HEAT OPERATORS AND QUASIMODULAR FORMS

MIN HO LEE

(Received 5 October 2009)

Abstract

We introduce a differential operator on quasimodular polynomials that corresponds to the derivative operator on quasimodular forms. We then prove that such a differential operator is compatible with a heat operator on Jacobi-like forms in certain cases. These results show in those cases that the derivative operator on quasimodular forms corresponds to a heat operator on Jacobi-like forms.

2000 Mathematics subject classification: primary 11F11; secondary 11F50.
Keywords and phrases: quasimodular forms, modular forms, heat operators, Jacobi-like forms.

1. Introduction

Jacobi-like forms are formal Laurent series which generalize Jacobi forms in some sense, and they correspond to certain sequences of modular forms (see [2, 6]). Quasimodular forms, on the other hand, generalize modular forms (see [4]), and the coefficients of a Jacobi-like form are quasimodular forms. Consequently, there are natural projection maps sending a Jacobi-like form to its coefficients. Derivatives of modular forms are not modular forms in general, and similarly derivatives of Jacobilike forms are not Jacobi-like forms. On the other hand, derivatives of quasimodular forms are quasimodular forms, and this paper is concerned with an operator on Jacobilike forms corresponding to the derivative operator on quasimodular forms.

Quasimodular forms for a discrete subgroup Γ of $S L(2, \mathbb{R})$ can be identified with some polynomials, called quasimodular polynomials, that are invariant under certain actions of Γ (see [1]). There is a surjective map from Jacobi-like forms to quasimodular polynomials such that the coefficients of a quasimodular form of degree n are constant multiples of the first $n+1$ coefficients of the corresponding Jacobi-like form.

In this paper we introduce a differential operator on quasimodular polynomials of a given degree that corresponds to the derivative operator on quasimodular forms. We then prove that such a differential operator is compatible with a heat operator on Jacobi-like forms studied in [5] under the above-mentioned projection map in

[^0]certain cases. These results show in those cases that the derivative operator on quasimodular forms corresponds to a heat operator on Jacobi-like forms.

2. Formal Laurent series and polynomials

Let \mathcal{H} be the Poincaré upper half-plane, and let R be the ring of holomorphic functions on \mathcal{H}. We denote by $R[[X]]$ the complex algebra of formal power series in X with coefficients in R. If δ is an integer, we set

$$
\begin{equation*}
R[[X]]_{\delta}=X^{\delta} R[[X]], \tag{2.1}
\end{equation*}
$$

so that an element $\Phi(z, X) \in R[[X]]_{\delta}$ can be written in the form

$$
\begin{equation*}
\Phi(z, X)=\sum_{k=0}^{\infty} \phi_{k}(z) X^{k+\delta} \tag{2.2}
\end{equation*}
$$

with $\phi_{k} \in R$ for each $k \geq 0$. Thus, if we allow δ to be negative, elements of $R[[X]]_{\delta}$ may be regarded as formal Laurent series in X. We fix a nonnegative integer m and denote by $R_{m}[X]$ the complex algebra of polynomials in X over R of degree at most m.

The group $S L(2, \mathbb{R})$ acts on the Poincaré upper half-plane \mathcal{H} as usual by linear fractional transformations. Thus we may write

$$
\gamma z=\frac{a z+b}{c z+d}
$$

for all $z \in \mathcal{H}$ and $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L(2, \mathbb{R})$. For the same z and γ, we set

$$
\begin{equation*}
\mathfrak{J}(\gamma, z)=c z+d, \quad \mathfrak{K}(\gamma, z)=c \mathfrak{J}(\gamma, z)^{-1}=\frac{c}{c z+d} . \tag{2.3}
\end{equation*}
$$

The map $\mathfrak{J}: S L(2, \mathbb{R}) \times \mathcal{H} \rightarrow \mathbb{C}$ determined by the first formula is a well-known automorphy factor satisfying the cocycle condition

$$
\begin{equation*}
\mathfrak{J}\left(\gamma \gamma^{\prime}, z\right)=\mathfrak{J}\left(\gamma, \gamma^{\prime} z\right) \mathfrak{J}\left(\gamma^{\prime}, z\right) \tag{2.4}
\end{equation*}
$$

for $\gamma, \gamma^{\prime} \in S L(2, \mathbb{R})$ and $z \in \mathcal{H}$. The other map, on the other hand, can be shown to satisfy

$$
\begin{equation*}
\mathfrak{K}\left(\gamma \gamma^{\prime}, z\right)=\mathfrak{J}\left(\gamma^{\prime}, z\right)^{-2} \mathfrak{K}\left(\gamma, \gamma^{\prime} z\right)+\mathfrak{K}\left(\gamma^{\prime}, z\right) \tag{2.5}
\end{equation*}
$$

Given a function $f \in R$, a formal Laurent series $\Phi(z, X) \in R[[X]]_{\delta}$ with $\delta \in \mathbb{Z}$, a polynomial $F(z, X) \in R_{m}[X]$ and an integer λ, we set

$$
\begin{align*}
\left(\left.f\right|_{\lambda} \gamma\right)(z) & =\mathfrak{J}(\gamma, z)^{-\lambda} f(\gamma z) \tag{2.6}\\
\left(\left.\Phi\right|_{\lambda} ^{J} \gamma\right)(z, X) & =\mathfrak{J}(\gamma, z)^{-\lambda} e^{-\mathfrak{K}(\gamma, z) X} \Phi\left(\gamma z, \mathfrak{J}(\gamma, z)^{-2} X\right), \tag{2.7}\\
\left(F \|_{\lambda} \gamma\right)(z, X) & =\mathfrak{J}(\gamma, z)^{-\lambda} F\left(\gamma z, \mathfrak{J}(\gamma, z)^{2}(X-\mathfrak{K}(\gamma, z))\right) \tag{2.8}
\end{align*}
$$

for all $\gamma \in S L(2, \mathbb{R})$ and $z \in \mathcal{H}$. From (2.4) we see easily that

$$
\left.f\right|_{\lambda}\left(\gamma \gamma^{\prime}\right)=\left.\left(\left.f\right|_{\lambda} \gamma\right)\right|_{\lambda} \gamma^{\prime}
$$

for all $\gamma, \gamma^{\prime} \in S L(2, \mathbb{R})$. Using (2.4) and (2.5), it can also be shown that

$$
\left.\Phi\right|_{\lambda} ^{J}\left(\gamma \gamma^{\prime}\right)=\left.\left(\left.\Phi\right|_{\lambda} ^{J} \gamma\right)\right|_{\lambda} ^{J} \gamma^{\prime}, \quad\left(F \|_{\lambda} \gamma\right)\left\|_{\lambda} \gamma^{\prime}=F\right\|_{\lambda}\left(\gamma \gamma^{\prime}\right)
$$

We consider the surjective map

$$
\begin{equation*}
\Pi_{m}^{\delta}: R[[X]]_{\delta} \rightarrow R_{m}[X] \tag{2.9}
\end{equation*}
$$

with $\delta \in \mathbb{Z}$ defined by

$$
\begin{equation*}
\left(\Pi_{m}^{\delta} \Phi\right)(z, X)=\sum_{r=0}^{m} \frac{1}{r!} \phi_{m-r}(z) X^{r} \tag{2.10}
\end{equation*}
$$

for an element $\Phi(z, X) \in R[[X]]_{\delta}$ of the form

$$
\Phi(z, X)=\sum_{k=0}^{\infty} \phi_{k}(z) X^{k+\delta}
$$

This map is $S L(2, \mathbb{R})$-equivariant with respect to the operations in (2.7) and (2.8). More precisely, given $\Phi(z, X) \in R[[X]]_{\delta}$ and $\lambda \in \mathbb{Z}$,

$$
\begin{equation*}
\Pi_{m}^{\delta}\left(\left.\Phi\right|_{\lambda} ^{J} \gamma\right)=\Pi_{m}^{\delta}(\Phi) \|_{\lambda+2 m+2 \delta} \gamma \tag{2.11}
\end{equation*}
$$

for all $\gamma \in S L(2, \mathbb{R})$ (see [1])
Given $v \in \mathbb{Z}$, we now consider the formal differential operators

$$
\mathcal{D}_{v}: R[[X]] \rightarrow R[[X]], \quad \widehat{\mathcal{D}}_{v}: R_{m}[X] \rightarrow R_{m+1}[X]
$$

defined by

$$
\begin{align*}
& \mathcal{D}_{v}=\frac{\partial}{\partial z}-v \frac{\partial}{\partial X}-X \frac{\partial^{2}}{\partial X^{2}} \tag{2.12}\\
& \widehat{\mathcal{D}}_{v}=\frac{\partial}{\partial z}+X\left(v-X \frac{\partial}{\partial X}\right) \tag{2.13}
\end{align*}
$$

It was noted in [5] that operators of the form \mathcal{D}_{ν} correspond to heat operators on Jacobi forms considered by Eichler and Zagier in [3]. Thus \mathcal{D}_{ν} may be regarded as a heat operator on formal Laurent series, and it is $S L(2, \mathbb{R})$-equivariant in the sense of the following proposition.
Proposition 2.1. Given $\lambda, \delta \in \mathbb{Z}$ and a formal Laurent series $\Phi(z, X) \in R[[X]]_{\delta}$,

$$
\begin{equation*}
\left(\left.\mathcal{D}_{\nu}(\Phi)\right|_{\lambda+2} ^{J} \gamma\right)(z, X)=\mathcal{D}_{\nu}\left(\left.\Phi\right|_{\lambda} ^{J} \gamma\right)(z, X)+(\lambda-v) \mathfrak{K}(\gamma, z)\left(\left.\Phi\right|_{\lambda} ^{J} \gamma\right)(z, X) \tag{2.14}
\end{equation*}
$$

for all $\gamma \in S L(2, \mathbb{R})$ and $z \in \mathcal{H}$, where $\left.\right|_{\lambda} ^{J}$ and $\left.\right|_{\lambda+2} ^{J}$ are as in (2.7). In particular, we obtain

$$
\begin{equation*}
\left(\left.\mathcal{D}_{\lambda}(\Phi)\right|_{\lambda+2} ^{J} \gamma\right)(z, X)=\mathcal{D}_{\lambda}\left(\left.\Phi\right|_{\lambda} ^{J} \gamma\right)(z, X) \tag{2.15}
\end{equation*}
$$

Proof. This was proved in [5] for $\delta \geq 0$, and the proof of this proposition can be carried out in a similar manner.

3. Quasimodular and modular forms

Let $R, R[[X]], R[[X]]_{\delta}, R_{m}[X]$ with $\delta \in \mathbb{Z}$ and $m \geq 0$ be as in Section 2, and let Γ be a discrete subgroup of $S L(2, \mathbb{R})$.
Definition 3.1. Let $\left.\right|_{\xi}$, $\left.\right|_{\xi} ^{J}$ and $\|_{\xi}$ with $\xi \in \mathbb{Z}$ be the operations in (2.6), (2.7) and (2.8).
(i) An element $f \in R$ is a quasimodular form for Γ of weight ξ and depth at most m if there are functions $f_{0}, \ldots, f_{m} \in R$ such that

$$
\begin{equation*}
\left(\left.f\right|_{\xi} \gamma\right)(z)=\sum_{r=0}^{m} f_{r}(z) \mathfrak{K}(\gamma, z)^{r} \tag{3.1}
\end{equation*}
$$

for all $z \in \mathcal{H}$ and $\gamma \in \Gamma$, where $\mathfrak{K}(\gamma, z)$ is as in (2.3).
(ii) A formal Laurent series $\Phi(z, X) \in R[[X]]_{\delta}$ with $\delta \in \mathbb{Z}$ is a Jacobi-like form of weight ξ for Γ if it satisfies

$$
\left(\left.\Phi\right|_{\xi} ^{J} \gamma\right)(z, X)=\Phi(z, X)
$$

for all $z \in \mathcal{H}$ and $\gamma \in \Gamma$.
(iii) A polynomial $F(z, X) \in R_{m}[X]$ is a quasimodular polynomial for Γ of weight ξ and degree at most m if it satisfies

$$
\left(F \|_{\xi} \gamma\right)(z, X)=F(z, X)
$$

for all $z \in \mathcal{H}$ and $\gamma \in \Gamma$.
If $\xi \in \mathbb{Z}$, we denote by $\mathcal{J}_{\xi}(\Gamma)_{\delta}$ the space of all Jacobi-like forms for Γ of weight ξ belonging to $R[[X]]_{\delta}$. We also denote by $Q M_{\xi}^{m}(\Gamma)$ the space of quasimodular forms for Γ of weight ξ and depth at most m. The space of all quasimodular polynomials for Γ of weight ξ and degree at most m will be denoted by $Q P_{\xi}^{m}(\Gamma)$.

If $f \in R$ is a quasimodular form belonging to $Q M_{\xi}^{m}(\Gamma)$ satisfying (3.1), then we define the corresponding polynomial $\left(\mathcal{Q}_{\xi}^{m} f\right)(z, X) \in R_{m}[X]$ by

$$
\begin{equation*}
\left(\mathcal{Q}_{\xi}^{m} f\right)(z, X)=\sum_{r=0}^{m} f_{r}(z) X^{r} \tag{3.2}
\end{equation*}
$$

for $z \in \mathcal{H}$. We note that $\mathcal{Q}_{\xi}^{m} f$ is well defined because f determines the functions f_{k} uniquely. Thus we obtain the complex linear map

$$
\mathcal{Q}_{\xi}^{m}: Q M_{\xi}^{m}(\Gamma) \rightarrow R_{m}[X]
$$

for each $\xi \in \mathbb{Z}$. In fact, this map determines an isomorphism

$$
\begin{equation*}
\mathcal{Q}_{\xi}^{m}: Q M_{\xi}^{m}(\Gamma) \rightarrow Q P_{\xi}^{m}(\Gamma) \tag{3.3}
\end{equation*}
$$

whose inverse is given by

$$
\begin{equation*}
\left(\mathcal{Q}_{\xi}^{m}\right)^{-1}(F(z, X))=F(z, 0) \tag{3.4}
\end{equation*}
$$

for all $F(z, X) \in Q P_{\xi}^{m}(\Gamma)$ (see [1]).

Proposition 3.2. Let $\widehat{\mathcal{D}} \xi$ with $\xi \in \mathbb{Z}$ be as in (2.13), and let $\partial=d / d z: R \rightarrow R$ be the derivative operator on R. Then

$$
\begin{equation*}
\mathcal{Q}_{\xi+2}^{m+1} \circ \partial=\widehat{\mathcal{D}}_{\xi} \circ \mathcal{Q}_{\xi}^{m}, \tag{3.5}
\end{equation*}
$$

where \mathcal{Q}_{ξ}^{m} and $\mathcal{Q}_{\xi+2}^{m+1}$ are as in (3.2).
Proof. Let f be a quasimodular form belonging to $Q M_{\xi}^{m}(\Gamma)$, so that there are holomorphic functions $f_{0}, f_{1}, \ldots, f_{m} \in R$ satisfying

$$
\left(\left.f\right|_{\xi} \gamma\right)(z)=\mathfrak{J}(\gamma, z)^{-\xi} f(\gamma z)=\sum_{k=0}^{m} f_{k}(z) \mathfrak{K}(\gamma, z)^{k}
$$

for all $z \in \mathcal{H}$ and $\gamma \in \Gamma$. By taking the derivative of this relation we obtain

$$
\begin{aligned}
& -\xi \mathfrak{J}(\gamma, z)^{-\xi-1}\left(\frac{d}{d z} \mathfrak{J}(\gamma, z)\right) f(\gamma z)+\mathfrak{J}(\gamma, z)^{-\xi} f^{\prime}(\gamma z)\left(\frac{d}{d z}(\gamma z)\right) \\
& \quad=\sum_{k=0}^{m}\left[f_{k}^{\prime}(z) \mathfrak{K}(\gamma, z)^{k}+k f_{k}(z) \mathfrak{K}(\gamma, z)^{k-1}\left(\frac{d}{d z} \mathfrak{K}(\gamma, z)\right)\right] .
\end{aligned}
$$

Using this and the relations

$$
\begin{gathered}
\frac{d}{d z} \mathfrak{J}(\gamma, z)=\mathfrak{K}(\gamma, z) \mathfrak{J}(\gamma, z) \\
\frac{d}{d z} \mathfrak{K}(\gamma, z)=-\mathfrak{K}(\gamma, z)^{2}, \quad \frac{d}{d z}(\gamma z)=\mathfrak{J}(\gamma, z)^{-2},
\end{gathered}
$$

we see that

$$
\begin{aligned}
& -\xi \mathfrak{J}(\gamma, z)^{-\xi} \mathfrak{K}(\gamma, z) f(\gamma z)+\mathfrak{J}(\gamma, z)^{-\xi-2} f^{\prime}(\gamma z) \\
& \quad=\sum_{k=0}^{m}\left[f_{k}^{\prime}(z) \mathfrak{K}(\gamma, z)^{k}-k f_{k}(z) \mathfrak{K}(\gamma, z)^{k+1}\right] .
\end{aligned}
$$

Thus

$$
\begin{aligned}
\left(\left.(\partial f)\right|_{\xi+2} \gamma\right)(z)= & \xi \mathfrak{K}(\gamma, z)\left(\left.f\right|_{\xi} \gamma\right)(z) \\
& \quad+\sum_{k=0}^{m}\left[f_{k}^{\prime}(z) \mathfrak{K}(\gamma, z)^{k}-k f_{k}(z) \mathfrak{K}(\gamma, z)^{k+1}\right] \\
= & \xi \mathfrak{K}(\gamma, z) \sum_{k=0}^{m} f_{k}(z) \mathfrak{K}(\gamma, z)^{k} \\
& \quad+\sum_{k=0}^{m}\left[f_{k}^{\prime}(z) \mathfrak{K}(\gamma, z)^{k}-k f_{k}(z) \mathfrak{K}(\gamma, z)^{k+1}\right] \\
= & \sum_{k=1}^{m+1}(\xi-k+1) f_{k-1}(z) \mathfrak{K}(\gamma, z)^{k}+\sum_{k=0}^{m} f_{k}^{\prime}(z) \mathfrak{K}(\gamma, z)^{k}
\end{aligned}
$$

Hence we see that $\partial f \in Q M_{\xi+2}^{r+1}(\Gamma)$ and, using (3.2), we obtain

$$
\begin{equation*}
\left(\left(\mathcal{Q}_{\xi+2}^{m+1} \circ \partial\right) f\right)(z)=\sum_{k=0}^{m+1} h_{k}(z) X^{k} \tag{3.6}
\end{equation*}
$$

where

$$
\begin{equation*}
h_{0}=f_{0}^{\prime}, \quad h_{m+1}=(\xi-m) f_{m}, \quad h_{k}=(\xi-k+1) f_{k-1}+f_{k}^{\prime} \tag{3.7}
\end{equation*}
$$

for $1 \leq k \leq m$. On the other hand, since

$$
\left(\mathcal{Q}_{\xi}^{m} f\right)(z, X)=\sum_{k=0}^{m} f_{k}(z) X^{k} \in R_{m}[[X]],
$$

by using (2.13)

$$
\begin{aligned}
\left(\widehat{\mathcal{D}}_{\xi} \circ \mathcal{Q}_{\xi}^{m}\right) f(z, X) & =\sum_{k=0}^{m} f_{k}^{\prime}(z) X^{k}+\xi \sum_{k=0}^{m} f_{k}(z) X^{k}-\sum_{k=0}^{m} k f_{k}(z) X^{k} \\
& =\sum_{k=0}^{m} f_{k}^{\prime}(z) X^{k}+\sum_{k=1}^{m+1}(\xi-k+1) f_{k-1}(z) X^{k}
\end{aligned}
$$

Comparing this with (3.6), we obtain (3.5).
The relation (3.5) provides us with the complex linear map

$$
\widehat{\mathcal{D}}_{\xi}=\mathcal{Q}_{\xi+2}^{m+1} \circ \partial \circ\left(\mathcal{Q}_{\xi}^{m}\right)^{-1}: Q P_{\xi}^{m}(\Gamma) \rightarrow Q P_{\xi+2}^{m+1}(\Gamma)
$$

On the other hand, using (2.11) and (2.15), we see that

$$
\mathcal{D}_{\lambda}\left(\mathcal{J}_{\lambda}(\Gamma)\right) \subset \mathcal{J}_{\lambda+2}(\Gamma), \quad \Pi_{m}^{\delta}\left(\mathcal{J}_{\lambda}(\Gamma)_{\delta}\right) \subset Q P_{\lambda+2 m+2 \delta}^{m}(\Gamma)
$$

hence we obtain the two additional complex maps

$$
\begin{equation*}
\Pi_{m}^{\delta, \lambda}: \mathcal{J}_{\lambda}(\Gamma)_{\delta} \rightarrow Q P_{\lambda+2 m+2 \delta}^{m}(\Gamma), \quad \mathcal{D}_{\lambda}: \mathcal{J}_{\lambda}(\Gamma)_{\delta} \rightarrow \mathcal{J}_{\lambda+2}(\Gamma)_{\delta-1} \tag{3.8}
\end{equation*}
$$

for each $\lambda \in \mathbb{Z}$, where $\Pi_{m}^{\delta, \lambda}$ is the restriction of Π_{m}^{δ} to $\mathcal{J}_{\lambda}(\Gamma)_{\delta}$.
Theorem 3.3. Given $\lambda, \delta \in \mathbb{Z}$, the diagram

commutes if and only if $\delta=-m-1$ or $\delta=-m-\lambda$.

Proof. Let $\Phi(z, X) \in R[[X]]_{\delta}$ be given by

$$
\Phi(z, X)=\sum_{k=0}^{\infty} \phi_{k}(z) X^{k+\delta}
$$

Then from (2.12) we obtain

$$
\begin{align*}
& \mathcal{D}_{\lambda} \Phi(z, X)= \sum_{k=0}^{\infty} \phi_{k}^{\prime}(z) X^{k+\delta}-\lambda \sum_{k=0}^{\infty}(k+\delta) \phi_{k}(z) X^{k+\delta-1} \\
&-X \sum_{k=0}^{\infty}(k+\delta)(k+\delta-1) \phi_{k}(z) X^{k+\delta-2} \tag{3.10}\\
&= \sum_{k=0}^{\infty}\left(\phi_{k-1}^{\prime}(z)-(k+\delta)(k+\delta-1+\lambda) \phi_{k}(z)\right) X^{k+\delta-1} \\
& \in \in R[[X]]_{\delta-1}
\end{align*}
$$

with $\phi_{-1}^{\prime}=0$. Using this and (2.10),

$$
\begin{align*}
& \left(\left(\Pi_{m+1}^{\delta-1} \circ \mathcal{D}_{\lambda}\right) \Phi\right)(z, X) \\
& \quad=\sum_{k=0}^{m+1} \frac{1}{k!}\left(\phi_{m-k}^{\prime}(z)-(m+1-k+\delta)(m-k+\delta+\lambda) \phi_{m+1-k}(z)\right) X^{k} \tag{3.11}
\end{align*}
$$

On the other hand, from

$$
\left(\Pi_{m}^{\delta} \Phi\right)(z, X)=\sum_{k=0}^{m} \frac{1}{k!} \phi_{m-k}(z) X^{k}
$$

and (2.13) we see that

$$
\begin{align*}
& \left(\left(\widehat{\mathcal{D}}_{\lambda+2 m+2 \delta} \circ \Pi_{m}^{\delta}\right) \Phi\right)(z, X) \\
& =\sum_{k=0}^{m} \frac{1}{k!} \phi_{m-k}^{\prime}(z) X^{k}+\sum_{k=0}^{m} \frac{\lambda+2 m+2 \delta}{k!} \phi_{m-k}(z) X^{k+1} \\
& \quad-\sum_{k=0}^{m} \frac{1}{(k-1)!} \phi_{m-k}(z) X^{k+1} \tag{3.12}\\
& =\sum_{k=0}^{m} \frac{1}{k!} \phi_{m-k}^{\prime}(z) X^{k}+\sum_{k=1}^{m+1} \frac{\lambda+2 m+2 \delta-k+1}{(k-1)!} \phi_{m-k+1}(z) X^{k} \\
& = \\
& =\sum_{k=0}^{m+1} \frac{1}{k!}\left(\phi_{m-k}^{\prime}(z)+k(\lambda+2 m+2 \delta-k+1) \phi_{m+1-k}(z)\right) X^{k}
\end{align*}
$$

Comparing (3.11) and (3.12),

$$
\Pi_{m+1}^{\delta-1} \circ \mathcal{D}_{\lambda}=\widehat{\mathcal{D}}_{\lambda+2 m+2 \delta} \circ \Pi_{m}^{\delta}
$$

if and only if

$$
(m+\delta+1)(m+\delta+\lambda)=0 ;
$$

hence the theorem follows.
If $\Pi_{m}^{\delta, \lambda}$ is the map in (3.8), we consider the corresponding linear map

$$
\widehat{\Pi}_{m}^{\delta, \lambda}: \mathcal{J}_{\lambda}(\Gamma)_{\delta} \rightarrow Q M_{\lambda+2 m+2 \delta}^{m}(\Gamma)
$$

defined by

$$
\begin{equation*}
\widehat{\Pi}_{m}^{\delta, \lambda}=\left(\mathcal{Q}_{\lambda+2 m+2 \delta}^{m}\right)^{-1} \circ \Pi_{m}^{\delta, \lambda} \tag{3.13}
\end{equation*}
$$

where $\mathcal{Q}_{\lambda+2 m+2 \delta}^{m}$ is as in (3.3). Then from (2.10) and (3.4) we see that

$$
\left(\widehat{\Pi}_{m}^{\delta, \lambda} \Phi\right)(z)=\phi_{m}(z)
$$

for $\Phi(z)=\sum_{k=0}^{\infty} \phi_{k}(z) X^{k+\delta} \in \mathcal{J}_{\lambda}(\Gamma)_{\delta}$.
Corollary 3.4. Given $m, \lambda, \delta \in \mathbb{Z}$ with $m \geq 0$, if $\delta=-m-1$ or $\delta=-m-\lambda$, the diagram

is commutative.
Proof. From the relation (3.5) and the commutativity of the diagram (3.9) we see that the diagram
commutes, assuming that $\delta=-m-1$ or $\delta=-m-\lambda$. Thus the corollary follows from this and the relations

$$
\widehat{\Pi}_{m}^{\delta-1, \lambda+2}=\left(\mathcal{Q}_{\lambda+2 m+2 \delta+2}^{m+1}\right)^{-1} \circ \Pi_{m+1}^{\delta-1, \lambda+2}
$$

and (3.13).

References

[1] Y. Choie and M. H. Lee, 'Quasimodular forms, Jacobi-like forms, and pseudodifferential operators', Preprint.
[2] P. B. Cohen, Y. Manin and D. Zagier, 'Automorphic pseudodifferential operators', in: Algebraic Aspects of Nonlinear Systems (Birkhäuser, Boston, 1997), pp. 17-47.
[3] M. Eichler and D. Zagier, The Theory of Jacobi Forms, Progress in Mathematics, Vol. 55 (Birkhäuser, Boston, 1985).
[4] M. Kaneko and D. Zagier, A Generalized Jacobi Theta Function and Quasimodular Forms, Progress in Mathematics, Vol. 129 (Birkhäuser, Boston, 1995), pp. 165-172.
[5] M. H. Lee, 'Radial heat operators on Jacobi-like forms', Math. J. Okayama Univ. 104 (2009), 27-46.
[6] D. Zagier, 'Modular forms and differential operators', Proc. Indian Acad. Sci. Math. Sci. 104 (1994), 57-75.

MIN HO LEE, Department of Mathematics, University of Northern Iowa,
Cedar Falls, IA 50614, USA
e-mail: lee@math.uni.edu

[^0]: (C) 2010 Australian Mathematical Publishing Association Inc. 0004-9727/2010 \$16.00

