LOW CODIMENSIONAL EMBEDDINGS OF $S p(n)$ AND $S U(n)$

by G. WALKER and R. M. W. WOOD

(Received 11th October 1982)

In [4] Elmer Rees proves that the symplectic group $S p(n)$ can be smoothly embedded in Euclidean space with codimension 3n, and the unitary group $U(n)$ with codimension n. These are special cases of a result he obtains for a compact connected Lie group G. The general technique is first to embed G / T, where T is a maximal torus, as a maximal orbit of the adjoint representation of G, and then to extend to an embedding of G by using a maximal orbit of a faithful representation of G. In this note, we observe that in the cases $G=S p(n)$ or $S U(n)$ an improved result is obtained by using the "symplectic torus" $S^{3} \times \cdots \times S^{3}$ in place of $T=S^{1} \times \cdots \times S^{1}$. As in Rees's construction, the normal bundle of the embedding of G is trivial.

Theorem. (1) For all $n, S p(n)$ can be embedded with trivial normal bundle in Euclidean space with codimension n.
(2) For $n \geqq 3, S U(n)$ can be embedded with trivial normal bundle in Euclidean space with codimension $\frac{1}{2} n$ if n is even, $\left[\frac{1}{2} n\right]+2$ if n is odd. Hence $U(n)$ can be similarly embedded with codimension $\frac{1}{2} n-1$ if n is even, $\left[\frac{1}{2} n\right]+1$ if n is odd.

Since $U(n)$ is diffeomorphic to $S^{1} \times S U(n)$, the result for $U(n)$ follows immediately from that for $S U(n)$. The situation for low values of n may be summarised as follows. Recall that $S p(1) \cong S U(2) \cong S^{3}$, so that $S p(1), S U(2)$ and $U(2)$ are obviously hypersurfaces. For $S U(3)$ the result is also elementary: by identifying $S U(3)$ with the space of unitary 2-frames in $\mathbb{C}^{\mathbf{3}}$ we have an embedding

$$
S U(3) \rightarrow S^{5} \times S^{5} \rightarrow \mathbb{R}^{11}
$$

whose normal bundle is easily seen to be trivial. We shall prove below that $S U(3)$ (and a fortiori $U(3))$ does not embed in \mathbb{R}^{10}, so that the result is best possible in this case. This is also the case for $S p(2)$ and for $S U(4)$, since Theorem 5 of [3] asserts that $S p(n)$ and $S U(n)$ are never hypersurfaces except in the trivial cases mentioned above. (Apart from this, there seem to be no non-embedding results known for compact Lie groups.)

Proof of the theorem for $S_{p}(\boldsymbol{n})$

The pattern of the proof of the theorem is the same in both cases, but we begin with
the symplectic case since the details are simpler. Let $H(n)$ denote the set of all $n \times n$ symplectic Hermitian matrices defined by the condition $Q^{*}=Q$ where Q is a matrix with quaternion entries and Q^{*} denotes its conjugate transpose. As a real vector space $H(n)$ has dimension $2 n^{2}-n$. Let Λ denote a diagonal matrix in $H(n)$ with distinct real entries arranged in increasing order down the diagonal. The formula $A Q A^{*}$ for A in $S p(n)$ and Q in $H(n)$ defines a representation of $S p(n)$ and the stabilizer of Λ is the symplectic torus

$$
\Delta(n)=S p(1) \times \cdots \times S p(1)
$$

consisting of diagonal elements of $S p(n)$. It follows that the quotient space $S p(n) / \Delta(n)$ of cosets $A \Delta(n)$ embeds in $H(n)$ as a maximal orbit of the representation, and by a general result cited in [1] the normal bundle of the embedding is trivial. In our special case this is easy to see directly. Let x_{r} vary in a small interval $I_{r}=\left(\lambda_{r}-\varepsilon, \lambda_{r}+\varepsilon\right)$ around the entry λ_{r} of Λ. Let X denote the diagonal matrix with entries x_{1}, \ldots, x_{n} which, for ε small enough, are distinct numbers. It is then easy to check that for two such matrices X_{1}, X_{2} the equation $X_{1} C=C X_{2}$ for C in $S p(n)$ implies $X_{1}=X_{2}$ and C diagonal. Consequently the formula $A X A^{*}$ defines a smooth embedding

$$
S p(n) / \Delta(n) \times I_{1} \times \cdots \times I_{n} \rightarrow H(n)
$$

which, on counting dimensions, is seen to trivialise a tubular neighbourhood of the maximal orbit containing Λ. Identifying each interval I_{r} diffeomorphically with the real line and $H(n)$ with $\mathbb{R}^{2 n^{2}-n}$ we have an embedding

$$
f: S p(n) / \Delta(n) \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{2 n^{2}-n} .
$$

Now we consider the standard action of $S p(n)$ on quaternionic n-space \mathbb{H}^{n}. Let v in \mathbb{H}^{n} have all entries equal to 1 . If y_{1}, y_{2} are real vectors sufficiently near to v and A is in $\Delta(n)$ then the equation $A y_{1}=y_{2}$ implies that $y_{1}=y_{2}$ and A is the identity matrix. A simple calculation then shows that the function $S p(n) \rightarrow S p(n) / \Delta(n) \times \mathbb{-}^{n}$ defined by $A \mapsto([A], A v)$ is an embedding which, as in the case of f above, extends to an embedding

$$
g: S p(n) \times \mathbb{R}^{n} \rightarrow S p(n) / \Delta(n) \times \mathbb{R}^{4 n} .
$$

Finally, identifying $\mathbb{R}^{4 n}$ with $\mathbb{R}^{n} \times \mathbb{R}^{3 n}$, we obtain the composite embedding

$$
S p(n) \times \mathbb{R}^{n} \xrightarrow{g} S p(n) / \Delta(n) \times \mathbb{R}^{n} \times \mathbb{R}^{3 n} \xrightarrow{f \times i d} \mathbb{R}^{2 n^{2}-n} \times \mathbb{R}^{3 n}=\mathbb{R}^{2 n^{2}+2 n}
$$

Since the dimension of $S p(n)$ is $2 n^{2}+n$, this concludes the proof that $S p(n)$ embeds in codimension n.

Proof of the theorem for $\boldsymbol{S U}(\boldsymbol{n})$

We now indicate how the argument above may be varied to apply to $S U(n)$. The representation space is the space $K(n)$ of all skew-symmetric complex $n \times n$ matrices: as
a real vector space, $K(n)$ has dimension $n^{2}-n$. The formula $U K U^{t}$ for U in $S U(n)$ and K in $K(n)$ defines a representation of $S U(n)$ which is well known to be equivalent to the second exterior power representation. Let Λ denote a "skew-diagonal" matrix in $K(n)$, i.e. one which is the direct sum of 2×2 matrices

$$
\left(\begin{array}{cc}
0 & \lambda_{r} \\
-\lambda_{r} & 0
\end{array}\right), \quad 1 \leqq r \leqq\left[\frac{1}{2} n\right] .
$$

If we take the λ_{r} to be real, distinct and positive then the stabilizer of Λ is the "symplectic torus"

$$
\Delta(n)=S U(2) \times \cdots \times S U(2)
$$

formed by matrices which are the direct sum of $\left[\frac{1}{2} n\right] 2 \times 2$ blocks

$$
\left(\begin{array}{cc}
a_{r} & b_{r} \\
-\bar{b}_{r} & \bar{a}_{r}
\end{array}\right), \quad\left|a_{r}\right|^{2}+\left|b_{r}\right|^{2}=1
$$

(If n is odd, $\Delta(n)$ may be identified with the subgroup $\Delta(n-1)$ and $K(n)$ with the subspace $K(n-1)$.) Hence the quotient space $S U(n) / \Delta(n)$ of cosets $U \Delta(n)$ is embedded in $K(n)$ as an orbit of the representation.

We may again check directly that the normal bundle is trivial. Suppose first that n is odd: then the normal bundle has dimension $m=\left[\frac{1}{2} n\right]$. Let x_{r} vary in a small interval $I_{r}=\left(\lambda_{r}-\varepsilon, \lambda_{r}+\varepsilon\right)$ around the entry λ_{r} of Λ. Let X denote the skew-diagonal matrix with entries $\pm x_{1}, \ldots, \pm x_{m}$, which, for ε small enough, are distinct real numbers. It is then easy to check that for two such matrices X, Y the equation $X U=U Y$ for U in $S U(n)$ implies $X=Y$ and $U \in \Delta(n)$. Consequently the formula $U X U^{t}$ defines a smooth embedding

$$
S U(n) / \Delta(n) \times I_{1} \times \cdots \times I_{m} \rightarrow K(n)
$$

which trivialises a tubular neighbourhood of the orbit containing Λ. Identifying each interval I_{r} diffeomorphically with \mathbb{R} and $K(n)$ with $\mathbb{R}^{n^{2}-n}$, we have an embedding

$$
S U(n) / \Delta(n) \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{n^{2}-n} \quad\left(n \text { odd, } m=\left[\frac{1}{2} n\right]\right)
$$

Now consider the case where n is even. The normal bundle has dimension $\frac{1}{2} n+1$ in this case, so we require one extra degree of freedom in choosing the x_{r}. By taking determinants, the equation $X U=U Y$ implies that

$$
x_{1} x_{2} \ldots x_{\frac{1}{2} n}=y_{1} y_{2} \ldots y_{\frac{1}{2} n}
$$

Hence we may replace one of the intervals, I_{1} say, by the disc $\left|z-\lambda_{1}\right|<\varepsilon$ in \mathbb{C}, and argue as before to obtain an embedding

$$
S U(n) / \Delta(n) \times \mathbb{C} \times \mathbb{R}^{\frac{1}{2} n-1} \rightarrow \mathbb{R}^{n^{2}-n} \quad(n \text { even })
$$

We now consider the standard action of $\operatorname{SU}(n)$ on \mathbb{C}^{n}. Let $v=(1,1, \ldots, 1) \in \mathbb{C}^{n}$. The equation $U v=v$ for $U \in \Delta(n)$ implies that U is the identity, so the formula $U \rightarrow(U \Delta(n), U v)$ defines an embedding

$$
S U(n) \rightarrow S U(n) / \Delta(n) \times \mathbb{C}^{n}
$$

Again we show that the normal bundle is trivial. If n is even, the normal bundle has dimension $n / 2$, and we consider a real vector

$$
t=\left(t_{1}, t_{1}, t_{2}, t_{2}, \ldots, t_{\frac{1}{2} n}, t_{\frac{1}{2} n}\right)
$$

sufficiently close to v. If t, u are two such vectors, then the equation $U t=u$ for $U \in \Delta(n)$ implies that $t=u$ and U is the identity. Hence we have an embedding

$$
S U(n) \times \mathbb{R}^{\frac{1}{n}} \rightarrow S U(n) / \Delta(n) \times \mathbb{C}^{n} \quad(n \text { even })
$$

If n is odd, the normal bundle has dimension $m+2$ where $m=\left[\frac{1}{2} n\right]$. Since $\Delta(n)=\Delta(n-1)$, the above argument can be modified by adding arbitrary complex numbers as the nth components of t and u. In this way we obtain an embedding

$$
S U(n) \times \mathbb{R}^{m} \times \mathbb{C} \rightarrow S U(n) / \Delta(n) \times \mathbb{C}^{n} \quad(n \text { odd })
$$

Finally, we identify \mathbb{C}^{n} with appropriate products of copies of \mathbb{R} and \mathbb{C} to obtain the composite embeddings

$$
\begin{aligned}
& S U(n) \times \mathbb{R}^{\frac{1}{j}} \rightarrow \mathbb{R}^{n^{2}+\frac{1}{2} n-1} \quad(n \text { even }) \\
& S U(n) \times \mathbb{R}^{m} \times \mathbb{C} \rightarrow \mathbb{R}^{n^{2}+m+1} \quad\left(n \text { odd, } m=\left[\frac{1}{2} n\right]\right)
\end{aligned}
$$

which we set out to construct. This completes the proof of the theorem for $S U(n)$.
In conclusion, we show that $S U(3)$ cannot be smoothly embedded in \mathbb{R}^{10}. By the Pontrjagin-Thom construction, such an embedding would yield a map from S^{10} to the double suspension $\Sigma^{2} S U(3)$ of degree one on the top cell. This would imply that $\Sigma^{2} S U(3)$ is reducible; we shall show that, on the contrary, the attaching map of the top cell in $\Sigma^{2} S U(3)$ is essential.

Recall that $S U(3)$ is a principal S^{3}-bundle over S^{5} whose characteristic element is the generator η_{3} of $\pi_{4}\left(S^{3}\right) \cong \mathbb{Z}_{2}$. (We shall follow the notation of [5] for homotopy elements.) Hence by [2] we have a cell decomposition

$$
\Sigma S U(3) \cong S^{4} \cup_{\eta} e^{6} \cup_{i \circ \phi} e^{9}
$$

where $i: S^{4} \rightarrow S^{4} \cup_{\eta} e^{6}$ denotes the inclusion map, and $\phi \in \pi_{8}\left(S^{4}\right)$ is obtained by applying the Hopf construction to η_{3}. Since the Hopf construction applied to the identity class t_{3} on S^{3} yields the Hopf invariant one element $v_{4} \in \pi_{7}\left(S^{4}\right), \phi=v_{4}^{\circ} \eta_{7}$ by naturality. From [5, p.43] we know that $\Sigma \phi=v_{5} \circ \eta_{8}$ generates $\pi_{9}\left(S^{5}\right) \cong \mathbb{Z}_{2}$. By the homotopy excision
theorem $\pi_{10}\left(S^{5} \cup_{\eta} e^{7}\right)$ projects isomorphically on to $\pi_{10}\left(S^{7}\right)$, so that we have an exact sequence

$$
\pi_{10}\left(S^{7}\right) \xrightarrow{\Delta} \pi_{9}\left(S^{5}\right) \xrightarrow{i^{*}} \pi_{9}\left(S^{5} \cup_{\eta} e^{7}\right)
$$

where $\Delta l_{7}=\eta_{5}$. By naturality, $\Delta \eta_{7}=\eta_{5} \circ v_{6}=0\left[5\right.$, p. 44]. Hence i_{*} is injective, so that the top cell of $\Sigma^{2} S U(3)$ is attached essentially by $i_{*}(\Sigma \phi)$.

REFERENCES

1. A. Borel and F. Hirzerruch, Characteristic classes and homogeneous spaces III, Amer. J. Math. 82 (1960), 491-504.
2. I. M. James and J. H. C. Whitehead, The homotopy theory of sphere bundles over spheres (I), Proc. Lond. Math. Soc. (3) 4 (1954), 196-218.
3. L. N. Mann and J. L. Sicks, Imbedding of compact Lie groups, Indiana U. Math. J. 20 (1971), 655-665.
4. E. Rees, Some embeddings of Lie groups in Euclidean space, Mathematika 18 (1971), 152156.
5. H. Toda, Composition Methods in Homotopy Groups of Spheres (Ann. Math. Stud. No. 49, Princeton, 1962).

University of Manchester

Manchester M13 9PL

