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SOLUTION OF THE PROBLEM OF STABILITY 
OF A STELLAR SYSTEM WITH EMDEN'S DENSITY LAW 
AND A SPHERICAL DISTRIBUTION OF VELOCITIES 

V. A. Antonov 
Zhdanov State University 
Leningrad, U.S.S.R. 

A B S T R A C T . Applying a criterion previously derived by the author, 
the stability of stellar systems with an isotropic distribution velocity 
distribution and Emden's polytropic density law is demonstrated for the 
exponent η — 3/2. 

§Ι· 

Emden's law connecting density and potential has the following form [1]: 

v = c{U-H)n. (1) 

In this case, ν — v[r) is the stellar density of a spherical system; U = U(r) is the 
potential; Η is its value at the boundary of the system; c and η are constants. 
By varying the exponent n, it is possible to obtain models which are more or less 
concentrated toward the center. In the present paper we shall assume that the 
phase density is a function of the energy integral only, i.e., the velocity diagram 
is spherically symmetric at any distance from the center. In this case, in order to 
obtain Emden's law, it is necessary to give the phase density 

* = C , ( C T - y - f f ) n - t , (2) 

where c\ is a certain new constant. This can be verified easily by integration with 
respect to the velocities. Furthermore, expression (2) is the only one corresponding 
to (1) under our assumptions, as can be seen from the theory of integral equations 
[2]· 

In what follows, we shall assume that η > 3/2. Otherwise, equation (2) gives 
a very artificial form of the velocity diagram; moreover, the usual definition of 
Lyapunov stability is not suitable here. 

We shall prove the following theorems concerning stability with respect to the 
regular forces in stellar systems in which the phase density is a decreasing function 
of the energy integral: 

1. For the stability of a stellar system, generally only perturbations preserving 
the spherical symmetry of the system can be dangerous (see Section IV). 
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532 V. A. A N T O N O V 

2. A sufficient condition for the stability of a stellar system is that d3u/du3 > 
0 for all values of r (see Sections II and III). In particular, this condition 
encompasses Emden's law with η > 2. 

3. We shall give below a proof that is valid for Emden's law with η < 3 only. 
Thus, the points 2 and 3 overlap. 
Now, let η < 3. Consider the stability criterion given in [3]: 

where Φ = f{E) is the phase density. We have to prove that this expression is 
positive for any function q which can be represented in the form 

q — vgradrf + gradrU gradvf, (4) 

where / is a differentiable function of the phase coordinates. As in the following 
formulae, if no limits are indicated, the integrals in equation (3) extend over the 
whole physical and phase volume occupied by the system. 

The positivity of expression (3) can be proved with a very weak limitation 
imposed on q, namely, 

q dfdv = 0. (5) 

By use of the Cauchy inequality, we have 

/ WfdË\diî- ( /
 qd^2/S \dFldE\diI- (6) 

The absolute value sign is necessary here since F(E) is a decreasing function of E. 
Let us prove an auxiliary equality. Write the relation between the stellar 

density and the phase density as 

ν = j φ ( | υ 2 - U)dv. (7) 

Differentiate equation (7) with respect to U 

= - j V{\v*-U)dv, 

or 

J \df/dE\dv = ^ . 

Taking into consideration condition (6), we see that the stability will be proved if we 
succeed in demonstrating the positivity of the expression which is easily obtained 
from (3) and that is not greater than the latter: 

du 

dU 
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SOLUTION OF THE PROBLEM OF STABILITY OF A STELLAR SYSTEM 533 

p{f) = j qdv. (9) 

Let us limit our proof, for the time being, to the case of perturbations of the 
kind of radial pulsations which do not disturb the spherical symmetry of the system. 
The stability for perturbations of a more general form will be demonstrated later 
on. 

Thus, let ρ — p(r). If we disregard the coefficient — raG, the second term 
in expression (8) represents twice the energy of the field created by the "charge" 
distributed in space with a density p(r). However, it is known [4] that the energy 
of such a field can be represented in a different form, namely, 

where Wp is the potential that corresponds, mathematically, to the charge p. It is 
easy to find that dWp/dr = 4n/r2r, where 

r(r) = / r2pdr. (11) 
Jo 

The first term of (8) can be expressed in terms of the same function of r. Indeed, 
if we differentiate equation (11), we obtain 

I dr , . 
< i 2 ) 

Substituting these results in (8), we obtain 

4*f[Ù2/r2%]dr-16«2mGf£dr- w 
From (5) and (11) we have the boundary condition that r becomes zero on the 
boundary of the system and outside it. From (11) it follows also that r(0) = 0, this 
zero being of the third order. 

We have reached a variation problem typical for oscillatory phenomena. We 
are looking for the minimum of 

2 

and we have to prove that λ > 1. By the ordinary rules, the solution of this problem 
is given by the differential equation 

d ,dr , o dv ν _ , r , λ 

where λ turns out to be the first eigenvalue for the above mentioned boundary 
conditions r(0) = r(6) = 0, with 6 equal to the radius of the system. 

where 
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534 V. A. A N T O N O V 

Let us take the comparison function 7 o ( r ) , which satisfies the initial condition 
r o(0) — 0 a n a * the differential equation 

d , drn . q du \ _ τ η , 

In the case of Emden's law, TQ can be found in an explicit form; it is equal to 

r 0 = (n - 3 ) r 2 ^ + 4nmG(n - l ) r 3 i / , (16) 
dr 

which can be verified easily by direct substitution in (15), taking into account the 
Poisson equation. 

Let us now multiply (15) by r, and (14) by r 0; let us subtract one from the 
other and integrate from 0 to b. We obtain 

£\4Âr %)-<ίΦ'2%)Υ+- » £ 
We apply partial integration, and take into account that ro has a zero of the third 
order for r — 0. Then it follows from (16): 

However, inside the range (0,6) τ is positive as the first eigenfunction, so that 
(dr/dr)r=b < 0. As for r 0 , it is positive because of (16) (this is where the assumption 
η < 3 is required). On account of (2), we have du/dU > 0. From (17) we then obtain 
λ > 1, which was required to prove stability. 

§π· 

The derivation of the stability criterion changes little if, instead of a system with a 
spherically symmetrical distribution of velocities, we consider a system of spherical 
form in which the phase density is a function of the energy and of the area integral in 
the orbital plane, and which is subject only to perturbations which would preserve 
spherical symmetry, (pulsations). Instead of dF/dE one must now write dF/dE. 

Now, let us assign a certain scalar quantity Vs to each star. We shall discuss 
the distribution of this variable in detail below. Let us assume that Vs has the 
dimension of velocity although it does not vary with the motion of the star and, 
in turn, it does not affect its motion. Let us construct a phase density Φ(γ*, v , V s ) , 
which depends on Vs as on a parameter. The choice of this fictitious phase density 
is, to a large degree, arbitrary, but in the integration with respect to V3 it must 
give the true phase density, 

/

+ 0 0 

*( r , ν, Vs) dVs = * ( r , v). (18) 

- O O 
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SOLUTION OF THE PROBLEM OF STABILITY OF A STELLAR SYSTEM 535 

/ / / 
q2 

drdvdVs 
[dF/dE) ( 2 0 ) 

- M G F J J J J J *(Γ"· *'
 Vp_qi^' * ' V a ) dfdñdvdvldVsdVal, 

with 
(q = vgradrf - gradr(j) gradvf). 

Let us divide the whole phase space into "layers" with almost identical values 
of I within the limits of each layer. Essentially, this means a classification of stars 
with respect to / , which is an integral of motion even in a pulsating gravitational 
field; this cannot be said of E. We shall indicate the number of the layer by the 
subscript index q = Σι Qi-> w n e r e Qi differs from zero only for J t < (rVt)

2 < J t + AJ¿. 
We shall represent F in exactly the same way: 

where F¿ differs from zero for 7 t < (rVt)
2 < I i + ΔΙ{. 

It is understood that I i and AI{ depend on i only. The functional (20) takes 
the form 

- V / / / ^-drdvdV, 
^ J J J [dFtdE) 

Γ Γ Γ Γ Γ Γ ^ ι ( ^* ' ~ 7 ° / ζ — , * ν ' Α ' o i / 

— mG J j j J J J ~ ρ \ ι dfdvdVsdfidv\dVsi 

Y,qi(r,v,V8) · Σ&· (π , ν ι ,ν β ι ) ^ 2 1 ^ 

* The potential energy Φ equal to minus the potential is introduced in place of 
the potential U since in this way the formulae become more symmetrical. 

Since we are considering a stationary case, we can express Φ in terms of the integrals 
of motion, and write Φ ( £ , J ,Vs) instead of ^ ( r , v , V s ) . Here Ε = Φ + \v2 is the 
energy integral,* and 

/ = ( r xtT) 2 = ( r V 4 )
2 

is the square of the angular momentum, where Vt is the tangential velocity. 
Let us further assume that Φ has the form 

* = (19) 

where E = E + \V§. Substituting in (18), we obtain 

/

+00 
F{E+\VJ),I)dVs. 

-oo 

If Φ is a sufficiently smooth function of E, this integral equation will determine a 
function F(E,I), which is decreasing with respect to È. 

With respect to the fictitious phase density Φ, the stability problem is formu-
lated in the same way as with respect to the true Φ. It is obvious that the stability 
of φ implies the stability of Φ. We thus arrive at the functional 
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Let us substitute, for each g¿, the condition of orthogonality to an arbitrary function 
of Ë. This condition is weaker than is required. Indeed, 

Ç / / / *σ*(Εϊ d f d í í d V s = ^{ÈJ) drdvdVs 

i 

~ I I l ^ y r a d r f ~ yradr® 9radvf) σ(Ε, I) dfdvdV3 

~ I I l ^ r a d r ^ ° ^ ~~ 9radr$ gradv(fc)}drdvdV8, 

since the terms with gradra and gradvo cancel. If one transforms to area integrals, 
it becomes clear that the last integral equals zero. 

In turn, each qi is now expanded into two terms in such a manner that both of 
them conserve orthogonality to the arbitrary functions of È, and, moreover, have 
the following properties: 

Qi = Qi + Pi, 

Ql = ^(At(È) + Bt(r))ì

 ( 2 2 ) 

PidvdVs = 0. (23) 

First, we must prove that such an expansion is always possible; secondly, we have to 
find the functions Ai(E) and Bi(r). In order that Qi is orthogonal to an arbitrary 
function o f È, it suffices to require orthogonality of Qi to the functions of the form 
1 for È < h and 0 for È > h; h is an arbitrary parameter that may have values 
between the limiting values of E. 

We integrate first with respect to ν and V8: 

j j QidvdVs = 2n J j QlVtdVtdVrdVs, 

where Vr is the radial and Vf is the tangential velocity. The range of variation of 
Vf in which Qi differs from zero can be easily found from the equalities 

/ _ Δ 7 
2~* 

V? = ^ , 2VtAVt 

Consequently, 

j / QidvdVs = ~ j j QtdVtdVs. 

È<h 

We introduce "polar" coordinates, with V2 = V2 + and tan# = Vs/Vr; also, 
È = \V2 + φ + It/2r2. Then 

h 

j j QtdvdVs=
2-^^ j ' ^ ( A ^ + BiWdÈ, (24) 

È<h Φ ι 
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where 

Physically, Φ χ denotes the energy of a star that possesses the angular momentum 
\fl and that has its apocenter or pericenter at a distance r. Therefore, in particular, 
the regions of phase space where Φι > 0 are not occupied by stars in a stationary 
system. Φι has the following properties: 

for r —> 0 Φι —» -hoo, 

for r —> oo Φι —• 0, 

2<ίΦι 2άΦ Ii 

dr dr r ' 

which is obtained by differentiation of (25). Making use of the Poisson equation, 
we see that r2d$\jdr is an increasing function. Consequently, Φ χ has only one 
minimum at a certain point r — TQ. 

Equation (24) may be written in the following form: 

dvdVs = **-^\Mi{h) - Μί(Φ1) + Bi(r)(Fi(h) - Ή(Φχ))] , (26) 

E<h 

where 
Φ ι 

/

dF 
-ΛΑι(Ε)άΕ. (27) 

0 

Finally, we integrate (26) with respect to r, and equate the result to zero: 

/ [Mi{h) - ΜίίΦα) + Bi{r)(Fi{h) - ί \ ( Φ χ ) ) ] dr = 0. (28) 

Here ra is the large root, and rp is the small root of the equation Φχ(τ) = h. 
We shall call these quantities reciprocal. We differentiate (28) with respect to h, 
taking into account that a substitution of ra or rp for r in the integrand changes 
the quantity Φ χ into /ι, and the whole integrand into zero. Therefore, in (28), only 
the expression under the integral sign is differentiated with respect to h. We obtain 

ί (F¡(h)Al(h) + Bl(r)F!(h))dr = 0, 

or 

(r« - rp)Ai{h) + J Bt(r) dr = 0. (29) 
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where px — f J qi dvdVs. 
The integration in (30) is carried out as above (just as in (24) and (26)), and 

we obtain 

P i = - ^ h { M i ^ i ) + Bi(r)Fi^i)). (31) 

The feasibility of the required expansion will be proved if we succeed in solving the 
equations (29) and (31) for the functions A and B. 

For this purpose, let us write (29) in a somewhat different form, taking into 
consideration that ra can be chosen arbitrarily in the region r > ro- Let us denote 
ra by r, and the reciprocity relation by the sign ~ , so that Φι(γ) is always equal to 
Φι(γ ) . Equation (29) then takes the form 

r 

( Γ - Γ ) Α ί ( Φ ι ) + J Bi{r) dr = 0, 
r 

and the same result is obtained for r < ro. Thus, 

r r 

(r - γο)Α,-(Φι) + j Bi{r) dr = (f - γ 0 ) Α , · ( Φι) + f B,-(r) dr. (32) 

r0 r0 

Since (32) means that the expression on the left side does not change when r is 
changed to f, this expression represents a unique function of Φι: 

r 

( Γ - Γ 0 μ . · ( Φ ι ) + j Bi{r)dr = £(Φι). 
r0 

We differentiate £ with respect to r, and we isolate Bi(r): 

^•(Γ) = - ^ [ ( Γ - Γ 0 μ . · ( Φ ι ) ] + ^ ( * ι ) ^ . (33) 

Substituting (33) in (31), we obtain 

Μ ( · ι ) - ft(#i)¿[(r - Γ „ μ . · ( · ι ) ] = -¿gj. - ί ϊ ( * ι ) ^ ( * ι ) ^ . (34) 

The lefthand side of (34) can be written in the form of a total derivative. Indeed, 
if one recalls the definition (27) of Μ»(Φι) , then 

^ [ ( r - γο)Μ , - (Φι ) - (r - γ 0 ) ^ ( Φ ι ) ^ ( Φ ι ) ] 

= Μ , ( Φ ! ) - Γ , · ( Φ , ) ^ - [ (γ - γο)Α,-(Φι)]. 

ar 

As for condition (23), it can be written in the form 

QldvdVs = pu (30) 
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Ti 

r 

(r) = j r 2

P l dr, (35) 

so that 
( r - r o X M ^ O - F i i * ! ) ^ , ) ) = 

Mr)-Ti(r0) / , , . , , , . , ( Ι Φ ι . (36) 
2 π 2 Δ / , 

Substituting, in (36), f for r, we obtain 

(Γ-Γ 0 ) (Μ , · (Φ ι)-ΐ ! ; · (Φ ιμ , · (Φθ) 

(37) 

r0 

The integral at the end of (36) permits replacement of the integration variable 

r $ i ( r ) f 

J F,(<*1)xi'(<l>l)
d^dr = J Fi{t)£'{t)dt = j Γ,(Φ1)ζ'(Φι)

ά^άτ. 

ro Φ Ι ( Γ 0 ) r 0 

We subtract (37) from (36), thus eliminating the function £(Φι): 

^ # . ) - « ( # , ) Α ( · , ) - - ^ - ; ^ . (38) 

From (27) we find 

Α(ΦΑ - Mim 
M l } - F!{*i) ' 

Substituting the righthand side of this equation in (38), we multiply by 

[^•(Φι)] 2 ' dr 

and we integrate from ro to r. We obtain 

r 

iJ r-r \Fi[*i)]2 dr Fi[9i) 2τγ 2Δ7, 

where c is a constant. 

We integrate (34) from ro to r, introducing the function 
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Eliminating Μ ι ( Φ ι ) from (31) and (39), we obtain 

2π2Δ / , ^ ( Φ ι ) 

rTi{r)-Ti(f) F ' (Φι) άΦ1 

2 Mi ί 
(40) 

2 π 2 Δ / , · / r - f ( ^ ( Φ χ ) ) 2 dr 

From (38) we also obtain 

Α (φ \ - 1 / M O - r,-(f) /-/(Φι) <*Φι 
, l 1 } 2π2Δ / ,7 r - f ( Ή ( Φ ι ) ) 2 dr 

dr — c. 

+ c + 

ro 

Ti(r) - r,-(f) 

(41) 

2ir*AIi{r-r)Fi{*i)' 

Thus, the possibility of the required expansion is proved. 

§111. 

Let us return to the functional (21). Since we have written ς, = P¿ + Qi, the terms 
of the first summation in (21) may be given in the form 

f f f , 'I drdvdV, = [ ί f ^ + ^ + d f d , d V s 

J J J {dFi/dE) J J J (dFi/dE) 

=flf wß) dmdv°+2flI{MÈ)+B>{r))p> dmdv>-
The integral / / / At(E) P%dfdvdVs becomes zero due to the orthogonality property 
of P¿, and the integral J f f 2? t (r)P t dfdvdVs becomes zero on account of (23). Thus 
the expression 

-mGlI¡I// T.W.*.v.)-JM*A,v.i) i f i f ¡ i U i ; M u 

(42) 
is not greater than (21). 

Let us substitute the expression (22) for Qi in equation (42). We obtain 

/ / / m¡**dfd0dv' = fii Qi{MÈ) + B'lr)) 

= J J I QiBi^ d?dUV* = jff 9iBÁr) dfdvdVs 

bi 

= j piBi(r)dr = 4π J r2piBi(r) dr, 
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Fi{9i) J r 2 

• V 2 [ b i

 T ,Mr) - n{f) d 1 

(45) 

Let us prove the auxiliary inequality 

bi bi 

r „ m - ä ι ) d r _ r hvfcg ¿ ( ι ) » , 0 , ( 4 6 ) 

y w r - r d r v F , - ( « h ) ' y r dr ^ ( « t i ) ' v ; 

For this purpose, let us inspect the integral 

f φ ) - Tj{f) rTjjf) - fr¿(r) d , 1 χ 

/ " " T T ? —f—tAf^)^'- ( 4 7 ) 

ai 

again making use of (23) and of the property of orthogonality. Substituting (40), 
we obtain 

bi bi 

S Si A imiv-=-^rJMi i r+ i*f , 2 p ' m r ) d ' - ( 4 3 ) 

a ; a i 

Here, H{(r) is the remaining integral 

The interval (a¿,6¿) marks the region of the physical space in which stars with 
angular momentum y/Ti can move (with 6¿ = a¿). It is clear from the definition 
(35) of r t (r) that it must satisfy the boundary conditions r t = 0 for r > 6 t and 
r < a¿. 

Let us carry out the partial integration of the second integral on the right side 
of (43): 

bi bi bi 

j r2

PiHi{r)dr = j T¡{r)Hi{r)dr = -J τ,(γ)#,'(γ) dr. 

ai ai ai 

We substitute the last result in (43), taking into consideration (44). As for the last 
integral in (42), it is transformed as the field energy, as explained above. We finally 
obtain from (42) 
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ai 

b- [mir) - r>,(r)] 2 ^ ( Φ χ ) d*! 

(48) 

/ r ( r - f ) 2 [Ή(Φι ) ] 3 dr 
dr. 

We write the integral f^1 in the form of a sum, /r

6J + f*°, and we replace the 
integration variable r by f in the first one, taking into consideration that α*Φχ = 
(o^x/dr )dr = {d$\ldf)dr. Instead of (48) we now have 

r p τ φ ) - ^ { τ ) \ \ ΐ 1, Ρ/(Φχ) <**ι , > n 

r - f J xr r'[Fi&i)]2 dr 

taking into account that ί"/(Φχ) < 0, and that for at < r < r 0 , we have f > r and 
άΦι/dr < 0. Thus, the inequality (46) has been proved. 

According to a well-known algebraic inequality, 

(49) 

which we shall use for the transformation of the last integral in formula (45). The 
inequalities (46) and (49) show that it suffices, for the stability proof, to prove the 
positiveness of the functional 

W 2 / [ « J _ [\n{r)Y d 1 
^[nAIiJ ^ ( Φ , ) ^vAIiJ r dr^F^y 

- I fcr 'mG / " ( Γ ' ί Γ ΐ ) 3 dr 

ai 

The fractions [r¿(r) — Ti{f)\/{r — f) and [rr¿(f) - fri(r)]/(r - f) remain unchanged 
when f replaces r. Consequently, they are single-valued functions of Φχ. The 
integral (47) is equal to zero, because we have the derivative of a function of Φ χ 
under the integral sign, while r¿(a¿) = r t (6 t ) = 0. Let us add (47) to the difference 
considered in (46), and let us take into account that 

r r,(r) - r,(f) [r.-(r)P 

r — f r 

Tj{r) - Tj(f) rrj{f) - fn{r) [rr t(f) - f r t ( r ) ] 2 

r — f r — f r(r — f ) 2 

Then we obtain 

(50) 
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SOLUTION OF THE PROBLEM OF STABILITY OF A STELLAR SYSTEM 543 

min-

J r2Vi 

We find again the classical variation problem from the theory of oscillations. 
The corresponding differential equation is 

2 d ( rílr) \ 2 rAr) d ( 1 \ Λ 2 ^ Λ ^ , Χ 

where λ is the first eigenvalue. Let us form the comparison function Ν χ = rzV{. It 
is easy to express V{ in terms of F{ through integration with respect to the velocities 
and with respect to Vs, just as in the derivation of (24): 

o 
r2, 

φ, 
0 

Ur j F,{E) 

(52) 

N( = 2ττ Δ / , τ J Fi (E) dE. 
Φ ι 

The Vi and, consequently, the 7V¿, become zero at the spatial boundaries of the i t h 

layer. It is easy to find the differential equation satisfied by N{. We have 

o 

^ = 2 π 2 Δ 7 , f Fi(E)dE-2n2AIlr
dp^F^1), 

dr J dr 
Φ ι 

^ i / ^ Φ Τ ) ) - r VtTr\FWj) + ii(fti) " Δ / , ( Γ ^ + 

but from (52) it follows that 

1 ^ / 2 \ r» 2 Λ r ^ 1 

\r2Vi) = - 2 π 2 Δ / ι ^•(Φι) d r v X} 1 dr 

Thus, we have 

d ( N¡(r) \ Ni{r) d ( 1 

dr\F^1)J r dr\F,{$l) 

= - 2 π 2 Δ / , · ( Γ ^ + 2 ^ - ) = -2*2AIl(4*mGrv+ 4 ) , 
aH ar ' r4 

Let us prove the positiveness of each square bracket in (50). For this purpose, we 
shall estimate the minimum 

2 ? M O P rfr . _ ? _ ΠΦ)\2ά

(

 1

 U r 

nMj (Φι) τ τ Δ / , ; r dr^F^1)
) 
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and from this we obtain the desired equation 

2 d(Nj(r) 

π Ali r d r V ^ i í * ! ) / 

2 Nj{r) d ( 1 \ 

(53) 

Let us multiply (51) by 7V¿ and (53) by 7¿, then subtract one from the other and 
integrate from a¿ to b{. After partial integration the boundary terms disappear on 
account of r¿(6¿) = r¿(a¿) = 0 and -/V¿(&¿) = iV¿(a¿) = 0. We obtain 

hence λ > 1, and this concludes the stability proof under the assumptions specified 
above. 

Let us note that the character of the dependence of the phase density on 
J is unessential, because it is always possible to introduce a sufficiently detailed 
classification of stars by the kinetic momentum, in order to make it possible to 
neglect the change of J inside each separate layer. 

As an example of an application of the preceding discussions, let us consider 
the simplest case, when the phase density is a function of the energy integral only. 
Then the fictitious phase density must be a function of E. Let us consider what 
limitations on the stellar density are imposed by our condition that Φ = F (È) must 
be a decreasing function. Let us integrate it with respect to the velocities and with 
respect to Vs: 

ν 

oo 

0 

Here a(W) is the surface of the four-dimensional hypersphere u2 + v2 + w2 + 
W2. It is well known that a(W) = 2n2W3. Therefore, 

2 + V2 = 

oo 

0 

We differentiate this equality twice with respect to Φ: 

oo 

φ 
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§IV. 

Let us now consider perturbations that violate the spherical symmetry of the sys-
tem. We assume that dF/dE < 0. Any perturbation may always be made into a 
spherically symmetrical one by averaging over all orientations. We subtract this 
average and we obtain the supplementary density p, with the property 

/ pdu=0. (54) 

Here, άω is an element of the unit sphere. 
Let us expand ρ into a series of spherical functions 

ρ = ^ ρ ^ Υ ^ ( θ , φ ) . (55) 

The spherical function with the index η — 0 (it is equal to a constant) is not included 
in the series (55) on account of (54). As is known from theory [5], the potential 

corresponding to the density distribution Pnm^(r)Yrim^(0, Φ) is proportional to the 

same spherical function Υ^^θ,φ). 
On account of the known property of orthogonality of spherical functions in 

the functional characterizing the stability [we take it in the form (8)], all the terms 
containing products of two different spherical functions disappear. It is therefore 
possible to substitute, in (8), each term of the series (47) separately, and that is 
what we are going to do. 

As has been explained already, the functional (8) may be presented in the 
form 

/ / / I drdu — rr^L j j \gradWD\
2 drdoj 

J J {du/dU) 4π J J i y p l 

(56) 

Here, grad\Wp is the projection of gradWp on a plane perpendicular to the radius. 

But, as has been stated above, Wp — Wn ( r ) Y Ì m ^ ( 0 , 0 ) , so that 

°° ( m ) 

Thus, the condition of decreasing F is equivalent to the condition ά3ν/άΦ3 < 0, 
which is satisfied for the Emden laws with η > 2. Actually, 

ν = €(Φ 0 - Φ ) η , ^ - -cn{n - l ) (n - 2 ) (Φ 0 - Φ ) " " 3 < 0. 

This proves the stability of the Emden laws with η > 2 for a spherically symmetrical 
distribution of velocities with respect to spherically symmetrical pulsations. 
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Then 
oo 

On the basis of (59) and (60) we have 

We express (56) through τ with the aid of (61), (62) and of the normalization 
condition (57); we obtain* 

oo oo 

1 f [rdr/dr - ( » - l )r]» mG /" 2 2 

0 0 

* To shorten the notation we shall omit the subscript on τ in the remainder of 
this article 

We assume here that the spherical functions are normalized such that 

J Ι{Υ^(θ,Φ)}2άω = 1. (57) 

Then the theory of spherical functions gives [6] 

J j \gradY(m\e,<t>)\2duj = n{n + l). (58) 

By partial integration it is easy to obtain 

°° ( ) °° ( ) 
/ [ r 2 ( ^ ) 2 + n(n + 1)μ<Γ>] 2 ] dr = l [r^f- + (n + l )u ,<»>] 2 dr. 

0 0 

(τη\ l τη \ 

Let us now use Poisson's equation to find the connection between Wn ' and p K

n '. 

topWHw = ¿ ¿ ( ' 2 ^ M m , ( M - ^ ^ ^ ) ^ ( η ι ) ( Μ ) . 

(59) 
Let us introduce the auxiliary function 

ι ( m ) , -, 

rim)(r) = d ^ r + ^ i m ) . (60) 
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Let us note that τ vanishes outside the system and on its boundary. Indeed, in 
the outer space Wp coincides, accurately, except for a constant factor, with the 

harmonic function r~n~1Ynm^(0,φ). It then follows from (60) that τ = 0. It 
is possible, therefore, in (63), to put &, the radius of the system, as the upper 
boundary. For r — 0 continuity is required of r(r) , because at the center of the 
system Wp becomes zero. 

We are back at the evaluation problem of a certain minimum 

. f [rdr/dr - {n - l ) r ] 2 , ^ [ 2 2 Λ λ . . 
min \ [- 1 . ) dr/4nmG / r2r2 dr = λ. (64) 

J {dvjdU 1 J 
o o 

Let us write the differential equation corresponding to (64) 

d , r2drIdr x x d , r N (η — l ) 2 „ Λ 9 , x 

*<wm? "(""l)*{wm]
 = -wmT+4""GAr τ=°· (65) 

where λ is the first eigenvalue. 
Let us take Ν — rn~xv as the comparison function. Let us construct a 

differential equation for it analogous to (65). We have 

dN , x „ 9 -ι di/ dU 

d ,r2(dN/dr). η - 1 d , r 2 r n - 1 f 

d ^ (dtz/dt/) > ~ ( n ~ 1 ) r Udr~\{dv/dU) + { U ~ 1 > {du/dU) 

„ d i / d , n + l d U \ 

+ ( n " 1 ) r 

d ,r2(dN/dr), , , d , r . , (n - l ) 2 

* ( - ( * 7 λ ο ) - <- - * > * (wm)N+4*ra& w - wmN 

ar aH 

Eliminating d2U/dr2 with the aid of Poisson's equation, we obtain the desired 
equation 

±,r2(dN/dr) _ £ r 

dr[ {dv/dU) ' K >dA{dvldU)> 

We multiply (65) by iV, and (66) by r, we subtract one from the other, and we 
integrate from 0 to ò, taking into consideration that N(b) = 0. Then we obtain 

6 b 

4nmG{X-l) j r2rN dr = -2{n - 1) j rn^-rdr. 

o o 
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The right side is not negative, because dU/dr < 0 and η is a positive integer. 
Therefore, for η > 1, we have λ > 1, and for η = 1, we have λ = 1. In the latter 
case it would be possible to show that instability occurs, because (66) vanishes for 
the function r, accurate to a constant factor. However, then 

AT (m) 1 du 

(τη) 

Multiplying r¿ ] by the spherical function which, for η — 1, equals x/r, y/r, or 
z/r, we obtain 

x du du 

^ r dr θ χ ' 
etc. It is clear that we are dealing simply with a displacement of the system as a 
whole. Thus, perturbations of a "higher order" are not dangerous for the stability 
of the system, when F(E) is a decreasing function. In particular, this conclusion is 
applicable to a system with Emden's density law, if η > | . 
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