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1. Introduction

Consider the ordinary linear matrix differential system

A{)XX' , (1.1)

\p(x) is a scalar mapping, X and A(x) are n by n matrices. Both belong to C'(\_a, oo))
for some integer /. The stability and asymptotic behaviour of its solutions have been
subject to much investigation. See Bellman [2], Levinson [24], Hartman and Wintner
[20], Devinatz [9], Fedoryuk [11], Harris and Lutz [16,17,18] and Cassell [30]. The
special interest in eigenvalue problems and in the deficiency index problem stimulated a
continued interest in asymptotic integration. See e.g. Naimark [36], Eastham and
Grundniewicz [10] and [8,9]. Harris and Lutz [16,17,18] succeeded in explaining how
to derive many known theorems in asymptotic integration by repeatedly using certain
"(I + 0 " linear transformations.

Officially, the purpose of this note is to contribute a theorem in asymptotic
integration which is best possible in a certain sense. Technically and practically our
main goal is to present a method producing a certain linear transformation utilizing
projections. The method will directly provide a fine bound on the derivative of this
linear transformation as well as on the linear transformation, itself. This, when
combined with a new simple but delicate lemma on the perturbation of eigenvalues, will
produce the desired new result in asymptotic integration.

Before continuing the explanation of the nature of our results and relating them to
previous works, we will adopt the following definitions and assumptions.

Let Y be an n by n matrix function. Given the differential system

(1.2)

We adopt the following assumption throughout this work.

Assumption 1. D(x) is an n by n diagonal matrix and V(x) is an n by n matrix whose
diagonal elements are all 0.

) = O. (1.3)
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144 H. GINGOLD

The mapping i//(x) does not vanish on [a, oo). The mappings i//(x) and all the entries of
D(x) and V(x) belong to (^([a, oo)). The entries of R(x) belong to l}[_a, oo).

Assume that

x-* oo

Moreover, if V(x)$l}[_a, oo), assume

j (1.5)
x~* oo

We recommend the following nomenclature.

Definition 2. We say that the differential system (1.2) is almost diagonal if a
fundamental solution of (1.2) is given by

Y=(I + P(x)) exp Jx il/(s)D(s)ds (1.6)

where

P(x) = o(l),x->oo,P(x)eC1([a,oo)) for some a^a . (1.7)

We also need the following assumption on D(x).

Assumption 3. For each pair of indices j , k,j^k,j,k=l...n either

X X2

lim Re§\]/(s)(dj(s) — dk(s))ds= oo and J \l/(s)(dj(s) — dk(s))ds^ —K if x2^x1^a (1.8)
X-»GO a xl

or

Re7il/(s)(dj(s)-dk(s))dŝ K for x^x^a. (1.9)
xi

When \j/ = l Assumption 3 coincides with conditions imposed by Levinson [24]. Let
i//=l. Then, under Assumptions 1, 3 and the additional assumption that V(x) eL1 [a, oo)
it follows from Levinson [24] that (1.2) is an almost diagonal system. By using [24] as a
model, many works such as [8,16,17,18] reduce the system (1.1) to one like (1.2) in
which V(x) e L1 [a, oo). This is a final stage of the asymptotic integration. The reduction
is achieved via a sequence of linear transformations

X=Ti(x)...Tk(x)Y, (1.10)

where k is an integer, Tx(x)... Tk(x) are certain "computable" n by n matrices and
rf1(x)...rfn(x) are certain "computable" mappings which may coincide with certain
eigenvalues. The larger the value of k, the more labour needs to be invested in the
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calculations. A particularly tedious part of the work is the calculation of the eigenvalues
of certain n by n matrices and the verification of Assumption 3. It is worth noticing that
in works [16,17,18] Assumption 3 is imposed on a system derived from (1.1). It is not
always clear what conditions are to be imposed on the elements of A(x) to guarantee
that Assumption 3 will hold. In the case of a sequence of linear transformations being
applied to (1.1), Assumption 3 is not guaranteed to hold for the reduced system if the
eigenvalues of A{x) satisfy Assumption 3.

We have an exception in the case where for all j , k,

\Re(lj(x)-Xk(x))\^n>O,j,k=l...n,j=/=k, (1.11)

H is a constant independent of x. Then, if (1.11) holds with kt{x) the eigenvalues of A(x),
under fairly general conditions, (1.11) will also hold with dj(x) from the reduced system
(1.2) replacing A7-(x). This in turn will guarantee the validity of Assumption 3. Therefore,
it is important to recognize, as soon as possible, an almost diagonal system. Failing to
do so will result in the additional labour of computing the eigenvalues of (D(x) +
ij/~1(x)V(x)) and finding out if Assumption 3 holds for a newly derived differential
system.

The above has provided a major source of motivation for us to obtain a finer
estimate on the perturbation of certain eigenvalues and a finer estimate on the derivative
of a certain linear transformation. Those estimates enable us to recognize an almost
diagonal system under new conditions which have not been encountered in the
literature.

The moral of this analysis, induced from Gingold [15], is that the diagonal elements
of lD(x) + ip~i(x)V(x)^\ play a different role than the off diagonal elements. Moreover, it
is an interrelation between vJk(x) and il/(x)(dj(x) — dk(x)), j,k=l...n, j^k, which plays a
crucial role in the asymptotic integration.

We also offer a formal generalization: The matrix i//(x)A(x) need not be bounded on
[a, oo). The eigenvalues of \j/(x)A{x) need not be distinct at x = oo.

The order of this work is as follows. We will prove the main theorem in the following
section. Conditions which guarantee that (1.2) is almost diagonal will be formulated. In
Section 3, we will demonstrate that our result is "best possible" in a certain sense. We
will also provide a few remarks and comparisons.

In the sequel, we will use an appropriate norm on matrices which will be denoted by
|| ||. The matrix / will denote the identity matrix. Occasionally, we will replace the
mapping ^(x) and matrix functions V(x), R(x) etc. by \j/, V, R etc., respectively.

Let us proceed to the next section.

2. A theorem.

We formulate our theorem:

Theorem 2.1. Let assumptions 1,3 hold. Assume, also, that

1K||)6L1[a,a)) (2.1)
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Let

^~\x)i:\vik(x)vlm{x)\ el}[_a, co), (2.2)

where the summation is taken over the indices i, k, I, m=l...n, i^k, l^tn, i=/=/, k=fcm.
Then, (2.1) is an almost diagonal system.

Proof. We will need a few lemmas.

L e m m a A. Denote by A,(x), j=l...n the eigenvalues of (D(x) + il/~1(x)V(x)). Then,
there exists a number a ̂  a such that for all j=l...n the eigenvalues A,(x) are all distinct
for x ̂  a. Moreover,

Xj(x) - dj(x) = «A - 2(x)Xvik{x)vlm(x)9iklm(x), i,k,l,m=l...n. (2.3)

The sum in (2.3) is taken over the indices i^k, lj=m, i=j=l and k=fcm. 0iklm(x) are certain
mappings which are bounded on \_a, oo) and also belong to C1^, oo).

Proof. Consider the characteristic polynomial cn(A, x)

cn{X, x): = | D(x) + ifr-i(x) V(x) -Xl\. (2.4)

By using the basic definition of a determinant as a sum of n! appropriate terms we
have the following identity.

cn{X,x)= fi(dj(x)-X) + c^2(X,x), (2.5)

where cn-2(X,x) is the sum of (n! —1) terms.

cn_2ax)="x\v(x). (2.6)
v = l

Cv have the form

Cv(x) = xl> - 2{x)vik(x)vlm(x)cn.2(X, x). (2.7)

vik, vlm are certain entries of V. It is important to realize that the indices in (2.7) satisfy

i£k,l±m,i±l,k±m. (2.8)

The mapping cn_2(A,x) is a polynomial of order n — 2 of the form

cn_2(A,x)="i;2gD(x)X"-° (2.9)
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The coefficients gD(x) in (2.9) are related to the entries of (D + ip~lV) in an obvious
manner. By application of the implicit function theorem in a simple, straightforward
manner, we obtain the conclusion of Lemma A.

Next we need the following lemma.

Lemma B. There exists on [a, oo) an n by n matrix function T(x) with the following
properties:

T(x) is invertible and continuously differentiable on [a, oo).

T(x) = / + A(x), (2.10)

and

(I + A(x)) -'(Dix) + ij,-1(x) V(x))(I + A(x)) = A(x) = {diag {^(x)... Xn(x)} (2.11)

The following relations hold.

||A'(x)||=0(m(x)),||A(x)||= J m(t)dt,x^oo (2.12)
X

where

| | | | | | | | | | 1 ( x ) n x ) | | ) (2.13)

Proof. We proved in Lemma A that for x ^ a all eigenvalues of (D + \J/ lV) are
distinct. Let I}, j = 1... n be a set of rectifiable closed Jordan curves in the 1-plane such
that Fj contains Xj(x) in its interior and Ak(x), k j= j in its exterior, for x ^ a.

Construct

P j ( x ) : = 2 ^ [ i / ~ D ~ ' / ' ~ l F r l ' W J = 1 - - - " - ( 2 1 4 )

Then, Pj(x),j = l ...n are projection matrices. (See e.g. Riesz and Nagy [25] p. 419).
Moreover, Pj(x) are continuously differentiable matrix valued functions of x for x^a.
This is verifiable using

^^\.UD4iV\iD+{4iV)][_XlD-\ii-iV-\-1dX. (2.15)
2m r.

In connection with projection matrices we use a differential system proposed by Kato
[22] and utilized by Coppel [6], Gingold [12], and Gingold and Hsieh [13].
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Consider the initial value problems

W'-IP'JPJ-PJP'J] Wj, Wj(co) = I, j=l...n. (2.16)

We first intend to show that

\\(PJPJ-PJP'J)\\ = O(m(x)), x->oo, j = 1... n. (2.17)

From (2.14) and (2.15) we have

where

Il:={[XI-D-ii)-l\q-1)\nI-D-\}i-lV). (2.18)

We notice that if D + i]/~lV would have been a diagonal matrix then P'jPj—PjP'j
would be identically zero. Therefore, we are going to "expand" the expressions of PpP'j
"about their diagonal term."

Put

R,0 = [A/-D(x)]-1 (2.19)

Then,

[A/ _ D _ ^ ~ i iq ~ i = [/ + £ {lj/ ~ IRM V)^RM. (2.20)
v = l

\\Rxo\\1S bounded for k on the contours of integration I}, j = 1 ...n and i/'"1(co)F(oo)=0.
Therefore, the series in (2.20) are absolutely convergent for x^a and a large enough.
Moreover, without loss of generality, we may assume that the series below are absolutely
convergent for x^a .

0 (2.21)

Let us calculate /j in terms of the series in (2.20) and (2.21).

2 ] ] [ E , , (2.22)
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where

[ ] ^ | ] o (2-23)

1" £ (^"^ion^ior EOT1 V)v~k (2.24)
| _ v = l J | _ v = l J

and

r co ~i r~ oo ~i

|_v=i J L v = i J

In a similar manner we define

(2.26)

where J-, = A + B and

A: = ^ , 0 + J f & ^ Y X O \ f

'AO (2-27)
l_v=i J Lv=i J

and

We split B into two parts. The first, "a linear part" in ip~l V is to be denoted by Bt.
x Rxo VR'^R^. (2.29)

The second, the "remainder", is to be denoted by B2,

B2:=(B-B1) (2.30)

Similarly, we will have

Rxo (2-31)

https://doi.org/10.1017/S0013091500022604 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500022604


150

and

H. GINGOLD

We notice that by the residuum theorem

(2.32)

(2.33)

Therefore, the contributions to PJPJ—PJP'J from the first and third terms on the r.h.s. of
(2.24) and (2.27) are 0.

We observe that for x ^ a, without loss of generality, we have for some constant p < 1

Then, it can easily be verified that for x ^ a

z<
v = l

and

(2.34)

(2.35)

v = l
(2.36)

Thus we conclude that by virtue of (2.23), (2.27) and (2.33),

§ §(A-A)dkdn =o{\\D'

We also conclude that

§ §(\\B2\\ + \\82\\)\di.dn\=o(\\W
i i

The estimates on the second terms on the r.h.s. of (2.29) and (2.31) are

(2.37)

(2.38)

rj rj

(2.39)

Thus, the validity of (2.13) is established.
Let us return to the initial value problems (2.16). Because of Assumption 1, they

possess continouously differentiable solutions on x^a. It is an easy exercise to verify
that for each j,j=\...n,Pi(oo) is a projection matrix which possesses 1 in its (j,j) place
and zero entries elsewhere. By repeating the arguments in Gingold [12] we obtain
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Wr\oo) Pj(oo)Wj(oo) = Pj(oo). (2.40)

This implies that for x k a

Consider the matrices

Zj{x) = Wj1 (x) [D(x) + il/~1(x) F(x)] Wj(x). (2.42)

Let

We will show that Zj(x) commutes with P,(oo), j=l...n. By (2.42), we have

ZJ(X)PJ(CO) = Wj'{x) lD(x) + ^-\x) V{xn WJ{X)PJ(CO)

. (2.43)

Since Pj(x) commutes with [D(x) +1//~ 1(x)V(x)~], we also have

ZJ(X)PJ(CO)= Wi1(x)Pj(x)lD(x) + il,-1(x)V(x^ Wj(x)

= Pj(cx>)Wr\x)lD(x) + t-1(x)V(xftWi(x) = Pj{^)Zi(x). (2.44)

The relation (2.44) holds iff

ZJU=zm = 0,i,k=l...n,i +j, k ±j. (2.45)

This could easily be shown by partitioning the matrix Zj into the following blocks.

Z,=

Zll Z12 Z13

Z21 Z22 Z23

Z31 Z32 Z32

(2.46)

Z22: =zjjjix) 1S a o n e by one block and the remaining blocks are defined in an obvious
manner. We then partition the matrix P,(oo) into blocks, similar to the blocks into
which Zj is partitioned.

The matrices Zj and P,-(oo) commute. From their commutation there result nine
equations. They yield the desired conclusion.

We notice that Pj{x) is the projection which takes the vector space on which {D(x) +
\j/~1(x)V(x)) operates into the subspace spanned by the eigenvector corresponding to

). Therefore,

(2.47)
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The j-th column of Wj(x) is an eigenvector corresponding to A,(x). This is manifested
in the following relation.

(2.48)

Notice that the only possible non-zero element in Z,-(x)Pj(oo) is ZJJJ(X).
Consider the matrix T(x) given by

T(x): = J£" WtfxJP/oo). (2.49)

Then,

)= ' £ W$(x)P/ao)A(x) = T(x)A(x). (2.50)
j = i J=I

Since A,(x) are distinct, T(x) must be invertible and (2.11) is proved.
We now proceed to find estimates on A(x) defined by

A(x): = T(x)-J (2.51)

and on its derivative. We notice that

f TO/). (2.52)
J=I

Denote by gj(x)

gj(x): = \\P'J(X)PJ(X) - PJ(X)P'J(X)\\. (2.53)

Then, from (2.16) we obtain

|| Wj{x) -1\\ < ] g{t)\\ Wj(i) -I\\dt+] gj(t) dt. (2.54)
X X

By Gronwall's generalized lemma (see e.g. Hille [21] p. 12), we obtain

\\Wjix) -1\\ ^ ] gj(t) exp f gj(s) ds) dt = [exp J gj(t) dt -1] = 0(m(x)), x^ oo, j = 1... n.
X X X

(2.55)
From (2.16) we have

| |(^.(x)-/) ' | | = a(m(x)),x^oo,j = l...n. (2.56)

Combining (2.55) and (2.56) in (2.52) yields the relation (2.12).
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For the final part of this theorem let

Y=T(x)Z. (2.57)

Then, the transformation (2.57) takes the differential system (1.2) into

Z' = \_D + R~]Z. (2.58)

D is defined by

D: = diag [tfrA- T"1 T + T-lRT\ = diag{J1(x).. .2n(x)} (2.59)

and

£:=¥A-r-1r+r-1KT-.D. (2.60)

Because of (2.1) and of (2.2) we have

\dJ-3J\eL1[ix,ao)J=l...n. (2.61)

Therefore, Assumption 3 also holds for 3j replacing dj, j = 1... n. From Levinson [24] or
some other method, it follows that (2.58) is an almost diagonal system.

Therefore,

Y = (I + A(x))Z = (/ + A(x))(I + Q(x)) exp J D(t) dt (2.62)

is a fundamental solution of (1.2) with Q(oo) = 0. Since

J||/J(t)-D(t)|| = ff(l),x->oo (2.63)

Y given by

Y = 7exp J (D(t) - D(t)) dt (2.64)
a

is also a fundamental solution of (1.2). Define now

P(x): = (/ + A(x))(/ + CMXexp f (D(t) - D(t)) dt) -1 (2.65)
a

and conclude that (1.2) is an almost diagonal system.

Remarks. Let A(x)eCl[a,oo] possess distinct eigenvalues kl(x)...Xn(x). Then the
method of construction in Lemma B guarantees the existence of an invertible matrix
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function T(x) e C1 [a, oo] such that

..An}. (2.66)

It is worth noticing that the employment of a nonlinear equation, as suggested by [16],
may shrink the domain of validity of the transformation T(x) to an interval [a, oo], with
a>a. Theoretically, this may be of little significance. Practically, it may become a
handicap in applications. Therefore, we emphasize the contrast between our linear
method and the nonlinear method in [16]. Moreover, thanks to the linearity, the
delicate estimates (2.12), (2.13) became available in a relatively transparent way.
Nonlinear equations are not always that easy to work with. At this stage, it is not
trasnparent how (2.12), (2.13) follow from [16], [18]. The differential equation (2.16)
simultaneously provides the properties of Wj(x) and its derivative for j = 1.. .n. Moreover,
the differential equation directed us to look for bounds on P'JPJ. These turned out to
yield a bound on T sharper than the one we encountered in the literature. The bound
on T" is crucial as it determined the bound on the perturbation term T~iT' in (2.58).
This was essential in determining whether (2.58) is an almost diagonal system or not.
There are many methods in the literature which provide the construction of a
diagonalizing matrix like T(x). To mention a few, see Levinson [24], Coppel [5], p. I l l ,
Fedoryuk [11], Devinatz [8], Harris and Lutz [16] and Cassell [30]. We liked this
method because of the reasons mentioned above and because the method clarifies how
the properties of T and its derivative are inherited from (D + \j/ ~1V) and its derivative.

In the next section we plan to demonstrate the "sharpness" of Theorem 2.1.

3. Sharpness and concluding remarks

Consider the following special case of (1.2). Let \j/ = \ and R = 0. Let D(x) be defined
by dj(x) = ijj(l + x-esmx),(i = yJ-l),j=l...n,O<O<l.Let V(x) = (vjk(x)) be the follow-
ing n by n matrix.

k=\...n, 0<<5<i 5 + 6>\. (3.1)

(3.2)

Then, Theorem 1.2 guarantees that (1.2) is an almost diagonal system. However, none of
the asymptotic methods which I encountered in the literature recognizes the differential
system of this example as being almost diagonal. It is not claimed here that this example
cannot be treated by modifying other methods in the literature. In particular, an
asymptotic decomposition can be obtained by utilizing an (I + Q) transformation as
suggested in [16], [18]. However, the purpose of our analysis is not just to obtain
"some" asymptotic decomposition. Our purpose is to obtain an asymptotic decom-
position "as early as possible". From practical considerations rather than from pure
theoretical ones, this has a merit of its own. To this end, a "linear method" which is self-
contained for the construction of a linear transformation was expounded.

The benefits of Theorem 2.1 can also be appreciated by considering the asymptotic
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decomposition of solutions of y(n) = c{x)y with (In c(x))'$Ll [a, oo). See Gingold [35] for
treatment of the location of zeros of solutions of / " ' = c(x)y.

Next we intend to show that our result cannot be improved. To this end we will
consider the differential system

y = | _ p X_i\Y' <5>0,j?>0. (3.3)

Let 6:=d + p.

By Levinson's theorem we know that a fundamental solution of (3.3) on [a, oo) is given
by

(3.4)

and ||^(a)|| < 1 for a large enough.
Our theorem guarantees that for 6>\ (3.3) is an almost diagonal system with a

fundamental solution

/ W = 0,D(t) = diag{l, - 1 } (3.5)

and ||P(a)||<"l for a large enough. We chose in (3.4) and (3.5) Yl(pi) = Y2{a) = l.
Therefore, for x ̂  a

y1(x)=y2(x). (3.6)

From (3.6) we obtain that

(/ + M{x)) = hap f D(t) dtXl + M(a)) (exp - J B(t) dtj (3.7)

where

),j,k=l,2. (3.8)

Consider the diagonal element ( l+mu(x)) on the l.h.s. of (3.7). From the equality (3.7)
we have

-J t
7L=dt\ l+mll{a)) (3.9)

We let x-> + oo in (3.9) to obtain a contradiction for 0 ^ 1 .
It is worth observing that if (1.2) is such that {j/(x) = x~a with 0 < a < l , Theorem 2.1
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provides asymptotic integration of differential systems with coefficients matrices possess-
ing coalescing eigenvalues. It is well-known that a transformation of the type

t=]\j/{u)du (3.10)

will reduce (1.2) to a new differential system with ^ = 1. Then one may claim that the
setting of (1.2) with arbitrary \]/ is superfluous. Indeed, the theory and examples treated
in this work could be attained by employing a transformation-like (3.10). However,
there are reasons for not doing so.

First, notice that if \p~l=xq where q is some integer and A(x) has an asymptotic
expansion in a sector as X-KJO, then our setting is in harmony with the setting
employed in the "analytic theory" of linear differential systems. See e.g. Wasow [29] Ch.
I-IV.

Secondly, it is hoped that in the future, the linear theory of singular differential
systems will be unified. This, to include linear differential systems of asymptotic
integration, singularly perturbed linear differential systems and differential systems with
moving singularities. For some thoughts in that direction, see Gingold [31,32,33] and
Gingold and Rosenblat [34]. The preservation of a general \]/ in systems like (1.1) helps
to achieve that unification goal.

Thirdly, notice the following. Recently, a successful attack on general 2 by 2 linear
differential systems with moving singularities was made. See Gingold [15]. The results
obtained include as particular cases 2 by 2 first order linear differential systems with
multi coalescing turning points. Part of the success is owed to refraining from
transforming the independent variable at an early stage of an asymptotic decomposition.
This is in contrast to what some researchers may be tempted to do.

One may single out two main steps in the asymptotic theory of linear singular
differential systems. The first step consists of one or more linear transformations of the
dependent variable. This is the stage upon which we focused in this work. The second
stage is the final stage of asymptotic decomposition in which an attempt is made to
prove that a certain linear differential system is almost diagonal.

In regards to the second stage, this work has the same shortcoming as the asymptotic
methods of [24], [36], Vol. II, Ch. VI and e.g. [7,16,30]. The shortcoming is a result of
the requirement that a differential system like (1.2) with ^ = 1, be reduced to another
one with a coefficient matrix whose off diagonal elements belong to L1 [a, oo) for some
a>0. This requirement makes some results weaker than they should be. In particular,
linear differential systems in asymptotic integration with "turning points" (more general
than the ones considered in this article), are not amenable to methods which are
sustained by such a requirement. It is hoped that this situation will be corrected in the
future.
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