0W0‖

‖W0V1‖
·
‖V1W1‖

‖W1V2‖
·
‖V2W2‖

‖W2V0‖
= −1.(1)

The double vertical lines indicate signed or directed lengths of the indicated segments. There
is also an n-gonal form of the theorem; an example with n = 5 is shown in Figure 1(b).
With the corresponding notation (subscripts reduced modulo 5),

4∏

i=0

‖ViWi‖

‖WiVi+1‖
= −1.(2)

At first sight it may appear that the n-gonal form is just a straightforward generalisation of
the classical theorem, but we claim that it is really of an entirely different character. Since
there exists a non-singular projectivity which maps any triangle and transversal into any
other triangle and transversal, equation (1) implies that its left side is a projective invariant,
a fact that is also a consequence of Eves’ theorem, see below. However, in general, two
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pentagons with transversals are not projectively equivalent, so the left side of equation (2)
clearly has a much stronger invariance property.

Two configurations in the projective plane are said to be isomorphic if there exists a bijec-
tion which maps the elements (points and lines) of one onto the elements of the other and
is compatible with the incidence relation. Any numerical quantity defined for a projective
configuration is called an isomorphism invariant if it takes the same value for all isomor-
phic configurations. For example, the left side of (2) is an isomorphism invariant since it
takes the same value for every pentagon with transversal. Clearly, since projectively equiv-
alent configurations are isomorphic, all projective invariants are isomorphism invariants,
but not conversely. Isomorphism invariants can be constructed using the n-gonal forms of
Menelaus’ and Ceva’s theorems as indicated above, but if n > 3, in general, these are not
projective invariants. A more powerful method is by means of Nehring sequences, which
form the topic of Section 1 of this paper.

The rest of this paper is arranged as follows. Section 1 also includes the Main Theorem
which is used in constructing invariants. Section 2 contains examples that illustrate the
techniques, and the final section is devoted to general comments and historical remarks.

1 Nehring Sequences

Let b0, b1, . . . , bn−1 be n lines and P0, P1, . . . , Pn−1 be n points in the projective plane such
that, for each i, the point Pi does not lie on either of the lines bi , bi+1. Here, and throughout,
all subscripts j are reduced modulo n so they satisfy 0 ≤ j < n. Consider a sequence of 2n
terms in which lines and points alternate:

(b0, P0, b1, P1, b2, . . . , bn−1, Pn−1).(3)

Choose any point R0 on the line b0, and construct the points R1,R2, . . . ,Rn as follows: The
line R0P0 meets b1 in the point R1, the line R1P1 meets b2 in the point R2, . . . , and so on.
The line Rn−2Pn−2 meets bn−1 in Rn−1 and finally, Rn−1Pn−1 meets b0 in Rn. Then if R0 and
Rn always coincide, regardless of the point R0 on b0 from which we started the construction,
then (3) is called a Nehring sequence of length n.

At first sight it may seem that the condition that a sequence of points and lines form
a Nehring sequence is both unusual and artificial. This is not so, and although they have
not been recognised as such, they occur frequently throughout plane projective geometry.
Some general methods of constructing Nehring sequences are given in [10], and several
examples are described there.

The construction of the sequence of points R1,R2, . . . ,Rn starting from an arbitrary
initial point R0 on b0, as described above, will be used many times in this paper, and to
avoid repetitions we shall refer to this as the basic construction. Also whenever we consider
a sequence of alternate lines and points which is either a Nehring sequence, or a candidate
for such a sequence, we shall tacitly assume that none of the points lies on either of the two
lines which are adjacent to it in the sequence (and Pn−1 does not lie on either bn−1 or b0).

Since a Nehring sequence is defined in terms of incidences of points and lines, we may
apply the principle of duality. It is easy to check that the dual of a Nehring sequence is also
a Nehring sequence.
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An alternative way to express the condition that a sequence is a Nehring sequence is by
means of perspectivities [2, Section 14.5], [4, Section 1.6], [6, Section 6.1]. Clearly (3) is a
Nehring sequence if and only if the sequence of perspectivities

b0

P0

� b1

P1

� · · ·
Pn−1

� b0(4)

has a product (composition) π : b0 � b0 which is the identity projectivity. This formula-
tion enables perspectivities and projectivities to be used in investigating the properties of
Nehring sequences. For example, if we can prove that R0 = Rn for three distinct positions
of R0 on b0, then the projectivity π has three self-corresponding points and so must be the
identity, that is, R0 = Rn for all points R0 on b0 [2, Section 14.5].

As another example, the interpretation in terms of perspectivities leads immediately to
the following (dual) results; details of the proofs are left to the reader.

(i) Let b0, b1, . . . , bn−1 be any n concurrent lines, and P1, P2, . . . , Pn−1 be any n−1 points.
Then it is possible to find a point P0 such that (3) is a Nehring sequence.

(ii) Let B0,B1, . . . ,Bn−1 be any n collinear points, and p1, p2, . . . , pn−1 be any n− 1 lines.
Then it is possible to find a line p0 such that (p0,B0, p1,B1, . . . , pn−2,Bn−2, pn−1,
Bn−1) is a Nehring sequence.

In the Nehring sequence (3) we shall think of the points Pi as fixed and lines R0P0R1,
R1P1R2, . . . , as “moving” as R0 varies on b0, and hence refer to them as rays and the points
Pi as pivots. The lines in the sequence will be called base lines, or simply bases. In the
diagrams the pivots and base lines will be represented by heavy points and lines; other lines
in the figure will be lighter and the rays will be represented by dashed lines. Also, in the
figures and text, points will be denoted by upper-case letters, and lines by lower-case letters,
with or without subscripts. Generally we shall use P0, P1, . . . , for the pivots and b0, b1, . . . ,
for the bases.

In each of the examples in the next section we give three parameters, namely n, p and
b. The first of these is n, the length of the Nehring sequence, that is, either the number of
points or number of lines in it. The letters p and b will represent the number of pivots and
number of base lines respectively. Clearly p ≤ n and b ≤ n, and strict inequalities will
occur if some of the pivots or bases are repeated. The determination of all triples (n, p, b)
that correspond to Nehring sequences is an open problem. For example, if p = b = 2, then
it is easy to see that n must be even and must be at least 4.

Theorem 2 (The Main Theorem) Let (b0, P0, b1, P1, . . . , bn−1, Pn−1) be a Nehring sequence,
and, starting from a point R0 on b0, use the basic construction to determine R1,R2, . . . ,Rn−1.
Then, as R0 varies on b0,

‖R0P0‖

‖P0R1‖
·
‖R1P1‖

‖P1R2‖
· · · · ·

‖Rn−2Pn−2‖

‖Pn−2Rn−1‖
·
‖Rn−1Pn−1‖

‖Pn−1R0‖
= constant,(5)

that is, the value of the left side is independent of the choice of R0 on b0 so long as the left side is
defined (none of the denominators vanish). Moreover the value of the constant on the right side
is (−1)n if either the base lines b0, b1, . . . , bn−1 are concurrent, or the pivots P0, P1, . . . , Pn−1

are collinear.
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Before proving the theorem some explanation is necessary. At first sight equation (5)
may appear to be not meaningful since it uses directed lengths such as ‖AB‖ and clearly
these are not defined in the projective plane. However, if A, B, C are distinct collinear
points, then ‖AB‖/‖BC‖ is invariant under affine transformations and so this quotient is
defined in the affine plane. Moreover, the left side of (5) is what Eves [6, Section 6.1] calls
an h-expression, which is a product of quotients characterised by the fact that it satisfies the
following two conditions:

(1) In each factor the letters that occur (for example, R0, P0, R1 in the first factor) are
collinear points, and

(2) If each term such as ‖AB‖ is replaced by the symbolic product ab, then complete can-
cellation takes place.

Eves [6, Section 6.1] proves the following remarkable result.

Theorem 3 (Eves’ Theorem) Every h-expression is a projective invariant.

The simplest example of an h-expression is provided by the cross ratio of four collinear
points. Thus Eves’ theorem represents a substantial generalisation of this most important
numerical projective invariant. We feel that Eves’ theorem has never been given the recog-
nition it deserves and should be regarded as one of the fundamental results of projective
geometry.

We can now explain what is meant by (5). We first embed an affine plane in the pro-
jective plane by choosing a suitable “line at infinity”. (Here, “suitable” means any line that
is not a line in the figure, nor contains any of the points in the figure.) Then the left side
of (5) can be evaluated in the affine plane, and by Eves’ theorem its value is independent of
the way the affine plane was embedded, and is therefore defined in the projective plane.

Eves’ theorem implies, equivalently, that we may apply any projective transformation to
the configuration under consideration, and the left side is unchanged. But notice that the
main theorem implies a great deal more; it says that the value of the expression the left side
of (4) is unchanged as R0 varies on b0. We shall be primarily interested in the situation that
arises when such variation does not correspond to a projective transformation.

Proof of the Main Theorem Given the Nehring sequence (b0, P0, b1, P1, . . . , bn−1, Pn−1),
choose X0 as any point on b0, and determine X1,X2, . . . ,Xn−1 by the basic construction,
so X0 = b0 ∩ Pn−1Xn−1. Choose R0 as any point on b0 distinct from X0, and determine
R1,R2, . . . ,Rn−1 by the basic construction, so R0 = b0 ∩ Pn−1Rn−1. For each i = 0, . . . ,
n − 1 consider the rays XiPiXi+1 and RiPiRi+1. In Figure 2 we illustrate the four cases that
arise according to whether Pi separates or does not separate Xi and Xi+1, and separates or
does not separate Ri and Ri+1.

To begin with, consider all line segments to be positive, that is, unsigned. Then if
∠RiPiXi = ψi , ∠PiXiRi = χi and ∠PiXi+1Ri+1 = ωi , we see, from elementary geometry,
|RiPi |/ sinχi = |RiXi|/ sinψi and |PiRi+1|/ sinωi = |Ri+1Xi+1|/ sinψi . Hence, eliminating
sinψi ,

|RiPi |

|PiRi+1|
=
|RiXi| sinχi

|Ri+1Xi+1| sinωi
.(6)
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We wish to convert this relation into one between signed lengths. To do this, assign to each

line bi the positive direction
−→

RiXi ; then

‖RiPi‖

‖PiRi+1‖
= ±

sinχi‖RiXi‖

sinωi‖Ri+1Xi+1‖
(7)

where the sign is positive if Pi separates Ri and Ri+1 (Figures 2(a) and (d)) and is negative
if it does not do so (Figures 2(b) and (c)). Hence

n−1∏

i=0

‖RiPi‖

‖PiRi+1‖
= ±K

n−1∏

i=0

‖RiXi‖

‖Ri+1Xi+1‖
.(8)

The product on the right clearly equals 1, and K is a function of the sines of the angles χi

and ωi . These angles are constant as Ri varies on bi , so K is constant. This proves the first
part of the main theorem except for the ambiguity of signs. Clearly the sign will be fixed
so long as the separation, or non-separation, of each pair Ri , Ri+1 by Pi remains the same
in the affine plane. In the projective plane this can only change if, as a point Ri varies on
bi , it crosses the line at infinity (for then either the arrangements in Figure 2 (a) and (c) or
in (b) and (d) will be interchanged). But exactly two of these changes will take place; the
separation of Ri and Ri+1 by Pi and the separation of Ri and Ri−1 by Pi−1 will both change.
We deduce that the ambiguous sign in (8) remains the same, so

n−1∏

i=0

‖RiPi‖

‖PiRi+1‖
= constant

and the first statement of the theorem is proved.
For the final statements, we observe that when the base lines are concurrent in a point

O, one possible position for the points Ri is that in which they all coincide with O. Each
factor on the left side of (5) is then−1 and the value of the constant is (−1)n.

When the pivots are collinear on a line k then we may take all the points Xi as lying
on k. In Figure 3 we show four examples of arrangements that can occur. In (8) the con-
stant K is given by K =

∏n−1
i=0 (sinχi/ sinωi), but as sinωi−1 = sinχi , this takes the value 1

and so
∏n−1

i=0 (‖RiPi‖/‖PiRi+1‖) = ±1. To determine the ambiguous sign we observe that
‖RiPi‖/‖PiRi+1‖ is positive if Ri and Ri+1 lie on opposite sides of k, and negative if they
lie on the same side of k. As R0 is on the same side of k as Rn (trivially since these points
coincide!) we deduce

∏n−1
i=0 ‖RiPi‖/‖PiRi+1‖ = (−1)n. This completes the proof of the

main theorem.

The last two parts of the Main Theorem imply, and are equivalent to, Ceva’s and Mene-
laus’ Theorems for n-gons. Hence the Main Theorem may be regarded as a generalisation
of both these results.

The examples in the next section illustrate the close relationship between configurations
and Nehring sequences. This is not altogether surprising since the existence of many con-
figurations depends on showing that three points are collinear, which is exactly what is
required to show a sequence is a Nehring sequence (showing that the points Rn−1, Pn−1,
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R0 are collinear for all positions of R0 on b0). Some projective configurations may lead to
several Nehring sequences according to which points are selected as pivots, and which lines
are selected as bases. In Example 2 below, we show two isomorphism invariants that arise
from the Pappus’ configuration.

2 Examples of Isomorphism Invariants

Each example begins with the description of a configuration in the projective plane. When
a proof of the existence of the configuration is necessary we give either a reference or a hint
as to how to construct a proof. This is followed (except in the first part of Example 2, where
Menelaus’ 6-gonal theorem is used) by an explanation as to how the configuration gives
rise to a Nehring sequence, and we conclude with an explicit statement of the isomorphism
invariant that arises from application of the Main Theorem.

Example 1 (Complete quadrangle) [3, Section 2.4], [4, Section 1.4], see Figure 4. Let
Q = [V0,V1,V2,V3] be a quadrangle and k be any line that does not pass through any
vertex or diagonal point of Q. The quadrangle Q has three pairs of opposite sides. Take one
pair as the bases b0, b1; let a second pair meet k in P0, P2; let the third pair meet k in P1, P3.
Then

(b0, P0, b1, P1, b0, P2, b1, P3)(9)

is a Nehring sequence with n = p = 4 and b = 2. As we may interchange P0 and P2; P1

and P3; b0 and b1; and the pair P0, P2 with P1, P3, (9) represents several Nehring sequences,
though, in fact, only two of these are distinct.

The statement that (9) is a Nehring sequence follows immediately from the properties
of Q. Notice that if X0 = k ∩ b0 and X1 = k ∩ b1 then the three pairs X0,X1; P0, P2;
P1, P3 belong to an involution on k. In fact, the assertion that (9) is a Nehring sequence
is equivalent to the fact that the above three pairs of points belong to an involution [2,
Section 14.5], [3, Section 4.7], [4, Section 5.3]. We deduce from the Main Theorem,

‖R0P0‖

‖P0R1‖
·
‖R1P1‖

‖P1R2‖
·
‖R2P2‖

‖P2R3‖
·
‖R3P3‖

‖P3R0‖
= 1.

The constant is (−1)4 = 1 since the bases are (trivially) concurrent. The left side of the
above equality is therefore an isomorphism invariant.

Example 2 (Pappus’ configuration) [1, Ex. 1], [3, Section 4.3], [4, Section 4.4], [5, Sec-
tion 3.5], [6, Section 6.1], see Figure 5. Let X0,Y0,Z0; X1,Y1,Z1 be two sets of three
collinear points (Figure 5(a)). Then Pappus’ theorem implies that the three points (“cross-
joins”) T0 = X0Y1∩X1Y0, T1 = Y0Z1∩Y1Z0, T2 = Z0X1∩Z1X0 are collinear on some line k.
The 6-gonal form of Menelaus’ theorem applied to the hexagon [X0,Y1,Z0,X1,Y0,Z1] with
transversal k yields

‖X0T0‖

‖T0Y1‖
·
‖Y1T1‖

‖T1Z0‖
·
‖Z0T2‖

‖T2X1‖
·
‖X1T0‖

‖T0Y0‖
·
‖Y0T1‖

‖T1Z1‖
·
‖Z1T2‖

‖T2X0‖
= (−1)6 = 1,

https://doi.org/10.4153/CJM-1999-058-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1999-058-8


Isomorphism Invariants 1283

and so the left side is an isomorphism invariant.
Using Nehring sequences, Pappus’ theorem gives rise to another isomorphism invariant

as follows, see Figure 5(b).
Let P0, P1, P2 be any three distinct points and b0, b1, b2 be three lines such that each of

the points lies on just one of the lines, namely P0, P1, P2 lie on b2, b0, b1 respectively. Then

(b0, P0, b1, P1, b2, P2, b0, P0, b1, P1, b2, P2)

is a Nehring sequence with n = 6, p = b = 3. We say it is of period 2 since it consists of a
subsequence repeated twice.

A proof of this assertion is given in [10, pp. 38, 43] but an alternative proof is as follows.
Choose any point R0 on b0 and determine R1,R2, . . . ,R5,R6 by the basic construction.
Then the fact that R0 coincides with R6 will follow if we can show that the rays P0R1 and
P2R5 intersect at a point on b0. But this is immediate from Pappus’ theorem applied to the
triples of collinear points P0, R5, R2 and P2, R1, R4.

The Main Theorem implies that as R0 varies on b0,

‖R0P0‖

‖P0R1‖
·
‖R1P1‖

‖P1R2‖
·
‖R2P2‖

‖P2R3‖
·
‖R3P0‖

‖P0R4‖
·
‖R4P1‖

‖P1R5‖
·
‖R5P2‖

‖P2R0‖
= K.(10)

As the value of the constant K depends on the original choice of the points P0, P1, P2 and
the lines b0, b1, b2, the left side of (10) is not an isomorphism invariant. It can be made into
one in the following way. Consider the special case in which R0 coincides with B = b0 ∩ b2.
Then R1 = R2 = A = b1 ∩ b2, R3 = R4 = C = b1 ∩ b2 and R5 = B, and so

‖BP0‖

‖P0A‖
·
‖AP1‖

‖P1A‖
·
‖AP2‖

‖P2C‖
·
‖CP0‖

‖P0C‖
·
‖CP1‖

‖P1A‖
·
‖AP2‖

‖P2A‖
= −
‖BP0‖

‖P0A‖
·
‖AP2‖

‖P2C‖
·
‖CP1‖

‖P1B‖
= K,

since the second, fourth and sixth factors in the left product are each equal to−1. Hence

‖R0P0‖

‖P0R1‖
·
‖R1P1‖

‖P1R2‖
·
‖R2P2‖

‖P2R3‖
·
‖R3P0‖

‖P0R4‖
·
‖R4P1‖

‖P1R5‖
·
‖R5P2‖

‖P2R0‖
·
‖AP0‖

‖P0B‖
·
‖BP1‖

‖P1C‖
·
‖CP2‖

‖P2A‖
= −1,

and the left side of this equality is therefore an isomorphism invariant.

Example 3 (Pascal’s configuration) [1, Ex. 8], [2, Section 14.7], [3, Section 7.2], [4,
Section 9.2], [5, Section 3.8], [6, Section 6.2], see Figure 6. Choose three non-collinear
points P0, P1, B and two lines b0, b1 which do not pass through the chosen points. Define
P0B ∩ b1 = C , P1B ∩ b0 = D, P0P1 ∩CD = P4, b0 ∩ b1 = E and b2 = BE. Then

(b0, P0, b1, P1, b2, P0, b0, P1, b1, P4)

is a Nehring sequence with n= 5 and p= b= 3.
To prove this, let R0 be any point on b0 and determine R1, R2, R3, R4 by the basic

construction. The assertion will be proved if we can show that the points P4, R0 and R4

are collinear. To do this we first observe that R1C ∩ R3D = E, P0C ∩ P1D = B and
P1R1∩P0R3 = R2 are collinear since these three points lie on b2. These are the “cross-joins”
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of the two triples of points R1, D, P0 and R3, C , P1. Therefore, by the converse of Pascal’s
theorem, these six points lie on a conic section. Rearranging, we see that the triples R1, D,
P1 and R3, P0, C lie on a conic and so their cross-joins R1P0 ∩ R3D = R0, R1C ∩ R3P1 = R4

and DC ∩ P0P1 = P4 are collinear, as required.
The Main Theorem implies that for any point R0 on b0, since the base lines are concur-

rent,
‖R0P0‖

‖P0R1‖
·
‖R1P1‖

‖P1R2‖
·
‖R2P0‖

‖P0R3‖
·
‖R3P1‖

‖P1R4‖
·
‖R4P4‖

‖P4R0‖
= (−1)5 = −1

and therefore the left side is an isomorphism invariant.

Example 4 [10, p. 42], see Figure 7. Let X0,X1, . . . ,X5 be the vertices of a hexagon of
which no three vertices are collinear and no three sides are concurrent. Define P0 = X0X1∩
X3X4, P1 = X1X2 ∩ X4X5, P2 = X2X3 ∩ X5X0, b0 = X0X3, b1 = X1X4, b2 = X2X5; then

(b0, P0, b1, P1, b2, P2, b0, P0, b1, P1, b2, P2)

is a Nehring sequence with n = 6, p = b = 3, and period 2.
A proof of this fact follows simply from the expression of the Nehring property in terms

of perspectivities. Details are given in [10, Theorem 1]. This example can be generalised to
any odd t ≥ 3: starting from a 2t-gon, the analogous construction (with the pivots as the
intersection of opposite sides) yields a Nehring sequence of length 2t and period 2.

In the case t = 3, the Main Theorem implies that, starting from any point R0 on b0, with
R1,R2, . . . ,R5 determined by the basic construction,

‖R0P0‖

‖P0R1‖
·
‖R1P1‖

‖P1R2‖
·
‖R2P2‖

‖P2R3‖
·
‖R3P0‖

‖P0R4‖
·
‖R4P1‖

‖P1R5‖
·
‖R5P2‖

‖P2R0‖
= K.(11)

The value of the constant K depends on the choice of hexagon originally chosen to define
the figure, and so the left side of (11) is not an isomorphism invariant. However it can be
made into one in the following way. Clearly

‖X0P0‖

‖P0X1‖
·
‖X1P1‖

‖P1X2‖
·
‖X2P2‖

‖P2X3‖
·
‖X3P0‖

‖P0X4‖
·
‖X4P1‖

‖P1X5‖
·
‖X5P2‖

‖P2X0‖
= K,

and so

‖R0P0‖

‖P0R1‖
·
‖R1P1‖

‖P1R2‖
·
‖R2P2‖

‖P2R3‖
·
‖R3P0‖

‖P0R4‖
·
‖R4P1‖

‖P1R5‖
·
‖R5P2‖

‖P2R0‖

·
‖X1P0‖

‖P0X0‖
·
‖X2P1‖

‖P1X1‖
·
‖X3P2‖

‖P2X2‖
·
‖X4P0‖

‖P0X3‖
·
‖X5P1‖

‖P1X4‖
·
‖X0P2‖

‖P2X5‖
= 1

and the left side of this equality is an isomorphism invariant.
The next three examples relate to some interesting configurations which are not well-

known. In each case the corresponding Nehring sequences have n = b = 4 and p = 3
or 4.
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Example 5 (Perspective triangles) [1, Ex 59], see Figure 8. If [A,B,C] and [D, E, F] are
two triangles such that AD, BE, CF are concurrent in a point X, they are said to be in
perspective from X. If also [A,B,C], [E, F,D] are in perspective from Y , we say they are
in double perspective. Then, as Chou succinctly puts it, “doubly perspective triangles are,
in fact, triply perspective”, in other words, under these circumstances, [A,B,C], [F,D, E]
are in perspective from a point Z, see Figure 8(a). In fact the configuration is symmetri-
cal in that the three triangles [A,B,C], [D, E, F], [X,Y,Z] are such that, with appropriate
ordering of the vertices, every pair are in perspective from each vertex of the third.

This is easy to prove using Pappus’ theorem. One way to convert this configuration into
a Nehring sequence is to define pivots P0 = E, P1 = D, P2 = F and bases b0 = AP2,
b1 = XP2, b2 = AP0 and b3 = XP0, see Figure 10(b). Since Z can be chosen as any point
on b0, put R0 = Z and then R1 = C , R2 = Y , R3 = B have the required incidences and so

(b0, P0, b1, P1, b2, P2, b3, P1)

is a Nehring sequence with n = b = 4 and p = 3. By the Main Theorem, as R0 varies on b0,

‖R0P0‖

‖P0R1‖
·
‖R1P1‖

‖P1R2‖
·
‖R2P2‖

‖P2R3‖
·
‖R3P1‖

‖P1R0‖
= K.(12)

To find the value of the constant K, write U = b1 ∩ b2 (= EA∩ FX) and G = P0P2 ∩XA
(= EF ∩ XA). Consider the special case in which R0 coincides with A. Then R1 = R2 = U
and R3 = X, so the left side of (12) becomes

‖AE‖

‖EU‖
·
‖U D‖

‖DU‖
·
‖U F‖

‖FX‖
·
‖XD‖

‖DA‖
.

The second factor is−1 and (‖AE‖/‖EU‖) ·(‖U F‖/‖FX‖) = −‖GA‖/‖XG‖ by Menelaus’
Theorem applied to the triangle [A,U ,X] and transversal EF. Hence the value of the con-
stant K in (12) is the cross-ratio (‖GA‖/‖XG‖) · (‖XD‖/‖DA‖) = cr(G,D; A,X). Conse-
quently

‖R0P0‖

‖P0R1‖
·
‖R1P1‖

‖P1R2‖
·
‖R2P2‖

‖P2R3‖
·
‖R3P1‖

‖P1R0‖
=
‖GA‖

‖XG‖
·
‖XD‖

‖DA‖

and so
‖R0P0‖

‖P0R1‖
·
‖R1P1‖

‖P1R2‖
·
‖R2P2‖

‖P2R3‖
·
‖R3P1‖

‖P1R0‖
·
‖XG‖

‖GA‖
·
‖AD‖

‖DX‖
= 1

and therefore the left side of this equality is an isomorphism invariant.

Example 6 (The double Ceva configuration) [1, Ex. 26], [6, Section 2.3], see Figure 9.
Let T1 = [X1,Y1,Z1] be a triangle and U any point not on a side of T1. Let X1U , Y1U ,
Z1U meet the sides Y1Z1, Z1X1, X1Y1 of T1 the points X2, Y2, Z2 respectively. Let T2 =
[X2,Y2,Z2] and W be any point not on a side of T2. Let X2W , Y2W , Z2W meet the sides
Y2Z2, Z2X2, X2Y2 of T2 in X3, Y3, Z3 respectively. Then the lines X1X3, Y1Y3, Z1Z3 are
concurrent, see Figure 9(a).

To prove this we apply the 4-gonal form of Menelaus’ theorem three times, to the quad-
rangles [Z2,Y2,Z1,Y1], [X2,Z2,X1,Z1], [Y2,X2,Y1,X1], and then Ceva’s theorem to the
triangles T1 and T2. Details are left to the reader.
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This configuration gives rise to a Nehring sequence with n = p = b = 4 as follows. Let
the points Z2, Y2, Y1, Z1 be the pivots P0, P1, P2, P3, and define bases b0 = X2P1 (= X2Y2),
b1 = X2X3, b2 = X2P0 (= X2Z2) and b3 = X1X3. Then

(b0, P0, b1, P1, b2, P2, b3, P3)

is a Nehring sequence with n = p = b = 4, see Figure 9(b).
By the Main Theorem,

‖R0P0‖

‖P0R1‖
·
‖R1P1‖

‖P1R2‖
·
‖R2P2‖

‖P2R3‖
·
‖R3P3‖

‖P3R0‖
= K.(13)

To determine the value of the constant K, consider the special case where R0 = X2. Then
clearly R1 = R2 = X2 also, and R3 = X4. Substituting in the above, and simplifying,
we obtain K = cr(X2,X4; Y1,Z1) as the value of the constant, and so, as in the previous
example,

‖R0P0‖

‖P0R1‖
·
‖R1P1‖

‖P1R2‖
·
‖R2P2‖

‖P2R3‖
·
‖R3P3‖

‖P3R0‖
·
‖Z1X2‖

‖X2Y1‖
·
‖X1X4‖

‖X4Z1‖
= 1

and the left side of this equality is an isomorphism invariant.

Example 7 (The double transversal configuration) [1, Ex. 61], see Figure 10. Let T1 =
[X1,Y1,Z1] be a triangle and U any point not on a side of T1. Let X1U , Y1U , Z1U meet
the sides Y1Z1, Z1X1, X1Y1 of T1 at the points X2, Y2, Z2 respectively. Let an arbitrary line k
meet the sides Y2Z2, Z2X2, X2Y2 of T2 in X3, Y3, Z3 respectively. Define X1X3 ∩ Y1Z1 = X4,
Y1Y3 ∩ Z1X1 = Y4 and Z1Z3 ∩ X1Y1 = Z4. Then the points X4, Y4, Z4 are collinear, see
Figure 10(a).

This can be proved by applying Menelaus’ theorem to the same three quadrangles as in
the previous example.

This configuration gives rise to a Nehring sequence with n = p = b = 4, in the follow-
ing way. Let the points Z1, Y3, X1, Y4 be the pivots P0, P1, P2, P3 and define b0 = X1Y1,
b1 = Y2X3, b2 = Y2Z2 and b3 = Y1Z1. Then

(b0, P0, b1, P1, b2, P2, b3, P3)

is a Nehring sequence, see Figure 10(b).
By the Main Theorem equation (13) holds for this new sequence. To determine the

value of the constant consider the special case R0 = X1. Then R1 = R2 = Y2 and R3 = Z1.
Substituting in (13) yields cr(Y2,Y4; X1,Z1) as the value of the constant and hence, as in the
previous example,

‖R0P0‖

‖P0R1‖
·
‖R1P1‖

‖P1R2‖
·
‖R2P2‖

‖P2R3‖
·
‖R3P3‖

‖P3R0‖
·
‖Z1X2‖

‖X2Y1‖
·
‖X1Y4‖

‖Y4Z1‖
= 1

and the left side of this equality is an isomorphism invariant.
The final two examples are included to illustrate the fact that Nehring sequences exist

with arbitrarily many pivots and bases. Proofs of the existence of these Nehring sequences
can be found in [10].
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Each construction involves a polygon, and although these are shown as convex in the
diagrams, they can be quite general. Vertices may be collinear, edges intersect or overlap,
etc. The only requirement is that the figure should be well-defined. Thus if a point is defined
as the intersection of two lines, then these lines must be distinct—if it is defined as the join
of two points, then these points must be distinct, and so on.

Example 8 [10, p. 46], see Figure 11. Let t be any odd integer greater than unity, and put
t = 2s + 1 (s ≥ 1). Let Q = [P0, P1, . . . , Pt−1] be a t-gon and O any point not on a side of
Q. For i = 0, 1, . . . , t − 1 let bi be the line OPi+s. Then

(b0, P0, b1, P1, . . . , bt−1, Pt−1, b0, P0, . . . , bt−1, Pt−1)

is a Nehring sequence of period 2 with n = 2t , p = b = t . In Figure 11 we show an example
with t = 5.

The Main Theorem tells us that as P0 varies on b0, with R1,R2, . . . ,R2t−1 determined by
the basic construction,

2t−1∏

i=0

‖RiPi‖

‖PiRi+1‖
= 1

where the subscripts of the pivots Pi are reduced modulo t and those of the points Ri are
reduced modulo 2t . The left side of this equality is an isomorphism invariant.

Example 9 [10, p. 45], see Figure 12. Let t be any even integer greater than or equal to 6.
Let Q = [P0, P1, . . . , Pn−1] be a t-gon and O be any point not on a side of Q. For each
i = 0, 1, . . . , t − 1 let bi be the line joining O to Ui = Pi−2Pi−1 ∩ PiPi+1. Then

(b0, P0, b1, P1, . . . , bt−1, Pt−1)

is a Nehring sequence with n = p = b = t . Figure 12 shows an example with t = 6.
The Main Theorem tells us that as P0 varies on b0,

n−1∏

i=0

‖RiPi‖

‖PiRi+1‖
= 1,

where the subscripts of all the points are reduced modulo n. The left side of this equality is
therefore an isomorphism invariant.

3 Conclusion

The reason for the name Nehring sequence is as follows. In the nineteen-forties Otto
Nehring [7], [8] published several papers describing cyclic incidence properties for poly-
gons. In 1996 W. Reyes [9], apparently unaware of Nehring’s work, described a similar
property for a triangle. In [10] the theory was unified by the introduction of the concept
of a Nehring sequence. Besides their intrinsic interest, Nehring sequences can be used to
provide alternative definitions of many familiar concepts in projecive geometry.
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(a)

W1

V1

W0

V0

W2

V2

(b)

W1

V1

W0

V0

W4

V4

W3

V3

W2

V2

Figure 1

The most interesting feature of the above presentation is probably not in the results
themselves, but in the fact that, so far as we are aware, they were not discovered many years
ago. This cannot be attributed to the fact that the Main Theorem was unknown, for, in
the case of collinear pivots, as we can see from Example 2, similar results can be obtained
using Menelaus’ Theorem. More likely it is due to the fact that Eves’ Theorem had not been
discovered (and even today this seems to be known to comparatively few geometers). The
left side of (5) is clearly an affine invariant, but until recently it was not realised that it was
also a projective invariant. Consequently the inclusion of a term like this was regarded as
foreign to the study of projective geometry.

The main consequence of our treatment is that now, instead of just one numerical pro-
jective invariant (the cross-ratio), we have many isomorphism invariants, which are also
projective invariants, and the means (Nehring sequences) of constructing many more—
the list of examples in the previous section could be extended indefinitely. The isolated
example of the cross-ratio now seems a “poor relation” to the wealth of invariant material,
both in projective geometry and in the study of isomorphic configurations, that is now
available.
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(a)

Ri+1

ωi

Xi+1

bi+1

Pi
ψi

χi
Xi

Ri

bi

(b)
Pi
ψi

ωi

Ri+1

bi+1

Xi+1

χi
Xi

Ri

bi

(c)

bi+1
Xi+1

ωi

Pi
ψi

Ri+1

χi

Xi

Ri

bi

(d)

bi+1
Ri+1

Pi
ψi

ωi

Xi+1 χi

Xi

Ri

bi

Figure 2
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k
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k

(c)

Pi

ψi

↗
ωi+1

↗

Ri+1

Xi+1

bi+1

Xi−1

bi−1

χi−1
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↖
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Ri
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bi

k

(d)
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Xi
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↖
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k

Figure 3
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V2 R3

k

P0

P1
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P3

X1

R2

V1 R0

R1

V0

V3

b0

b1

Figure 4
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Figure 5
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b1

R1
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R3
b0

E
R2

P4

R0

R4

D

C

B

P0
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Figure 6
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b1
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b2
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Figure 7
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Figure 11
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