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Spectral Properties of a Family of Minimal
Tori of Revolution in the Five-dimensional
Sphere

Mikhail Karpukhin

Abstract. _e normalized eigenvalues Λ i(M, g) of the Laplace–Beltrami operator can be consid-
ered as functionals on the space of all Riemannian metrics g on a ûxed surface M. In recent papers
several explicit examples of extremal metrics were provided. _esemetrics are induced byminimal
immersions of surfaces in S3 or S4 . In this paper a family of extremal metrics induced by minimal
immersions in S5 is investigated.

1 Introduction

Let M be a closed surface and let g be a Riemannian metric on M. _en the Laplace–
Beltrami operator ∆∶C∞(M)→ C∞(M) is given by the formula

∆ f = − 1√
∣g∣

∂
∂x i (

√
∣g∣g i j ∂ f

∂x j ) .

_e spectrum of ∆ consists only of eigenvalues. Let us denote them by

0 = λ0(M , g) < λ1(M , g) ⩽ λ2(M , g) ⩽ λ3(M , g) ⩽ ⋯,

where the eigenvalues are written with their multiplicities.
In this paper the family of functionals

Λ i(M , g) = λ i(M , g)Area(M , g)

is investigated. Let us ûx M. We are interested in investigating supΛ i(M , g), where
the supremum is taken over the space of all Riemannian metrics on M.
An upper bound for Λ1(M , g) in terms of the genus ofM was provided in [28] and

later the existence of an upper bound for Λ i(M , g) was shown in [17]. Several recent
papers [5–7,11,12,19,22,23] dealwith ûnding the exact values of this supremum in the
space of all Riemannian metrics on several particular surfaces. We refer the reader to
the introduction of [25] for more details.

In an attempt to solve this problem, the following deûnition was introduced in
several papers; see e.g., [6,22].
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Deûnition 1.1 A Riemannian metric g on a closed surface M is called an extremal
metric for a functional Λ i(M , g) if for any analytic deformation gt such that g0 = g
the following inequality holds:

d
dt

Λ i(M , gt)∣
t=0+

⩽ 0 ⩽ d
dt

Λ i(M , gt)∣
t=0−

.

For the correctness of this deûnition we refer the reader to [1,2,7].
A real breakthrough in ûnding explicit examples of (smooth) extremal metrics be-

came possible due to connection with the theory ofminimal surfaces in spheres dis-
covered in [7]. Let ψ∶M ↬ Sn be aminimal immersion in the unit sphere. We denote
by ∆ the Laplace–Beltrami operator on M associated with themetric induced by the
immersion ψ. Let us introduceWeyl’s counting function

N(λ) = #{i ∣ λ i(M , g) < λ}.
_e following theorem provides a general approach to ûnding smooth extremal met-
rics.

_eorem 1.2 (El Souû, Ilias [7]) Let ψ∶M ↬ Sn be aminimal immersion of a surface
in the unit sphere Sn endowed with the canonical metric gcan . _en the metric ψ∗gcan
on M is extremal for the functional ΛN(2)(M , g).

In the recent papers [15, 18, 24, 25] this connection was used to provide several
examples of extremal metrics on the torus and the Klein bottle. _ese metrics were
induced by minimal immersions of the corresponding surfaces in S3 and S4. In this
paper a family of minimally immersed surfaces in S5 is investigated. For any pair of
positive integers m, n such that m ⩾ n and (m, n) = 1, we consider a doubly 2π-
periodic immersion ϕm ,n ∶R2 → S5, given by the formula

(1.1) ϕm ,n(x , y) =

(
√ m + n

2m + n
e imy sin x ,

√ m + n
m + 2n

e iny cos x ,

√
n cos2 x
m + 2n

+ m sin2 x
2m + n

e−i(m+n)y) ,

where S5 is considered as the set of unit length vectors in C3. We denote the image
of ϕm ,n by Mm ,n . To the best of author’s knowledge, the explicit formula (1.1) ûrst
appeared in the introduction of [20]. _is immersion can be obtained due to a general
construction by Mironov (see [21]). We should mention that Mm ,n were described
in conformal coordinates in [9, 13]. _e main result of this paper is the following
theorem.

Main_eorem For any pair of positive integersm, n such thatm ⩾ n and (m, n) = 1,
the immersion ϕm ,n is minimal. _e corresponding surface Mm ,n is a torus. If mn ≡ 0
mod 2, then themetric induced on Mm ,n by the immersion is extremal for the functional
Λ4(m+n)−3(T2 , g). Ifmn ≡ 1 mod 2, then themetric induced onMm ,n by the immersion
is extremal for the functional Λ2(m+n)−3(T2 , g).

_e proof of this theorem is similar to the proof of the main theorem in [24] by
Penskoi. However, we should mention that the exposition here is much simpliûed;
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e.g., we do not use the theory of the Magnus–Winkler–Ince equation. We also ûll a
gap by giving a rigorous proof of [24, Proposition 20].

We provide the exact value of the corresponding functional in terms of elliptic
integrals of the ûrst and the second kind given respectively by the formulae

K(k) = ∫
1

0

1√
1 − x2

√
1 − k2x2

dx , E(k) = ∫
1

0

√
1 − k2x2
√

1 − x2
dx .

Following the paper [15]we also prove the non-maximality of themetric on Mm ,n .

Proposition 1.3 If mn ≡ 0 mod 2, then

Λ4(m+n)−3(Mm ,n) =

16π(
√

m2 + 2mn E(
√

m2 − n2

m2 + 2mn
) − mn√

m2 + 2mn
K(

√
m2 − n2

m2 + 2mn
)) .

If mn ≡ 1 mod 2, then

Λ2(m+n)−3(Mm ,n) =

8π(
√

m2 + 2mn E(
√

m2 − n2

m2 + 2mn
) − mn√

m2 + 2mn
K(

√
m2 − n2

m2 + 2mn
)) .

For every pair {m, n} /= {1, 1} themetric on Mm ,n is notmaximal for the corresponding
functional.

Remark 1.4 It is easy to check that ϕ1,1 is an immersion of the �at equilateral torus
in S5 by ûrst eigenfuctions, and as itwas shown in [22] that this metric is maximal for
the functional Λ1(T2 , g).

_e paper is organized in the following way. In Section 2.1 we describe Mm ,n as a
part of a general construction from [21] by Mironov. _en in Section 2.3 we reduce
the problem of ûnding N(2) for ∆ to the similar problem for a family of periodic
Sturm–Liouville operators. Finally, Section 3 contains the proof of Main _eorem,
and Section 4 is dedicated to the proof of Proposition 1.3.

2 Preliminaries

2.1 Construction of Minimal Lagrangian Submanifolds in Cn by Mironov

Let M be a k-dimensional submanifold of Rn given by equations

e1 ju2
1 + ⋅ ⋅ ⋅ + en ju2

n = d j , j = 1, . . . , n − k,

where d j ∈ R and e i j ∈ Z. Since dimM = k, the vectors e j = (e j1 , . . . , e j(n−k)) ∈ Zn−k ,
j = 1, . . . , n form a lattice Λ of maximal rank in Rn−k . Let us denote by Λ∗ the dual
lattice to Λ,

Λ∗ = { y ∈ Rn−k ∣ (e i , y) ∈ Z, i = 1, . . . , n} ,
where (x , y) = x1 y1 + ⋅ ⋅ ⋅ + xn−k yn−k .
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Consider themap ϕ∶M × (Rn−k/Λ∗)→ Cn given by the explicit formula

ϕ(u1 , . . . , un , y) = (u1e2πi(e1 ,y) , . . . , une2πi(en ,y)).

We endow Cn with the standard symplectic form

ω = dx 1 ∧ dy1 + ⋅ ⋅ ⋅ + dxn ∧ dyn .

Recall that an immersion ψ∶N ↬ Cn is called Lagrangian if ψ∗ω = 0.

_eorem 2.1 (Mironov [21]) Suppose that e1 + ⋅ ⋅ ⋅ + en = 0. _en the immersion ϕ is
aminimal Lagrangian immersion.

Let us now consider a particular case

M = {(x1 , x2 , x3) ∣ mx2
1 + nx2

2 − (m + n)x2
3 = 0} ⊂ R3 .

_en by_eorem 2.1, the immersion ϕ is aminimal Lagrangian immersion. It is easy
to see that in this case Im ϕ is a cone C(Mm ,n) over Mm ,n . It is a standard fact that
C(Mm ,n) is minimal in C3 if and only if Mm ,n is minimal in S5 ⊂ C3; see e.g., [26].

2.2 Symmetries of ϕm ,n

_e goal of this section is to prove the following proposition.

Proposition 2.2 Suppose m /= n. If mn ≡ 1 mod 2, then one has ϕm ,n(x , y) =
ϕm ,n(x+π, y+π) and ϕm ,n ∣[0,2π)×[0,2π) is a double cover almost everywhere. Ifmn ≡ 0
mod 2, then ϕm ,n ∣[0,2π)×[0,2π) is one-to-one almost everywhere. _us Mm ,n is a torus
for each m, n > 0, (m, n) = 1.

Remark 2.3 In fact, according to the paper [21], one can omit the words “almost
everywhere” in the previous proposition.

Proof Since (m, n) = 1, there are no symmetries of the form (x , y) ↦ (x , y + α).
Examining the third coordinate of ϕm ,n , we see that the only possible symmetry has
the form

(x , y)↦ ((−1)ε1x + (−1)ε2π, y + 2π
m + n

) ,

where ε i = 0, 1 . Substituting this into the ûrst two coordinates of ϕm ,n we obtain the
statement of the proposition.

2.3 Associated Periodic Sturm–Liouville Problem

In this section we reduce the problem of ûnding N(2) for the Laplace–Beltrami op-
erator on Mm ,n to a similar problem for the associated Sturm–Liouville operator.

Let us introduce the notations

σ(x) =
√

m2 + 4mn + n2 − (m2 − n2) cos 2x ,
ρ(x) = (m + n)(m + n − (m − n) cos 2x).
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Direct calculations show that themetric on Mm ,n is given by

ρ(x)(σ(x)−2dx2 + 1
2
dy2) .

_en a straightforward calculation shows that the following formula holds for the
Laplace–Beltrami operator,

(2.1) ∆ f = − 1
ρ(x)(σ(x) ∂

∂x
(σ(x)∂ f

∂x
) + 2

∂2 f
∂y2 ) .

Proposition 2.4 Assumemn ≡ 0 mod 2. _e number λ is the eigenvalue of Laplace–
Beltrami operator (2.1) if and only if there exists l ∈ Z⩾0 such that there is a solution of
the following associated periodic Sturm–Liouville problem:

−σ(x) d
dx

(σ(x)dg(x)
dx

) + 2l 2g(x) = λρ(x)g(x),

g(x + 2π) ≡ g(x).

(2.2)

_e corresponding eigenspace is spanned by the functions of the form g(l , x) sin lx and
g(l , x) cos lx, where l is any positive integer number such that a solution of equation
(2.2) exists and g(l , x) is the corresponding solution.

Ifmn ≡ 1 mod 2, then the statement remains the samewith the boundary conditions

(2.3) g(x + π) ≡ (−1)l g(x).

Proof Let us remark that ∆ commutes with ∂2

∂y2 . _us, these operators have a com-
mon basis of eigenfunctions of the form g(l , x) cos lx and g(l , x) sin lx. By substi-
tuting these eigenfunctions into formula (2.1) we obtain equation (2.2). Since any
function on Mm ,n should be doubly 2π-periodic, we have l ∈ Z⩾0 and boundary con-
ditions in (2.2).

In the case mn ≡ 1 mod 2, any function f ∈ C∞(Mm ,n) should satisfy the condi-
tion f (x + π, y + π) = f (x , y). _is condition implies immediately boundary condi-
tions (2.3).

For a general Sturm–Liouville problem the following classic proposition holds; see
e.g., [4].

Proposition 2.5 Consider a periodic Sturm–Liouville problem in the form

− d
dt

( p(t) d
dt

g(t)) + q(t)g(t) = λr(t)g(t),

g(t + t0) ≡ g(t),

(2.4)

where p(t), r(t) > 0 and p(t + t0) ≡ p(t), q(t + t0) ≡ q(t), r(t + t0) ≡ r(t). Let us
denote by λ i and g i(t) (i = 0, 1, 2, . . . ) the eigenvalues and eigenfunctions of problem
(2.4). _en the following inequalities hold:

λ0 < λ1 ⩽ λ2 < λ3 ⩽ λ4 < λ5 ⩽ λ6 ⩽ ⋯
For λ = λ0 there exists a one-dimensional eigenspace spanned by g0(t). For i ⩾ 0 if
λ2i+1 < λ2i+2, then there is a one-dimensional λ2i+1-eigenspace spanned by g2i+1(t) and
there is a one-dimensional λ2i+2-eigenspace spanned by g2i+2(t). If λ2i+1 = λ2i+2, then
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there is a two-dimensional eigenspace spanned by g2i+1(t) and g2i+2(t)with eigenvalue
λ = λ2i+1 = λ2i+2.

_e eigenfunction g0(t) has no zeros on [0, t0). _e eigenfunctions g2i+1(t) and
g2i+2(t) each have exactly 2i + 2 zeros on [0, t0).

Proposition 2.6 For l ⩾ 0 the eigenvalues λ i(l) of problem (2.2) are strictly increasing
functions of the parameter l .

Proof _e Raleigh quotient for equation (2.2) is deûned by the formula

R l [ f ] =
∫

2π
0 (σ(x)( f ′)2 + 2 l 2

σ(x) f
2) dx

∫
2π
0

ρ(x)
σ(x) f 2 dx

.

By the variational characterization of the eigenvalues (see e.g., [10]), one has
λk(l) = inf

Ek
sup
f ∈Ek

R l [ f ],

where the inûmum is taken over all (k + 1)-dimensional subspaces Ek in the space of
all 2π-periodic functions of the Sobolev space H1[0, 2π]. Moreover, the inûmum is
reached on the space Vk(l) formed by the ûrst (k + 1) eigenfunctions. Let us remark
that R l1[ f ] < R l2[ f ] if 0 ⩽ l1 < l2.

_en λk(l1) ⩽ sup f ∈Vk(l2) R l1[ f ]. _e latter supremum is reached on some func-
tion g ∈ Vk(l2). _us one has

λk(l1) ⩽ R l1[g] < R l2[g] ⩽ sup
f ∈Vk(l2)

= λk(l2),

which completes the proof.

3 Proof of Main Theorem

We need the following classic theorem (see e.g., [16]).

_eorem 3.1 Let M ↬ Sn be a minimally immersed surface of the unit sphere Sn ⊂
Rn+1. _en the restrictions x 1∣M , . . . , xn+1∣M on M of the standard coordinate functions
of Rn+1 are eigenfunctions of the Laplace–Beltrami operator on M with eigenvalue 2.

According to _eorem 3.1, the components of ϕm ,n are eigenfunctions of the
Laplace–Beltrami operator on Mm ,n . Since the function

√
n cos2 x
m + 2n

+ m sin2 x
2m + n

does not have zeroes on [0, 2π), we have by Proposition 2.5 that

g0(m + n, x) =
√

n cos2 x
m + 2n

+ m sin2 x
2m + n

and λ0(m + n) = 2. By Proposition 2.6 one has λ0(l) < 2 for l < m + n. _e function
cos ny cos x corresponds to l = n, whereas the function cosmy sin x corresponds to
l = m. At the same time both sin x and cos x have 2 zeroes on [0, 2π). _us, again by
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Proposition 2.5, either λ1(m) = 2 and λ2(n) = 2 or λ1(n) = 2 and λ2(m) = 2. In the
latter case we have a contradiction, since m > n and by Proposition 2.6 2 = λ1(n) <
λ1(m) ⩽ λ2(m) = 2. _us, λ1(l) < 2 for l < m and λ2(l) < 2 for l < n. _e last
part of the proof of the Main _eorem is based on the following proposition, which
we prove later in this section.

Proposition 3.2 _e eigenvalue λ3(l) of problem (2.2) satisûes the inequality
λ3(0) > 2.

Recall that for every λ i(l) with l > 0 there are two eigenfuctions of the Laplace–
Beltrami operator on Mm ,n . _is observation completes the proof in the casemn ≡ 0
mod 2.

If mn ≡ 1 mod 2, then one has to take into account the symmetry (x , y) ↦
(x + π, y + π); i.e., if l is even, then we need to count only π-periodic solutions of
equation (2.2), and if l is odd, then we need to count only π-antiperiodic solutions
of (2.2). Application of Proposition 2.5 with t0 = π, 2π yields the fact that g2i+1 and
g2i+2 are π-antiperiodic if and only if i is odd and π-periodic otherwise. Obvious
calculations now complete the proof of theMain _eorem.

_e rest of this section is dedicated to the proof of Proposition 3.2.

3.1 Lamé Equation

In this section we recall several facts concerning the Lamé equation, usually written
as

(3.1)
d2ϕ
dz2 + (h − n̂(n̂ + 1)k2 snz)ϕ = 0.

We write n̂, since n is already used as a parameter in the family Mm ,n .
We use a trigonometric form of the Lamé equation

(3.2) [ 1 − (k cos y)2] d
2ϕ
dy2 + k2 sin y cos y dϕ

dy
+ [h − n̂(n̂ + 1)(k cos y)2]ϕ = 0.

Equation (3.2) can be obtained from equation (3.1) using the following change of vari-
ables

sn z = cos y ⇐⇒ y = π
2
− am z,

where am is the Jacobi amplitude function; see e.g., [8].
In order to prove Proposition 3.2 we need the following proposition.

Proposition 3.3 Assume n̂ = 1. _en the eigenvalue h3(k) is greater than 2 for every
0 < k < 1.

Proof According to [27] the number h3(k) can be characterized as the ûrst eigen-
value of problem (3.2) with boundary conditions

(3.3) ϕ(y + π) ≡ ϕ(y) ϕ(y) ≡ −ϕ(π − y).
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First let us rewrite equation (3.2) in the form

(3.4)
d
dx

(
√

1 − (k cos x)2 dϕ
dx

) + h − 2(k cos x)2
√

1 − (k cos x)2
ϕ = 0.

Let us denote p(x) =
√

1 − (k cos x)2. We introduce an auxiliary Sturm–Liouville
problem of the form

(3.5) − d
dx

( p(x)dϕ
dx

) + p(x)ϕ = λp(x)ϕ.

It easy to see that a function ϕ(x) is a solution of equation (3.4) with h(k) = 2 if and
only if ϕ(x) is a solution of equation (3.5) with λ(k) = 3.

_erefore h3(k) /= 2 if and only if the Rayleigh quotient

(3.6) Rk[ f ] = ∫
π
0 p(k, x)(( f ′)2 + f 2) dx
∫

π
0 p(k, x) f 2 dx

is greater than 3 for any function f satisfying condition (3.3). Indeed, by the vari-
ational characterization of the eigenvalues the ûrst eigenvalue λ̂0(k) of the prob-
lem (3.5) with boundary conditions (3.3) is equal to inf R[ f ], where the inûmum is
taken over the subspace L of functions f ∈ H1[0, π] satisfying conditions (3.3).

_en let us remark that the Rayleigh quotient (3.6) is a decreasing function of k.
Indeed, if k1 > k2, then p(k1 , x) < p(k2 , x), and we have

∫
π

0
p(k1 , x)( f ′)2 dx < ∫

π

0
p(k2 , x)( f ′)2 dx .

By adding ∫
π
0 p(k1 , x) f 2 dx ∫

π
0 p(k2 , x) f 2 dx to both sides, we obtain

∫
π

0
p(k1 , x)(( f ′)2 + f 2) ∫

π

0
p(k2 , x) f 2 dx <

∫
π

0
p(k2 , x)(( f ′)2 + f 2) dx ∫

π

0
p(k1 , x) f 2 dx .

_is inequality implies Rk1[ f ] < Rk2[ f ].
_erefore, since p(1, x) = sin x on [0, π], one has the inequality

(3.7) λ̂0(k) > inf
f ∈L
∫

π
0 (( f ′)2 + f 2) sin x dx

∫
π
0 f 2 sin x dx

.

Any function f ∈ L can be expressed in the form g(cos x), where g is a function
in the segment [−1, 1] such that

∫
1

−1

g2(t)√
1 − t2

dt <∞, ∫
1

−1
(g′)2(t)

√
1 − t2 dt <∞, g(t) ≡ −g(−t).

Consequently, g lies in a wider spaceH given by

H = { g(t) ∈ L2[−1, 1] ∣ g′(t)
√

1 − t2 ∈ L2[−1, 1], g(t) ≡ −g(−t)} .

Given any function g ∈ H consider the orthonormal basis in L2[−1, 1] formed by
normalized Legendre polynomials

√
(2n + 1)/2Pn(t). Let us recall that the Legendre
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polynomials satisfy the Legendre equation,

d
dt

((1 − t2)dPn(t)
dt

) = −n(n + 1)Pn(t).

Suppose that

g(t) =
∞
∑
i=1
an

√
2n + 1

2
Pn(t)

is a Fourier expansion for g(t) that starts with i = 1 due to the oddity of g(t). _en
g′(t)

√
1 − t2 ∈ L2[−1, 1] and the associated Legendre functions P1

n(t) =
√

1 − t2P′n(t)
form an orthogonal basis in L2 and let

g′(t)
√

1 − t2 =
∞
∑
i=1
bm

√
2m + 1

2
P1
m(t).

Recall that for m, n ⩾ 1 one has the orthogonality property

∫
1

−1
P1
n(t)P1

m(t) dt = 2n(n + 1)
2n + 1

δm ,n .

If by ( ⋅ , ⋅ ) we denote the L2-inner product in H, then
√

2
2n + 1

n(n + 1) bn = ( g′(t)
√

1 − t2 , P1
n(t)) = −( g(t), d

dt
((1 − t2)dPn(t)

dt
))

= (g(t), n(n + 1)Pn(t)) =
√

2
2n + 1

n(n + 1)an .

It follows that an = bn . Now the expression under the inf on the right-hand side of
inequality (3.7) in terms of g(t) has the form

R1[g] = ∫
1
−1(1 − t2)g′2(t) + g2(t) dt

∫
1
−1 g2(t) dt

.

Substituting the series for g(t) and g′(t)
√

1 − t2 into this quotient, we see that the
inûmumis reached on g(t) = P1(t) = t, and the quotient is equal to 3. _us, λ̂0(k) > 3
for 0 < k < 1.

_en it is easy to see that h3(0) = 4 and h3(k) depend continuously on k. Since
h3(k) /= 2, one has h3(k) > 2 for every k ∈ (0, 1).

3.2 Proof of Proposition 3.2

Let us ûrst remark that equation (2.2) is the Lamé equation with parameters

k2 = m2 − n2

m2 + 2mn
, h = (m2 +mn)λ − l 2

m2 + 2mn
, n̂(n̂ + 1) = λ.

Suppose the contradiction to the statement, i.e., λ3(0) < 2. _en, since λ3(n) >
λ2(n) = 2, there exists anumber l2 such that λ3(l2) = 2. _en for l = l2, equation (2.2)
with λ = 2 has a solution with 4 zeroes on [0, 2π). _erefore, so does the Lamé
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equationwith n̂(n̂+ 1) = λ. But such a solution corresponds to either h3(k) or h4(k),
and one has

h4(k) ⩾ h3(k) ⩾ 2 or
2(m2 +mn) − l 22

m2 + 2mn
⩾ 2,

which implies l 22 < 0. We obtain a contradiction.

4 Value of the Corresponding Functional

In this section we prove Proposition 1.3. We start with the formula for the area of
Mm ,n .

Area(Mm ,n)(4.1)

= 2π√
2 ∫

2π

0

m2 + 2mn + n2 − (m2 − n2) cos 2x√
m2 + 4mn + n2 − (m2 − n2) cos 2x

dx

= 8π∫
π
2

0

m2 +mn − (m2 − n2) sin2 x√
m2 + 2mn − (m2 − n2) sin2 x

dx

= 8π(
√

m2 + 2mnE(
√

m2 − n2

m2 + 2mn
) − mn√

m2 + 2mn
K(

√
m2 − n2

m2 + 2mn
)) .

If mn ≡ 1 mod 2, then one has to take into account the symmetry (x , y) ↦
(x + π, y + π), hence this number has to be divided by 2.

Now, following [14], we prove the non-maximality of the metric on Mm ,n . Let us
recall two propositions from [14].

Proposition 4.1 _e following inequality holds: supΛn(T2 , g) > 8πn.

Proposition 4.2 For every k ∈ [0, 1], one has

K(k) − 2
2 − k2 E(k) ⩾ 0.

By Proposition 4.1 the following proposition implies non-maximality of the tori
Mm ,n .

Proposition 4.3 If mn ≡ 1 mod 2 and m /= 1, then the following inequality holds:

8π(2(m + n) − 3) ⩾ Λ2m+2n−3(Mm ,n).
If mn ≡ 0 mod 2, then the following inequality holds:

8π(4(m + n) − 3) ⩾ Λ4m+4n−3(Mm ,n).

Proof Assume mn ≡ 1 mod 2. _en by formula (4.1),

Λ2m+2n−3(Mm ,n)
= 2Area(Mm ,n)

= 8π(
√

m2 + 2mnE(
√

m2 − n2

m2 + 2mn
) − mn√

m2 + 2mn
K(

√
m2 − n2

m2 + 2mn
)) .

(4.2)
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Let us apply Proposition 4.2 with k =
√

m2−n2

m2+2mn . _en we have

−m2 + 4mn + n2

2m2 + 4mn
K(k) ⩽ E(k).

Applying this inequality to formula (4.2), we have

Λ2m+2n−3 ⩽ 8π
√

m2 + 2mn( 1 − 2mn
m2 + 4mn + n2 )E(k).

_erefore, in order to prove the ûrst inequality, it is suõcient to obtain the inequality

(4.3)
√

m2 + 2mn( 1 − 2mn
m2 + 4mn + n2 )E(k) ⩽ 2m + 2n − 3.

Let us divide both parts of inequality (4.3) by m and denote the ratio n
m by x ∈ [0, 1].

_en formula (4.3) transforms into

√
1 + 2x( 1 − 2x

1 + 4x + x2 )E(
√

1 − x2

1 + 2x
) ⩽ 2(1 + x) − 3

m
.

Since E(k̂) ⩽ π
2 for each k̂ ∈ [0, 1], this inequality could be obtained from

(4.4)
6
m

⩽ 4(1 + k) − π
√

1 + 2k.

Inequality (4.4) holds for m ⩾ 7. _us we have several exceptional cases:

{m, n} = {3, 1}, {5, 1}{5, 3}{7, 1}, {7, 3}, {7, 5}.
For these cases, inequality (4.3) can be veriûed explicitly using the tables of elliptic
integrals in [3].

Proof of the second inequality is obtained in the same way. _ere are also excep-
tional cases: {m, n} = {2, 1}, {3, 2}.
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2006.
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