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Sp(n) AND SU(n)

by G. WALKER and R. M. W. WOOD

(Received 11th October 1982)

In [4] Elmer Rees proves that the symplectic group Sp(n) can be smoothly embedded
in Euclidean space with codimension 3n, and the unitary group U(n) with codimension
n. These are special cases of a result he obtains for a compact connected Lie group G.
The general technique is first to embed G/T, where T is a maximal torus, as a maximal
orbit of the adjoint representation of G, and then to extend to an embedding of G by
using a maximal orbit of a faithful representation of G. In this note, we observe that in
the cases G = Sp(ri) or SU(n) an improved result is obtained by using the "symplectic
torus" S 3 x - x S 3 in place of T=S1x-xS1. As in Rees's construction, the normal
bundle of the embedding of G is trivial.

Theorem. (1) For all n, Sp(n) can be embedded with trivial normal bundle in Euclidean
space with codimension n.

(2) For n ^ 3 , SU(n) can be embedded with trivial normal bundle in Euclidean space with
codimension \n if n is even, Qn] + 2ifn is odd. Hence U(n) can be similarly embedded with
codimension jn — lifnis even, Qn] + 1 if n is odd.

Since U(ri) is diffeomorphic to S ' x SU(n), the result for U(n) follows immediately
from that for SU(n). The situation for low values of n may be summarised as follows.
Recall that Sp( l )sS[ / (2)sS 3 , so that Sp(l), SU{2) and 1/(2) are obviously hypersurfaces.
For SV(3) the result is also elementary: by identifying SU{3) with the space of unitary
2-frames in C3 we have an embedding

su{3)^rSsxs5-+n11

whose normal bundle is easily seen to be trivial. We shall prove below that SU(3) (and
a fortiori U(3)) does not embed in R10, so that the result is best possible in this case.
This is also the case for Sp(2) and for SU(4), since Theorem 5 of [3] asserts that Sp(ri)
and SU(n) are never hypersurfaces except in the trivial cases mentioned above. (Apart
from this, there seem to be no non-embedding results known for compact Lie groups.)

Proof of the theorem for Sp(n)

The pattern of the proof of the theorem is the same in both cases, but we begin with
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the symplectic case since the details are simpler. Let H(n) denote the set of all nxn
symplectic Hermitian matrices defined by the condition Q* = Q where Q is a matrix with
quaternion entries and Q* denotes its conjugate transpose. As a real vector space H(n)
has dimension 2n2 — n. Let A denote a diagonal matrix in H{n) with distinct real entries
arranged in increasing order down the diagonal. The formula AQA* for A in Sp(n) and
Q in H(n) defines a representation of Sp(n) and the stabilizer of A is the symplectic torus

A(n) = Sp(l)x-xSp(l)

consisting of diagonal elements of Sp(n). It follows that the quotient space Sp(ri)/A(ri) of
cosets A A(n) embeds in H(n) as a maximal orbit of the representation, and by a general
result cited in [1] the normal bundle of the embedding is trivial. In our special case this
is easy to see directly. Let xr vary in a small interval Ir = (Ar — e, Xr 4- e) around the entry
kr of A. Let X denote the diagonal matrix with entries xu...,xn which, for e small
enough, are distinct numbers. It is then easy to check that for two such matrices Xu X2

the equation X1C = CX2 for C in Sp(n) implies X^=X2 and C diagonal. Consequently
the formula AX A* defines a smooth embedding

Sp(n)/A(n) x Jj x • • • x /
„

which, on counting dimensions, is seen to trivialise a tubular neighbourhood of the
maximal orbit containing A. Identifying each interval lr diffeomorphically with the real
line and H(ri) with IR2"2"" we have an embedding

/:Sp(n)/A(n) x IR"-^2"2-".

Now we consider the standard action of Sp(ri) on quaternionic n-space H". Let v in
H" have all entries equal to 1. If ylt y2 are real vectors sufficiently near to v and A is in
A(n) then the equation Ayx = y2 implies that y1 = y2 and A is the identity matrix. A
simple calculation then shows that the function Sp(ri)->Sp(ri)/A(n) x W defined by

], Av) is an embedding which, as in the case of/ above, extends to an embedding

g:Sp(n) x W-*Sp(n)/A(n) x R4n.

Finally, identifying IR4" with IR" x R3", we obtain the composite embedding

Sp{n) x IR" -^ Sp(n)/A(n) x. W x M3n^> IR2"2"" x (R3n = R2n2 + 2n.

Since the dimension of Sp(ri) is In1 + n, this concludes the proof that Sp(n) embeds in
codimension n.

Proof of the theorem for SU(n)

We now indicate how the argument above may be varied to apply to SU(n). The
representation space is the space K(n) of all skew-symmetric complex n x n matrices: as
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a real vector space, K(n) has dimension n2 — n. The formula UKU' for U in SU{n) and
K in K(n) defines a representation of SU(n) which is well known to be equivalent to the
second exterior power representation. Let A denote a "skew-diagonal" matrix in K(n),
i.e. one which is the direct sum of 2 x 2 matrices

If we take the AP to be real, distinct and positive then the stabilizer of A is the

"symplectic torus"

A(n) = SU(2)x---xSU(2)

f o r m e d b y m a t r i c e s w h i c h a r e t h e d i r e c t s u m of [^n] 2 x 2 b l o c k s

a ,

(If n is odd, A(n) may be identified with the subgroup A(n —1) and K(n) with the
subspace K(n — 1).) Hence the quotient space SU(n)/A{n) of cosets UA(ri) is embedded in
K(ri) as an orbit of the representation.

We may again check directly that the normal bundle is trivial. Suppose first that n is
odd: then the normal bundle has dimension tn = [^ri]. Let xr vary in a small interval
lr = {Xr — e, XT + e) around the entry Xr of A. Let X denote the skew-diagonal matrix with
entries ±x1,...,±xm> which, for s small enough, are distinct real numbers. It is then
easy to check that for two such matrices X, Y the equation XU=UY for U in SU{n)
implies X=Y and UeA{n). Consequently the formula UXU' defines a smooth
embedding

SU{n)/A(n) x /x x • • • x /m->X(n)

which trivialises a tubular neighbourhood of the orbit containing A. Identifying each
interval Ir diffeomorphically with 05 and K(n) with W2~", we have an embedding

SU(n)/A(n) x Rm->R"2"" (n odd, m = |>]) .

Now consider the case where n is even. The normal bundle has dimension \n +1 in
this case, so we require one extra degree of freedom in choosing the xr. By taking
determinants, the equation XU = UY implies that

xlx2...xin=yly2-..yin.

Hence we may replace one of the intervals, 1^ say, by the disc \z — X^<& in C, and argue
as before to obtain an embedding

Sl/(n)/A(n)xCxlR*'|-1->IRn2-n (n even)
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We now consider the standard action of SU(n) on C . Let v = (l, 1,..., l ) e C . The
equation Uv = v for UeA(n) implies that U is the identity, so the formula
U-*(UA(n), Uv) defines an embedding

SU(n)->SU(n)/A(n)xCn.

Again we show that the normal bundle is trivial. If n is even, the normal bundle has
dimension n/2, and we consider a real vector

t = (tl, tltt2, t2,---, £.$.„, t-j.,,)

sufficiently close to v. If t, u are two such vectors, then the equation Ut = u for U e A(n)
implies that t=u and U is the identity. Hence we have an embedding

SU(n) x Uin->SU(n)/A{n) x C" (n even).

If n is odd, the normal bundle has dimension m + 2 where m = [_\ri]. Since A(n) = A(n — 1),
the above argument can be modified by adding arbitrary complex numbers as the nth
components of t and u. In this way we obtain an embedding

SU(n) xUmx C->Sl/(n)/A(n) x C" (n odd).

Finally, we identify C" with appropriate products of copies of R and C to obtain the
composite embeddings

SU{n) x R±n->U"2+*n-1 (n even)

SU(n)xnmxC-+nn2+m + l (nodd, w = [|n])

which we set out to construct. This completes the proof of the theorem for SU(n).

In conclusion, we show that SC/(3) cannot be smoothly embedded in R10. By the
Pontrjagin-Thom construction, such an embedding would yield a map from S10 to the
double suspension 22St/(3) of degree one on the top cell. This would imply that
S2S[/(3) is reducible; we shall show that, on the contrary, the attaching map of the top
cell in S2SC/(3) is essential.

Recall that SU(3) is a principal S3-bundle over Ss whose characteristic element is the
generator t]3 of 7t4(S3)sZ2. (We shall follow the notation of [5] for homotopy
elements.) Hence by [2] we have a cell decomposition

where i:S4->S4u,e6 denotes the inclusion map, and (j>en8(S*) is obtained by applying
the Hopf construction to r)3. Since the Hopf construction applied to the identity class z3

on S3 yields the Hopf invariant one element v4e7r7(S
4), </> = V4°T]7 by naturality. From

[5, p.43] we know that £</> = v5°n8 generates ic9(S5)sZ2. By the homotopy excision
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theorem 7i10(S
5u,e7) projects isomorphically on to rclo(S

7), so that we have an exact
sequence

where AJ7 = J/5. By naturality, Af/7 = f/5ov6 = 0 [5, p. 44]. Hence i^ is injective, so that the
top cell of L2Sl/(3) is attached essentially by i
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