
J. Plasma Phys. (2018), vol. 84, 905840616 c© Cambridge University Press 2018
doi:10.1017/S0022377818001289

1

Direct construction of optimized stellarator
shapes. Part 1. Theory in cylindrical coordinates

Matt Landreman1,† and Wrick Sengupta2

1Institute for Research in Electronics and Applied Physics, University of Maryland,
College Park, MD 20742, USA

2Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA

(Received 26 September 2018; revised 23 November 2018; accepted 27 November 2018)

The confinement of the guiding-centre trajectories in a stellarator is determined by
the variation of the magnetic field strength B in Boozer coordinates (r, θ, ϕ), but
B(r, θ, ϕ) depends on the flux surface shape in a complicated way. Here we derive
equations relating B(r, θ, ϕ) in Boozer coordinates and the rotational transform to the
shape of flux surfaces in cylindrical coordinates, using an expansion in distance from
the magnetic axis. A related expansion was done by Garren and Boozer (Phys. Fluids
B, vol. 3, 1991a, 2805) based on the Frenet–Serret frame, which can be discontinuous
anywhere the magnetic axis is straight, a situation that occurs in the interesting case
of omnigenity with poloidally closed B contours. Our calculation in contrast does
not use the Frenet–Serret frame. The transformation between the Garren–Boozer
approach and cylindrical coordinates is derived, and the two approaches are shown
to be equivalent if the axis curvature does not vanish. The expressions derived here
help enable optimized plasma shapes to be constructed that can be provided as
input to VMEC and other stellarator codes, or to generate initial configurations for
conventional stellarator optimization.

Key words: fusion plasma, plasma confinement

1. Introduction
While stellarators offer the possibility of stable, steady-state fusion power with

minimal recirculating power and immunity from disruptions, particle confinement
in stellarators is a challenge. In a general non-axisymmetric magnetic field, even if
magnetic surfaces exist, guiding-centre trajectories are not necessarily confined close
to a magnetic surface in the absence of turbulence and collisions, as they are in perfect
axisymmetry. However, confinement can be improved significantly by optimizing the
shaping of the magnetic field. Guiding-centre trajectories are essentially determined
by the strength of the magnetic field B in Boozer coordinates (r, θ, ϕ), where r labels
magnetic surfaces, and θ and ϕ are poloidal and toroidal angles (Boozer 1981). If
B(r, θ, ϕ) has certain forms, such as quasi-symmetry (Nührenberg & Zille 1988) or
omnigenity (Cary & Shasharina 1997; Landreman & Catto 2012), the guiding-centre
confinement would be as good as in axisymmetry. In principle, B(r, θ, ϕ) is a function
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of the shapes of the magnetic surfaces through the equations of magnetohydrodynamic
(MHD) equilibrium, but this functional relationship is complicated. Given a desired
B(r, θ, ϕ), it is not generally clear whether a three-dimensional magnetic field B(r)
exists with the desired field strength and which solves the MHD equilibrium equations,
much less what this solution B(r) is.

Previously, MHD equilibria with desirable B(r, θ, ϕ) have been obtained using
optimization (Nührenberg & Zille 1988; Nührenberg, Lotz & Gori 1994; Garabedian
1996; Zarnstorff et al. 2001). In this approach, an ‘off-the-shelf’ optimization
algorithm is applied to minimize an objective function representing the departure from
the desired B(r, θ, ϕ) (for instance, the summed squared amplitudes of symmetry-
breaking terms in the Fourier series), as some shape parameters of a bounding
magnetic surface are varied. For each function evaluation, a three-dimensional MHD
equilibrium solution must be calculated numerically and then converted to Boozer
coordinates. While this approach has been successful, it has some shortcomings.
Since there are multiple local minima, results depend on the initial condition, and
one is never sure that all the interesting regions of parameter space have been found.
The optimization is computationally expensive, and little insight is gained as to the
number of degrees of freedom in the problem.

A complementary approach was taken by Garren & Boozer (1991a,b). Their work is
commonly cited as a proof that perfectly quasi-symmetric magnetic fields (apart from
truly axisymmetric ones) do not exist, but less well known is that their work contains
a practical procedure to directly construct MHD equilibria with desirable B(r, θ, ϕ),
generating ‘optimized’ stellarators without optimization. The Garren–Boozer analysis
is based upon an expansion in r, the effective distance from the magnetic axis; while it
does not describe the outer region of a low-aspect-ratio device, it does describe some
region sufficiently close to the axis of any stellarator, even one with low aspect ratio.
(A complementary approach, based on expansion in departure from axisymmetry, was
recently developed by Plunk & Helander (2018).) The present paper is the first in a
series in which we extend the Garren & Boozer framework, to more fully understand
the landscape of stellarator shapes with good confinement, and to develop a practical
tool for generating good initial conditions for conventional optimization.

In this first paper of the series, we derive the relationship between the shape of
the magnetic surfaces in cylindrical coordinates (R, φ, z) and B in Boozer coordinates.
(More precisely, we consider surface shapes parameterized by {R(θ, φ), Z(θ, φ)} using
the Boozer poloidal angle θ , so our representation is in a sense a hybrid one.) While
we use a similar r expansion to Garren & Boozer, our calculation is different because
theirs did not use cylindrical coordinates. Instead, Garren & Boozer worked in the
Frenet–Serret frame of the magnetic axis. The Frenet–Serret frame is an orthonormal
basis (t, n, b) satisfying the equations

dt/d` = κn,
dn/d` = −κt+ τb,
db/d` = −τn,

 (1.1)

where t = dr0/d`, r0 is the position vector along the magnetic axis and ` denotes
the arclength along the curve. The vectors t, n and b are called the tangent, normal
and binormal, κ is the curvature and τ is the torsion. Note that the opposite sign
convention for torsion is used in Garren & Boozer (1991a,b).

There are two particular motivations for this paper. First, we will (in Part 2 of
the series, Landreman, Sengupta & Plunk 2018) generate plasma shapes as input for
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Direct construction of optimized stellarator shapes. Part 1 3

FIGURE 1. A smooth curve (green) for which the Frenet–Serret frame is discontinuous:
R(φ)= 1+ 0.1 cos(3φ), z(φ)= 0.1 sin(3φ).

stellarator physics codes that employ cylindrical coordinates, specifically the VMEC
code (Hirshman & Whitson 1983; Hirshman, van Rij & Merkel 1986). This can be
done either using the equations for cylindrical coordinates derived in the present paper
(§ 2), or else by solving Garren & Boozer’s equations in the Frenet frame and mapping
the results to cylindrical coordinates afterwards, using a transformation that will be
derived in § 4. By having these two approaches available, and showing that the results
are the same, we can be highly confident that the results are correct. An analytic
proof of the equivalence of the two methods will be presented in this paper (§ 4), and
numerical solutions will be presented in an accompanying Part 2 (Landreman et al.
2018). There, we will show that our approaches can generate quasi-symmetric flux
surface shapes in <1 ms on a laptop – 4 orders of magnitude faster than a single
VMEC equilibrium calculation, much less a traditional optimization – thus enabling
high-resolution mapping of the landscape of possible quasi-symmetric plasma shapes.

Our second motivation in this paper is to modify Garren & Boozer’s analysis
to avoid the Frenet–Serret frame because this basis can be pathological in certain
situations of interest. The Frenet–Serret frame is known to be problematic if there
are any points of vanishing curvature: even smooth curves can have discontinuous
Frenet–Serret basis vectors. For instance, for the curve defined by R(φ) = 1 +
Rc cos(nφ) and z(φ) = zs sin(nφ), the curvature vanishes if Rc = 1/(n2

+ 1), and
the Frenet basis is generally discontinuous at these points, as shown in figure 1.
Where κ = 0, the torsion is generally not well defined. This situation of vanishing
κ is of particular interest because it is necessary for a desirable B(r, θ, ϕ)
optimization: omnigenity with poloidally closed B contours (Cary & Shasharina
1997; Subbotin et al. 2006; Helander & Nührenberg 2009; Landreman & Catto
2012) (sometimes called ‘quasi-isodynamic’). In this optimization, which yields good
particle confinement at the same time as vanishing bootstrap current (Helander &
Nührenberg 2009), the maximum of B on each r surface must be a constant-ϕ curve,
so ∂B/∂θ must vanish for all θ at these ϕ values. To see that this condition near the
axis implies κ = 0, consider that the pressure gradient ∇p vanishes on the magnetic
axis, so it follows from the MHD equilibrium relation (∇×B)×B= 0 that

∇⊥B=B · ∇(B−1B)= Bκn. (1.2)
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The condition ∂B/∂θ on the maximum-B curves near the axis implies ∇⊥B= 0 there,
implying κ = 0. While one would have to grapple with discontinuities and ill-defined
torsion to apply the Frenet–Serret approach to construct omnigenous fields with
poloidally closed B contours, all quantities remain smooth in cylindrical coordinates.
Construction of omnigenous magnetic fields will be considered in Part 3 of this series.

The Frenet–Serret frame has also been used in another important stellarator
calculation: Mercier’s result that rotational transform on the magnetic axis arises
from a combination of axis torsion, rotating elongation and current density (Mercier
1964; Helander 2014). This result was also derived by Garren & Boozer (1991a)
as part of their quasi-symmetry analysis, as their equation (77). Just as Garren &
Boozer’s quasi-symmetry equation acquires singularities if the axis curvature ever
vanishes, so does Mercier’s expression for the rotational transform, as it includes
torsion explicitly. As part of our analysis, we will re-derive Mercier’s result in
cylindrical coordinates, resulting in an expression that does not become singular if
the axis curvature vanishes.

The main content of this paper begins in § 2 with the calculation of the relationship
between B(r, θ, ϕ) and flux surface shape directly in cylindrical coordinates. The
analogous results of the Garren–Boozer calculation in the Frenet–Serret frame are then
reviewed in § 3. The transformation between the two coordinate systems is derived
in § 4.1, and this transformation is used in the remainder of § 4 to prove that the
cylindrical and Frenet–Serret equations are equivalent, when the latter are valid. Some
reductions of the equations for the particular case of quasi-symmetry are discussed in
§ 5, and we will conclude in § 6.

2. Direct calculation in cylindrical coordinates

We now present the calculation in which the field strength in Boozer coordinates
is directly related to the magnetic surface shape in cylindrical coordinates. Aside
from the fact that we describe the magnetic surface shapes in cylindrical coordinates
rather than by the projections along the Frenet–Serret vectors, our approach is
similar in structure to the one in Garren & Boozer (1991a). The covariant and
contravariant expressions for B in Boozer coordinates are equated, giving three
independent equations. The square of either expression for B gives an additional
equation for B. These four equations are then expanded in the distance r from the
magnetic axis. Here we will carry out the expansion to sufficient order that the
first-order quantities in r are determined.

2.1. Starting equations
In any straight-field-line coordinates, including Boozer coordinates, the magnetic field
can be written

B=∇ψ ×∇θ + ι∇ϕ ×∇ψ, (2.1)

where 2πψ is the toroidal flux, ι is the rotational transform and θ and ϕ are the
poloidal and toroidal angles. In the particular case of Boozer coordinates, B can also
be written

B= β(ψ, θ, φ)∇ψ + I(ψ)∇θ +G(ψ)∇ϕ. (2.2)

Here I(ψ) is µ0/(2π) times the toroidal current enclosed by the flux surface, and
G(ψ) is µ0/(2π) times the poloidal current outside the flux surface. The Boozer
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toroidal angle ϕ differs from the cylindrical azimuthal angle φ, and we will keep
track of the difference, denoted ν:

ϕ = φ + ν. (2.3)

(By assuming this equation, our analysis will not pertain to certain unconventional
configurations such as knots in which φ increases by an integer > 1 multiple of 2π
when ϕ increases by 2π.) We will consider the independent variables to be (ψ, θ, φ).
From the product of (2.1) and (2.2), the Jacobian of these coordinates is

√
g=

1
∇ψ · ∇θ ×∇φ

=

(
1+

∂ν

∂φ

)
G+ ιI

B2
. (2.4)

We will assume ∂ν/∂φ > −1 so this Jacobian remains non-zero. Physically, this
assumption means the direction of B always points toward increasing φ or always
points towards decreasing φ, never reversing direction. This same assumption is made
in the VMEC code (Hirshman & Whitson 1983), and it is not restrictive in practice.

Using the dual relations

∂r
∂ψ
=
√

g∇θ ×∇φ, ∇ψ =
1
√

g
∂r
∂θ
×
∂r
∂φ
, and cyclic permutations, (2.5a,b)

where r is the position vector, we can write (2.1) as

B=
B2

G+ ιI

[(
1+

∂ν

∂φ

)−1 (
1− ι

∂ν

∂θ

)
∂r
∂φ
+ ι

∂r
∂θ

]
, (2.6)

and write (2.2) as

B =
B2

G+ ιI

[(
1+

∂ν

∂φ

)−1 (
β +G

∂ν

∂ψ

)
∂r
∂θ
×
∂r
∂φ

+

(
1+

∂ν

∂φ

)−1 (
I +G

∂ν

∂θ

)
∂r
∂φ
×
∂r
∂ψ
+G

∂r
∂ψ
×
∂r
∂θ

]
. (2.7)

The derivatives of r(ψ, θ, φ)= ReR + zez can be evaluated using deR/dφ = eφ , where
(eR, eφ, ez) are cylindrical unit basis vectors. Equating the three cylindrical components
of (2.6) and (2.7), we obtain

rB̄
R

[(
1− ι

∂ν

∂θ

)
∂R
∂φ
+ ι

(
1+

∂ν

∂φ

)
∂R
∂θ

]
=

(
I +G

∂ν

∂θ

)
∂z
∂r
−

(
βrB̄+G

∂ν

∂r

)
∂z
∂θ
,

(2.8)

rB̄
GR

{(
1− ι

∂ν

∂θ

)[
R2
+

(
∂R
∂φ

)2

+

(
∂z
∂φ

)2
]
+ ι

(
1+

∂ν

∂φ

)(
∂R
∂θ

∂R
∂φ
+
∂z
∂θ

∂z
∂φ

)}

=

(
∂z
∂r
∂R
∂θ
−
∂R
∂r
∂z
∂θ

)(
1+

∂ν

∂φ

)
, (2.9)

rB̄
R

[(
1− ι

∂ν

∂θ

)
∂z
∂φ
+ ι

(
1+

∂ν

∂φ

)
∂z
∂θ

]
=

(
βrB̄+G

∂ν

∂r

)
∂R
∂θ
−

(
I +G

∂ν

∂θ

)
∂R
∂r
.

(2.10)
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To get (2.9) we have added (2.8) times ∂R/∂φ and (2.10) times ∂z/∂φ to the eφ
components. In these expressions, we have changed the flux surface label coordinate
from ψ to the effective minor radius r(ψ) defined by 2πψ = πr2B̄, where B̄ is an
arbitrary reference magnitude of magnetic field. (Since ψ can be negative, B̄ may be
negative.) Also, a relation for B can be obtained by squaring (2.6):

(G+ ιI)2

B2

(
1+

∂ν

∂φ

)2

=

[(
1− ι

∂ν

∂θ

)
∂R
∂φ
+ ι

(
1+

∂ν

∂φ

)
∂R
∂θ

]2

+

(
1− ι

∂ν

∂θ

)2

R2

+

[(
1− ι

∂ν

∂θ

)
∂z
∂φ
+ ι

(
1+

∂ν

∂φ

)
∂z
∂θ

]2

. (2.11)

Equations (2.8)–(2.11) are the basis of the remainder of the analysis, in which these
equations will be systematically expanded.

2.2. Expansion about the magnetic axis
We take the magnetic axis to be described by its cylindrical coordinates R0(φ) and
z0(φ). Regularity considerations near the axis imply we can write the cylindrical
coordinate R(r, θ, φ) for a general point near the axis in the form of an expansion

R(r, θ, φ)= R0(φ)+ rR1(θ, φ)+ r2R2(θ, φ)+ · · · , (2.12)

where

R1(θ, φ)= R1c(φ) cos θ + R1s(φ) sin θ, (2.13)
R2(θ, φ)= R2c(φ) cos 2θ + R2s(φ) sin 2θ + R20(φ). (2.14)

Expansions of the same form are made for z, ν and B:

z = z0(φ)+ r[z1c(φ) cos θ + z1s(φ) sin θ ]
+ r2
[z20(φ)+ z2c(φ) cos 2θ + z2s(φ) sin 2θ ] + · · ·

ν = ν0(φ)+ r[ν1c(φ) cos θ + ν1s(φ) sin θ ]
+ r2
[ν20(φ)+ ν2c(φ) cos 2θ + ν2s(φ) sin 2θ ] + · · ·

B = B0(φ)+ r[B1c(φ) cos θ + B1s(φ) sin θ ]
+ r2
[B20(φ)+ B2c(φ) cos 2θ + B2s(φ) sin 2θ ] + · · · .


(2.15)

These expansions are justified in appendix A. We also have

G(r)=G0 + r2G2 + · · · , (2.16)
I(r)= r2I2 + · · · , (2.17)

β(r, θ, φ)= β0(φ)+ rβ1(θ, φ)+ · · · , (2.18)
ι(r)= ι0 + · · · . (2.19)

Using these expansions, we proceed to systematically consider the terms of each order
in (2.8)–(2.11).
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2.3. Magnitude of B: zeroth order

We first consider the O(r0) terms in (2.11). These terms give

ν ′0 =−1+ sG`
′B0/G0, (2.20)

where sG = ±1, primes denote d/dφ, and `′ > 0 is the differential length of the
magnetic axis:

`′ =

√
R2

0 + (R
′

0)
2 + (z′0)2. (2.21)

Integrating (2.20) in φ,

G0 =
sG

2π

∫ 2π

0
dφ B0`

′. (2.22)

Thus, sG is the sign of G0, +1 if B points in the direction of increasing φ and −1
otherwise. Equations (2.20)–(2.22) allow us to eliminate ν0 and G0 in favour of R0,
z0 and B0.

2.4. Equating representations of the field: first order

Next, the leading-order terms in the r expansion of (2.9) are O(r1), giving

B̄
G0R0

(`′)2 = (R1sz1c − R1cz1s) (1+ ν ′0). (2.23)

We can eliminate ν0 in this equation using (2.20) to obtain

sGB̄`′

R0B0
= R1sz1c − R1cz1s. (2.24)

This equation, which is analogous to (53) in Garren & Boozer (1991a), expresses the
fact that the toroidal flux within the magnetic surface r should be 2πψ = πr2B̄. To
see this, consider that the toroidal field on the magnetic axis is B · eφ = sGB0t · eφ =
B0R0/(sG`

′), and as shown in appendix B, the area of the flux surface in the constant-
φ plane is πr2 times the right-hand side of (2.24).

Similarly, the leading terms in (2.8) and (2.10) are O(r1) and give

B̄R′0
G0R0

= ν1sz1c − ν1cz1s, (2.25)

B̄z′0
G0R0

= ν1cR1s − ν1sR1c. (2.26)

Solving for ν1c and ν1s and applying (2.24), we find

ν1 =
B0

|G0|`′
(R1R′0 + z1z′0). (2.27)
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2.5. Magnitude of B: first order

Another pair of equations is obtained from the O(r1) terms in (2.11). These terms can
be found by applying ∂/∂r to (2.11) and evaluating the result at r→ 0. We find

−
G2

0B1

B3
0
(1+ ν ′0)

2
+

G2
0

B2
0
(1+ ν ′0)

∂ν1

∂φ

= R′0

[
−ι0

∂ν1

∂θ
R′0 +

∂R1

∂φ
+ ι0(1+ ν ′0)

∂R1

∂θ

]
+ R0R1 − ι0

∂ν1

∂θ
R2

0

+ z′0

[
−ι0

∂ν1

∂θ
z′0 +

∂z1

∂φ
+ ι0(1+ ν ′0)

∂z1

∂θ

]
. (2.28)

In this equation, the terms that include a factor of ι0 can be written

ι0
∂

∂θ
[−(`′)2ν1 + (1+ ν ′0)(R1R′0 + z1z′0)], (2.29)

which can be seen to vanish in light of (2.27) and (2.20). Eliminating ν0 and ν1 in
the remaining terms using (2.20) and (2.27), one finds

B1/B0 =KRR1 +Kzz1, (2.30)

where

KR =−(`
′)−4(R0R′0 + R′0R′′0 + z′0z′′0)R

′

0 + (`
′)−2(R′′0 − R0 + R′0B′0/B0), (2.31)

Kz =−(`
′)−4(R0R′0 + R′0R′′0 + z′0z′′0)z

′

0 + (`
′)−2(z′′0 + z′0B′0/B0). (2.32)

Noting from the first line of (1.1) that κn`′= t′= [(`′)−1r′0]′, and evaluating the result
in cylindrical coordinates, it can be seen that equivalent expressions to (2.31)–(2.32)
are

KR = κn · eR + (`
′)−2R′0B′0/B0, Kz = κn · ez + (`

′)−2z′0B′0/B0. (2.33a,b)

Note that the sin θ and cos θ components of B1, R1 and z1 each satisfy (2.30)
separately. Equations (2.30)–(2.32) are analogous to (70) in Garren & Boozer (1991a).
These equations reflect (1.2). In the limit of a circular magnetic axis, R′0 = 0 and
z′0 = 0, equation (2.30)–(2.32) reduce to B1/B0 = −R1/R0, reflecting the expected
B∝ 1/R variation.

2.6. Equating representations of the field: second order

The highest-order terms in the r expansion we will consider are the O(r2) terms
in (2.8)–(2.10). The expressions at this order become rather lengthy and so details
are left to appendix C. At O(r2), the three equations (2.8)–(2.10) each have a
sin θ and cos θ component, so there are six independent equations. Although nine
second-order quantities (R2s, R2c, R20 and similar ν and z terms) appear, they only
enter through five linearly independent combinations. Therefore the second-order
quantities can be annihilated by forming a certain linear combination of the six
equations, equation (C 10). What remains is an equation relating zeroth- and first-order
quantities:

ι0V − T = 0, (2.34)
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where

T =
|G0|

(`′)3B0

[
R2

0(R1cR′1s − R1sR′1c + z1cz′1s − z1sz′1c)

+ (R1cz1s − R1sz1c)(R′0z′′0 + 2R0z′0 − z′0R′′0)

+ (z1cz′1s − z1sz′1c)(R
′

0)
2
+ (R1cR′1s − R1sR′1c)(z

′

0)
2

+ (R1sz′1c − z1cR′1s + z1sR′1c − R1cz′1s)R
′

0z′0
]
+

2G0I2

B2
0

(2.35)

and

V =
1
(`′)2

[
R2

0(R
2
1c + R2

1s + z2
1c + z2

1s)+
(
R′0
)2
(z2

1c + z2
1s)

− 2R′0z′0(R1cz1c + R1sz1s)+ (z′0)
2(R2

1c + R2
1s)
]
. (2.36)

Our (2.34)–(2.36) play an analogous role to (63) and (67) in Garren & Boozer (1991a).
Note that (2.34) can be integrated to give ι0 = (

∮
w dφ)−1

∮
(wT/V) dφ for any w(φ),

analogous to Garren & Boozer’s (77). Encoded in these equations is the classic result
by Mercier (1964), Helander (2014): rotational transform on the magnetic axis arises
due to axis torsion, rotating elongation and toroidal current. Indeed, in Part 2 we
will compute ι0 numerically by solving (2.34)–(2.36) or its Frenet–Serret analogue.
The toroidal current contribution to ι0 is the I2 term in T , while the axis torsion
and rotating elongation contributions are evidently contained in the remaining terms.
Interestingly, while the torsion in Mercier’s expression involves the third derivative
of the axis shape, the highest derivative of the axis shape appearing in (2.34)–(2.36)
is the second. If there are any points where the axis curvature vanishes, the torsion
becomes ill defined, so Mercier’s expression for ι (which explicitly depends on τ )
becomes awkward; equation (2.34) has no such problem.

Another perspective on rotational transform and torsion in cases with vanishing
curvature (without effects of elongation) has been discussed by Pfefferlé et al. (2018).

3. Frenet–Serret approach
The analogous calculation using the Frenet–Serret frame is clearly explained in

Garren & Boozer (1991a,b), so we will not repeat it here, only quote the main
results. The position vector is written

r(r, θ, ϕ)= r0(ϕ)+ X(r, θ, ϕ)n(ϕ)+ Y(r, θ, ϕ)b(ϕ)+ Z(r, θ, ϕ)t(ϕ), (3.1)

where r0, n, b and t refer to the magnetic axis. The quantities X, Y and Z are
expanded similarly to (2.12)–(2.14) but with φ→ ϕ:

X(r, θ, ϕ)= rX1(θ, ϕ)+ r2X2(θ, ϕ)+ · · · (3.2)

where regularity requires

X1(θ, ϕ)= X1c(ϕ) cos θ + X1s(ϕ) sin θ, (3.3)
X2(θ, ϕ)= X2c(ϕ) cos 2θ + X2s(ϕ) sin 2θ + X20(ϕ), (3.4)

and analogous expansions are made for Y and Z. The expansion of B is written in
terms of ϕ rather than φ, so

B(r, φ, ϕ)= B̂0(ϕ)+ rB̂1(θ, ϕ)+ · · · , (3.5)

where B̂1(θ, ϕ)= B̂1s(ϕ) sin θ + B̂1c(ϕ) cos θ .
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Instead of (2.20), one obtains G0 = sGB0 d`/dϕ. Instead of (2.24), one finds Z1 = 0
and

X1cY1s − X1sY1c = sGB̄/B0. (3.6)

Noting from appendix B that the left-hand side of this equation is the cross-sectional
area of the flux surface in a plane perpendicular to the on-axis B, equation (3.6)
represents the fact that the toroidal flux inside the flux surface is πr2B̄. Instead of
(2.30), one finds

B̂1/B̂0 = κX1, (3.7)

where this equation holds separately for sin θ and cos θ components. Instead of (2.34)–
(2.36), Garren & Boozer obtain

ι0VFS
− TFS

= 0, (3.8)

where
VFS
= X2

1s + X2
1c + Y2

1s + Y2
1c (3.9)

and

TFS
= X1c

dX1s

dϕ
− X1s

dX1c

dϕ
+ Y1c

dY1s

dϕ
− Y1s

dY1c

dϕ
+ 2

(
I2

B̄
− τ

)
G0B̄
B2

0
. (3.10)

These equations correspond to (63) in Garren & Boozer (1991a), but with an extra
I2 term since a vacuum field was assumed in that work. The fact that a 2 appears
in the τ term here whereas a 4 appears in Garren & Boozer (1991a) is due to
the normalization used in the latter, and τ enters with the opposite sign due to the
opposite sign convention for torsion.

Combining the above equations to eliminate unknowns, the system can be reduced
to a single equation. To this end, we introduce a variable σ(ϕ) related to the flux
surface shape, defined by

sGB̄κσ = B̂1sY1s + B̂1cY1c. (3.11)

From this definition and (3.6)–(3.7),

Y1s =
sGB̄κ

B̂2
1s + B̂2

1c

(B̂1c + B̂1sσ),

Y1c =
sGB̄κ

B̂2
1s + B̂2

1c

(−B̂1s + B̂1cσ).

 (3.12)

Substituting these results and (3.7) into (3.8), we obtain

dσ
dϕ
+

[
(B̂2

1s + B̂2
1c)

2

B2
0B̄2κ4

+ 1+ σ 2

] [
ι0 +

1

B̂2
1s + B̂2

1c

(
B̂1s

dB̂1c

dϕ
− B̂1c

dB̂1s

dϕ

)]

− 2
(

I2

B̄
− τ

)
G0(B̂2

1s + B̂2
1c)

B̄B2
0κ

2
= 0. (3.13)

Considering κ , τ , I2, B0, B̂1s and B̂1c to be known, this result is a first-order nonlinear
ordinary differential equation for σ . Once σ is obtained, Y1s and Y1c can be found
from (3.12), and X1s and X1c are known from (3.7), so the flux surface shape can be
reconstructed from (3.1).
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4. Equivalence of the two approaches
4.1. Relating representations of the surface shape

Let us now prove that if the curvature of the magnetic axis does not vanish, the
Frenet–Serret approach and the direct calculation in cylindrical coordinates are
equivalent, as they should be. To begin, we must relate X1 and Y1 to R1 and z1. This
can be done by equating the position vector in the two approaches, expanding (3.1)
using ϕ(r, θ, φ)= ϕ0(φ)+ rν1(θ, φ)+O(r2) where ϕ0(φ)= φ + ν0(φ):

[R0(φ)+ rR1(θ, φ)]eR(φ)+ [z0(φ)+ rz1(θ, φ)]ez +O(r2)

= r0(ϕ0)+ rν1(θ, φ) dr0/dϕ0 + rX1(θ, ϕ0)n(ϕ0)+ rY1(θ, ϕ0)b(ϕ0)+O(r2). (4.1)

Equating the O(r0) terms gives r0(ϕ0)= R0(φ)eR(φ)+ z0(φ)ez. Then applying n(ϕ0) ·
(. . .) and b(ϕ0) · (. . .) to the O(r) terms in (4.1), we obtain two equations that can be
represented (

X1
Y1

)
=

(
nR nz
bR bz

)(
R1
z1

)
. (4.2)

Here and for the rest of this section, nR= n(ϕ0) · eR(φ), bR= b(ϕ0) · eR(φ), analogous
expressions hold for nz and bz and X1 and Y1 are understood to be evaluated at ϕ0.
(The t(ϕ0) · (. . .) component of (4.1) yields (2.27).)

Noting the components of the tangent vector in cylindrical coordinates,

tR = t · eR = R′0/`
′, tφ = t · eφ = R0/`

′, tz = t · ez = z′0/`
′, (4.3a−c)

the determinant of the matrix in (4.2) is

nRbz − bRnz =−n× b · eφ =−t · eφ =−R0/`
′. (4.4)

Hence the inverse transformation is(
R1
z1

)
=
`′

R0

(
−bz nz
bR −nR

)(
X1
Y1

)
. (4.5)

This relation enables the solution of the quasi-symmetry equations in the Frenet–Serret
basis to be mapped to cylindrical coordinates. Note that by applying (4.5) and (4.4) to
(2.24), we obtain (3.6), and so these equations from the Frenet–Serret and cylindrical
coordinates analyses are consistent.

4.2. Equivalence of the B1 equations
Next let us show that (2.30) and (3.7) are equivalent. Expanding (3.5) about ϕ ≈ ϕ0,
and equating the result to the B analogue of (2.12), we obtain

B0(φ)+ rB1(θ, φ)+O(r2)= B̂0(ϕ0)+ rν1(θ, φ) dB̂0/dϕ0 + rB̂1(θ, ϕ0)+O(r2). (4.6)

The O(r0) terms give B0(φ)= B̂0(ϕ0), which upon differentiation gives

B′0(φ)= [1+ ν
′

0(φ)] dB̂0/dϕ0. (4.7)

Combining this result with (2.20), (2.27) and the O(r1) terms of (4.6), we find

B̂1(θ, ϕ0)= B1 − B′0(`
′)−2(R′0R1 + z′0z1). (4.8)

Then using the top row of (4.2), (3.7) and (2.30) are equivalent. Note that using (4.8),
(2.30) can be written in terms of B̂1 rather than B1, yielding a relation between the flux
surface shape in cylindrical coordinates and the field strength in Boozer coordinates:

B̂1(θ, ϕ0)/B̂0(ϕ0)= (nRR1 + nzz1)κ. (4.9)
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4.3. Equivalence of the ι0 equations
Finally, let us show that equations (2.34)–(2.36), which determine ι0 in cylindrical
coordinates, can be independently derived from the analogous Frenet–Serret equations
(3.8)–(3.10) by applying the transformation (4.2). We first note the following relations
between components of the normal and binormal vectors:

n2
R + b2

R = [(tt+ nn+ bb) · eR]
2
− t2

R = 1− t2
R =

R2
0 + (z

′

0)
2

(`′)2
,

n2
z + b2

z = [(tt+ nn+ bb) · ez]
2
− t2

z = 1− t2
z =

R2
0 + (R

′

0)
2

(`′)2
,

nRnz + bRbz = eR · (tt+ nn+ bb) · ez − tRtz = eR · ez − tRtz =−tRtz =−R′0z′0/(`
′)2.


(4.10)

Using these results and (4.5), then

X2
1s + Y2

1s = (`
′)−2
[R2

0(R
2
1s + z2

1s)+ (z
′

0)
2R2

1s − 2R′0z′0R1sz1s + (R′0)
2z2

1s]. (4.11)

An analogous expression holds for the subscript-1c (cos θ ) terms. Thus, it can be seen
that VFS

= V .
It remains to show TFS

= T . To show this equivalence we first apply (4.2) and then
(4.10) to the first four terms of TFS, giving

TFS
=
|G0|

B0(`′)3

[
R2

0(R1cR′1s − R1sR′1c + z1cz′1s − z1sz′1c)

+ (z1cz′1s − z1sz′1c)(R
′

0)
2
+ (R1cR′1s − R1sR′1c)(z

′

0)
2

+ (R1sz′1c − z1cR′1s + z1sR′1c − R1cz′1s)R
′

0z′0
]
+

2I2G0

B2
0
+ T̂, (4.12)

where

T̂ =
|G0|

B0`′
(R1sz1c − R1cz1s)(nzn′R − nRn′z + bzb′R − bRb′z)− 2τ

G0B̄
B2

0
. (4.13)

In the last term of (4.13), B̄ is eliminated using (2.24). Applying the last two lines
of (1.1),

nzn′R − nRn′z + bzb′R − bRb′z = 2τR0 + (nRtz − nztR)`
′κ + nznφ + bzbφ, (4.14)

where we have used nzbR − bznR = tφ = R0/`
′. Applying

nznφ + bzbφ = ez · (tt+ nn+ bb) · eφ − tztφ =−tztφ =−R0z′0/(`
′)2 (4.15)

and

(nztR − nRtz)κ = tRez ·
dt
d`
− tzeR ·

dt
d`
=

R0z′0 + R′0z′′0 − R′′0z′0
(`′)3

, (4.16)

we find
T̂ =

|G0|

B0(`′)3
(R1cz1s − R1sz1c)(R′0z′′0 + 2R0z′0 − z′0R′′0). (4.17)

Thus, TFS
= T as desired. This concludes the proof that whenever the curvature of the

magnetic axis does not vanish, so the Frenet–Serret approach is free of singularities,
all the equations derived directly in cylindrical coordinates in § 2 are equivalent to the
analogous equations derived in the Frenet–Serret frame by Garren & Boozer (1991a).
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5. Quasi-symmetry
Next, let us consider how the equations for the magnetic field strength reduce in an

important case, that of quasi-symmetry. (The more general condition of omnigenity
will be considered in Part 3.) As shown by Garren & Boozer (1991a), for quasi-
symmetry to O(r1), the curvature of the magnetic axis can never vanish, or else the
elongation of the first-order flux surfaces diverges. Since the curvature does not vanish,
the Frenet–Serret frame is non-singular, and the torsion can be defined. Therefore the
reduced equation (3.13) should be free of singularities. We will consider the cases
of quasi-axisymmetry and quasi-helical symmetry in turn. We will not consider quasi-
poloidal symmetry, B= B(r, θ), since it cannot exist at O(r1).

5.1. Quasi-axisymmetry

Quasi-axisymmetry is the condition ∂B/∂ϕ = 0. At O(r0), quasi-axisymmetry implies
B′0 = 0. It is convenient then to take the normalizing field B̄ equal to the constant
sψB0, where sψ = sign(ψ) = ±1. A consequence of B′0 = 0 is B1c(φ) = B̂1c(ϕ0) and
B1s(φ)= B̂1s(ϕ0).

At O(r1), quasi-axisymmetry implies dB̂1s/dϕ = 0 and dB̂1c/dϕ = 0. We are free to
shift the origin of the θ coordinate so B̂1s = 0, leaving the first-order magnetic field
strength completely described by the single constant B̂1c. In this case, equation (3.13)
simplifies to

dσ
dϕ
+ ι0

(
B̂4

1c

B4
0κ

4
+ 1+ σ 2

)
− 2

(
I2

B0
− sψτ

)
G0B̂2

1c

B3
0κ

2
= 0, (5.1)

where σ(ϕ)= B̂1cY1c(ϕ)/(sGsψB0κ(ϕ)). This result is equivalent to (82) in Garren &
Boozer (1991a) and to (A6) in Garren & Boozer (1991b). In the appendix of Part 2
(Landreman et al. 2018), we prove that for any given σ(0), I2/B0, G0/B0, B̂1c/(B0κ)
and sψτ , precisely one periodic solution σ(ϕ) and associated ι0 exist, even though
(5.1) is nonlinear in σ .

5.2. Quasi-helical symmetry
Quasi-helical symmetry is the condition B=B(r,Mθ −Nϕ) for some non-zero integers
M and N. At O(r0), this condition implies B′0 = 0, so again we can take B̄ = sψB0
to normalize by the on-axis field. The fact that only ∝ cos θ and ∝ sin θ terms are
permitted in first-order quantities like B̂1 means that M = 1 is required at this order.
We are free to choose the origin of the θ coordinate so B̂1(θ, ϕ)= η̄B0 cos(θ − Nϕ)
(for some constant η̄), meaning B̂1c= η̄B0 cos(Nϕ) and B̂1s= η̄B0 sin(Nϕ). Substituting
this B̂1s and B̂1c into (3.13), we find

dσ
dϕ
+ (ι0 −N)

(
η̄4

κ4
+ 1+ σ 2

)
− 2

(
I2

B0
− sψτ

)
G0η̄

2

B0κ2
= 0. (5.2)

Observe that (5.2) is the same as the quasi-axisymmetry equation (5.1) up to the
generalizations B̂1c→ η̄B0 and ι0→ ι0 − N. The same result can also be obtained by
noting that if a helical angle ϑ = θ −Nϕ is introduced, (2.1)–(2.2) become

B=∇ψ ×∇ϑ + (ι−N)∇ϕ ×∇ψ = β∇ψ + I∇ϑ + (G+NI)∇ϕ. (5.3)
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These equations differ in form from (2.1)–(2.2) only through θ→ ϑ , ι→ ι− N and
G→ G + NI, with the latter replacement only having an effect at O(r2). Therefore,
for B to possess a single helicity in θh to the relevant order, the equations must be
the same as for quasi-axisymmetry (in θ ) except for ι→ ι−N.

Furthermore, given a particular magnetic axis shape, it is possible to determine
N (including the quasi-axisymmetry case N = 0) before solving (5.1) or (5.2), by
the following reasoning. Consider the general quasi-symmetry condition B̂1(θ, ϕ) =
η̄B0 cos(θ −Nϕ) for constant η̄, where N is allowed to be zero or non-zero, and let us
take η̄ > 0 without loss of generality. Now consider a vector pointing perpendicularly
from the axis to the θ − Nϕ = 0 curve on the first-order-in-r flux surface, which
equivalently points to the maximum-B contour on the surface. From (3.1) and (3.7),
this vector is nrη̄/κ+brY1, which has a positive projection along n at all ϕ. Therefore
this vector to the maximum-B curve never points in a direction more than 90◦ away
from the normal vector n. Hence, in a full toroidal transit around the axis, the θ −
Nϕ = 0 curve must wrap poloidally around the magnetic axis the same number of
times n does so. Therefore, N is the number of times n rotates poloidally around
the axis in a full toroidal transit of the axis. If n does not have such a net rotation
for a given axis shape, then all quasi-symmetric solutions for this axis shape will
be quasi-axisymmetric, whereas if n does have this net rotation, all quasi-symmetric
solutions for this axis shape will be quasi-helically symmetric.

For another perspective on N, consider that because of (5.3), in the derivation of
(3.13), (5.1) and (5.2), it was never imposed that θ must be a poloidal angle rather
than a helical angle. The choice of N in the previous paragraph finally eliminates this
redundancy. If one solves the quasi-axisymmetry equation (5.1) for an axis shape that
‘really’ should have quasi-helical symmetry rather than quasi-axisymmetry, one finds
that the θ = 0 curve on each flux surface wraps around the axis poloidally as you
traverse the axis toroidally, i.e. θ turns out to be a helical angle rather than a poloidal
angle.

Numerical solution of (5.1)–(5.2) as a practical method to construct and parameterize
quasi-symmetric equilibria will be demonstrated in Part 2.

5.3. Necessity of axis torsion
Note that τ = 0 implies the magnetic axis and n are confined to a plane, so n cannot
rotate poloidally about the magnetic axis. Then by the argument in the preceding
section, τ = 0 can only be consistent with quasi-axisymmetry, not quasi-helical
symmetry. Moreover, in a stellarator, I2 (which represents the on-axis density of
toroidal current) is typically zero, as the bootstrap current vanishes on axis. In this
case, if τ = 0, the integral of (5.1) gives

ι0

∫ 2π

0
dϕ

[
B̂4

1c

B4
0κ

4
+ 1+ σ 2

]
= 0. (5.4)

The integral is positive–definite, so ι0 must vanish. Therefore, torsion of the magnetic
axis is essential in a quasi-symmetric stellarator in order to have rotational transform
on axis.

6. Discussion and conclusions
In this paper, we have derived the relationship near the magnetic axis between the

flux surface shape in cylindrical coordinates and the magnetic field strength B(r, θ, ϕ)
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in Boozer coordinates. This relationship is important for stellarator design since
B(r, θ, ϕ) essentially determines the guiding-centre confinement, but it is the flux
surface shape in three dimensions that determines the coils and engineering design.
As part of this calculation, we have also derived the relationship between the flux
surface shape in cylindrical coordinates and the rotational transform. No matter how
low the aspect ratio of a stellarator, the analysis here applies in a region sufficiently
close to the axis. The result of this analysis is the system of equations (2.24),
(2.30)–(2.32) or (4.9), and (2.34)–(2.36). These equations can be derived directly in
cylindrical coordinates, as in § 2, or by the appropriate transformation of Garren &
Boozer’s equations, using the transformation of § 4.1. In contrast to the calculation of
Garren & Boozer (1991a), the equations here remain regular on segments or points
where the axis torsion vanishes, which always occurs for omnigenous fields with
poloidally closed B contours. The torsion, which may not be well defined in this
circumstance, does not appear in our analysis since we avoid using the Frenet–Serret
frame.

Consistent with Garren & Boozer (1991a), we find that at O(r1), for a prescribed
B1, there are two more φ-dependent degrees of freedom than there are equations.
Specifically, the six φ-dependent unknowns (R0, z0, R1c, R1s, z1c and z1s) are
constrained by four equations: (2.24), the sin θ and cos θ components of (2.30),
and (2.34). Thus, two of these six functions can be viewed as inputs. Choosing R0
and z0 as the two inputs amounts to specifying the magnetic axis shape, and the four
aforementioned equations then give the flux surface shape that yields the desired B1.
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Appendix A. Regularity near the magnetic axis
In this section we will derive the form of the expansion (2.12)–(2.14) for R, z, ν and

B. As an alternative to the argument based on analyticity in Garren & Boozer (1991a),
here we give a constructive demonstration, proceeding in several steps. First, we will
derive the form (2.12)–(2.14) for R and z but with a non-straight-field-line poloidal
angle α in place of the Boozer angle θ . Then we will derive the form (2.12)–(2.14)
for R and z but with the poloidal angle ξ defined such that field lines are straight in
the ξ–φ plane. Next, we will derive (2.12)–(2.14) for θ . Finally, we extend the proof
to ν and B.

Assuming good flux surfaces exist near the axis, a Taylor expansion exists for
ψ(R, z):

ψ =
(R− R0)

2

2
ψRR + (R− R0)(z− z0)ψRz +

(z− z0)
2

2
ψzz +

(R− R0)
3

6
ψRRR

+
(R− R0)

2(z− z0)

2
ψRRz +

(R− R0)(z− z0)
2

2
ψRzz +

(z− z0)
3

6
ψzzz + · · · , (A 1)

where quantities such as ψRR refer to partial derivatives evaluated at the axis (R0, z0),
and dependence on the independent variable φ is not displayed to simplify notation.
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Note A> 0 where A=ψRRψzz −ψ
2
Rz, since the axis is an extremum of ψ rather than

a saddle point. For this section we assume ψRR and ψzz are positive for simplicity, so
ψ > 0. We then seek a solution of the desired form:

R= R0 + r(Rα1c cos α + Rα1s sin α)+ r2(Rα20 + Rα2c cos 2α + Rα2s sin 2α)+O(r3),

z= z0 + r(zα1c cos α + zα1s sin α)+ r2(zα20 + zα2c cos 2α + zα2s sin 2α)+O(r3).

}
(A 2)

Substituting (A 2) into (A 1), terms can be collected based on their order in r and α
dependence. The number of equations that result at a given order in r is smaller than
the number of associated coefficients in (A 2), reflecting the non-uniqueness of the
poloidal angle; for instance the α= 0 direction can be shifted. One solution satisfying
(A 1) through O(r3) is zα1c = 0, Rα20 = 0,

Rα1c =

√
B̄
ψRR

, Rα1s =ψRz

√
B̄

ψRRA
, zα1s =−

√
B̄ψRR

A
, Rα2c =−

B̄ψRRR

6ψ2
RR
,

Rα2s =−
B̄

12ψ2
RRA5/2

[
ψRRR(4ψ2

RRψRzψ
2
zz − 5ψRRψ

3
Rzψzz + 2ψ5

Rz)

−ψ3
RR(3ψRRzψ

2
zz +ψ

2
Rzψzzz − 3ψRzψRzzψzz)

]
,

zα2c =−zα20 =
B̄

12ψRRA2

[
ψ3

RRψzzz − 3ψ2
RRψRzψRzz + 3ψRRψRRzψ

2
Rz −ψRRRψ

3
Rz

]
,

zα2s =−
B̄

12ψRRA5/2

[
ψ3

RR(ψRzψzzz − 3ψRzzψzz)+ψ
2
RRψzz(6ψRRzψRz −ψRRRψzz)

−ψRRψ
2
Rz(ψRRRψzz + 3ψRRzψRz)+ψRRRψ

4
Rz

]
.



(A 3)

Thus, given the Taylor series for ψ(R, z), we can construct expansions of the
form (2.12)–(2.14), but with θ → α, for R and z. The O(r) terms in (A 2) can be
manipulated to write the poloidal angle explicitly as

α ≈ atan2(−(z− z0), [(R− R0)ψRR + (z− z0)ψRz]/
√

A), (A 4)

where atan2 is the arctangent with range (−π,π].
Next we construct the straight-field-line angle ξ = α + λ where λ(r, α, φ) is single

valued. From the ∇φ component of B=∇ψ ×∇ξ + ι∇φ ×∇ψ , we find

λ= f (r, φ)+
∫ α

0
dα′
[(

∂r
∂ψ
·
∂r
∂α
×
∂r
∂φ

)
B · ∇φ − 1

]
, (A 5)

for some f (r, φ). The Jacobian in this expression can be evaluated using derivatives
of r= ReR + zez; substitution of (A 2) then yields

∂r
∂ψ
·
∂r
∂α
×
∂r
∂φ
=

(
∂z
∂ψ

∂R
∂α
−
∂z
∂α

∂R
∂ψ

)
R=

R0
√

A

(
1+ rJ1s sin α + rJ1c cos α +O(r2)

)
,

(A 6)
where J1s and J1c are complicated algebraic functions of the Taylor coefficients in
(A 1). Also, in (A 5), B · ∇φ is smooth so it has a Taylor series

B · ∇φ = b0 + (R− R0)bR + (z− z0)bz +O(r2). (A 7)
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Using the O(r) terms in (A 2) and (A 3) in (B 3) for the area of an ellipse, flux
surfaces near the axis have an area 2πψ/

√
A in the R–z plane, so b0 =

√
A/R0.

Evaluating the integral in (A 5) then gives

λ= f̂ (r, φ)+ rλ1s sin α + rλ1c cos α +O(r2), (A 8)

where λ1s= bRRα1cR0/
√

A+ J1c, λ1c=−J1s− (bRRα1s+ bzzα1s)R0/
√

A and f̂ = f − rλ1c. To
constrain the form of f̂ , we use the ∇α component of B=∇ψ ×∇ξ + ι∇φ×∇ψ to
write

∂λ

∂φ
= ι−

B · ∇α
∇ψ · ∇α×∇φ

= ι−B ·
∂r
∂φ
×
∂r
∂ψ

. (A 9)

In the last term, note that B has a Taylor expansion in R− R0 and z− z0 like (A 7)
but with vector coefficients; the leading term is parallel to ∂r/∂φ, so the last term
in (A 9) is finite on the axis. Evaluating the last term in (A 9) by differentiating r=
ReR + zez and substituting (A 2), and applying

∫ 2π

0 dα ∂(. . .)/∂r to (A 9), we find∫ 2π

0 dα ∂2λ/∂r∂φ = 0 at r = 0, which implies the O(r) term of f̂ is independent of
φ. This term can therefore be set to 0, since λ can be shifted by any function of only
r. Hence,

λ= λ0 + rλ1s sin α + rλ1c cos α +O(r2), (A 10)
for some λ0(φ). Substituting α= ξ − λ and (A 10) into (A 2), we obtain an expansion
of the desired form:

R= R0 + r(Rξ1c cos ξ + Rξ1s sin ξ)+ r2(Rξ20 + Rξ2c cos 2ξ + Rξ2s sin 2ξ)+O(r3),

z= z0 + r(zξ1c cos ξ + zξ1s sin ξ)+ r2(zξ20 + zξ2c cos 2ξ + zξ2s sin 2ξ)+O(r3),

}
(A 11)

where the Rξ and zξ coefficients are functions of the Rα and zα coefficients, e.g. Rξ1s=

Rα1s cos λ0 + Rα1c sin λ0.
Next we transform to Boozer coordinates. The magnetic field can be written

(Helander 2014) as

B= β̂∇ψ + I∇ξ +G∇φ +∇[(G+ ιI)ν], (A 12)

for some β̂, where the transformation to Boozer coordinates is given by ϕ = φ + ν
and θ = ξ + ιν. Applying ∇φ ×∇ψ · (. . .) to (A 12), we find

ν = g(r, φ)+
1

G+ ιI

∫ ξ

0
dξ ′

[
B · ∇φ ×∇ψ

B · ∇φ
− I
]
. (A 13)

The denominator is smooth (and non-vanishing near the axis for cases of interest in
this paper), with the expansion (A 7). The numerator is a product of three quantities
that are smooth near the axis and so it too is smooth, vanishing on the axis since
∇ψ = 0 there. Noting I is smooth function of ψ and I = 0 on axis, then the quantity
in square brackets in (A 13) is smooth and so has a Taylor expansion

B · ∇φ ×∇ψ
B · ∇φ

− I = (R− R0)HR + (z− z0)Hz +
1
2
(R− R0)

2HRR

+ (R− R0)(z− z0)HRz +
1
2
(z− z0)

2Hzz +O(r3), (A 14)

for some coefficients H.... Substituting (A 11) and integrating in ξ , (A 13) gives

ν = ĝ(r, φ)+ r(νξ1s sin ξ + νξ1c cos ξ)+ r2(ν
ξ
20 + ν

ξ
2s sin 2ξ + νξ2c cos 2ξ)+O(r3), (A 15)
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where ĝ is the sum of g and terms from the lower integration bound. To constrain the
form of ĝ we apply ∇ψ ×∇ξ · (. . .) to (A 12), with the result

∂ν

∂φ
=

1
G+ ιI

[
B2
− ιB · ∇φ ×∇ψ

B · ∇φ
−G

]
. (A 16)

The right-hand side is manifestly smooth near the axis and so it has a Taylor series
in R and z, into which we substitute (A 11). Applying ∂/∂r and integrating over ξ ,
we find

∫ 2π

0 dξ ∂2ν/∂r∂φ = 0 at r = 0. It follows that the ∂ ĝ/∂φ has no term linear
in r. Then since we are free to shift ν by any function of only r, we can choose ĝ
so ν has the form

ν = ν0(φ)+ r(νξ1s sin ξ + νξ1c cos ξ)+ r2(ν
ξ
20 + ν

ξ
2s sin 2ξ + νξ2c cos 2ξ)+O(r3). (A 17)

Substitution of ξ = θ − ιν and (A 17) in (A 11) yields the desired expansions for R and
z, equations (2.12)–(2.14). The same substitutions applied to (A 17) give the desired
expansion for ν(r, θ, φ).

Finally, B is smooth near the axis and so it has a Taylor expansion

B = B0 + (R− R0)BR + (z− z0)Bz +
1
2(R− R0)

2BRR

+ (R− R0)(z− z0)BRz +
1
2(z− z0)

2Bzz +O(r3). (A 18)

Substitution of (2.12)–(2.14) for R(r, θ, φ) and the analogous expansion for z(r, θ, φ)
into (A 18) gives the desired expansion for B(r, θ, φ).

Appendix B. Geometric properties of flux surfaces

Here we relate several geometric properties of the flux surfaces – specifically the
cross-sectional area and elongation – to the variables (R1, z1) used elsewhere in the
paper. We consider a cross-section of the flux surfaces in a constant-φ plane. All
results of this section apply to cross-sections perpendicular to the magnetic axis if
(R1, z1) are replaced by (X1, Y1). Several geometric quantities are defined in figure 2.
To O(r), the flux surfaces are elliptical, with semi-major axis a and semi-minor axis b.
Axes u and v are aligned with the minor and major axes, and γ is the angle between
the u and R1 axes. The θ = 0 line is not generally aligned with any of these axes, and
we let θ0 denote the angle between this line and the R1 axis. Any point in the plane,
such as the black dot in the figure, makes an angle θ + θ0 relative to the R1 axis and
an angle χ relative to the u axis, with χ = θ + θ0 + γ . Substituting u= b cos χ and
v = a sin χ into (

R1
z1

)
=

(
cos γ sin γ
− sin γ cos γ

)(
u
v

)
, (B 1)

applying the angle sum formula to χ and equating sin θ and cos θ terms using (2.13),
we find (

R1s
R1c

)
=

(
cos θ0 − sin θ0
sin θ0 cos θ0

)(
(a− b) sin γ cos γ
a sin2 γ + b cos2 γ

)
,(

z1s
z1c

)
=

(
cos θ0 − sin θ0
sin θ0 cos θ0

)(
a cos2 γ + b sin2 γ

(a− b) sin γ cos γ

)
.

 (B 2)
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FIGURE 2. Definitions for appendix B.

Using (B 2), the right-hand side of (2.24) is found to be

R1sz1c − R1cz1s =−ab, (B 3)

which is (minus) the area of the ellipse divided by π.
Another important property of the flux surfaces is their elongation, a/b. In practice,

many solutions of (3.13) are uninteresting since they correspond to impractically large
values of elongation, so to discard these solutions it is valuable to derive an expression
for the elongation in terms of R1 and z1. Such a formula can be obtained by first
defining p=R2

1s+R2
1c+ z2

1s+ z2
1c, and noting from (B 2) that p= a2

+ b2. Then defining
q = R1sz1c − R1cz1s = −ab, we can solve a4

− pa2
+ q2

= 0 for a, noting the larger
positive root is a and the smaller is b, since b satisfies the same quadratic equation.
Then the elongation is

a
b
=

√
p+

√
p2 − 4q2

p−
√

p2 − 4q2
=

p+
√

p2 − 4q2

2|q|
. (B 4)

Appendix C. Equating representations of the field: second order

Here the derivation of (2.34)–(2.36) is presented. The O(r2) terms in (2.8)–(2.10)
can be obtained by applying ∂/∂r twice and evaluating the results at r→ 0. We find

B̄
G0R0

[
∂R1

∂φ
+ ι0(1+ ν ′0)

∂R1

∂θ
−

R1

R0
R′0 − ι0

∂ν1

∂θ
R′0 + β0R0

∂z1

∂θ

]
=

I2z1

G0
+
∂ν2

∂θ
z1 + 2

∂ν1

∂θ
z2 − ν1

∂z2

∂θ
− 2ν2

∂z1

∂θ
, (C 1)

B̄
G0R0

[
−

R1

R0
(`′)2 − ι0

∂ν1

∂θ
(`′)2 + 2R0R1 + 2R′0

∂R1

∂φ
+ 2z′0

∂z1

∂φ

+ ι0

(
1+

dν0

dφ

)(
∂R1

∂θ
R′0 +

∂z1

∂θ
z′0

)]
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=

(
2z2
∂R1

∂θ
+ z1

∂R2

∂θ
− 2R2

∂z1

∂θ
− R1

∂z2

∂θ

)
(1+ ν ′0)

+

(
z1
∂R1

∂θ
− R1

∂z1

∂θ

)
∂ν1

∂φ
, (C 2)

B̄
G0R0

[
∂z1

∂φ
+ ι0(1+ ν ′0)

∂z1

∂θ
−

R1

R0
z′0 − ι0

∂ν1

∂θ
z′0 − β0R0

∂R1

∂θ

]
=−

I2R1

G0
+
∂R2

∂θ
ν1 + 2

∂R1

∂θ
ν2 − R1

∂ν2

∂θ
− 2R2

∂ν1

∂θ
. (C 3)

In (C 2), the terms including a factor of ι0 can be written in the combination (2.29),
which vanishes as before. Plugging in (2.13)–(2.14), it can be seen that (C 1)–(C 3)
each have only sin θ and cos θ Fourier components. These sin θ and cos θ components
give the following six equations:

B̄
2G0R0

[
R′1s − ι0(1+ ν

′

0)R1c −
R1s

R0
R′0 + ι0ν1cR′0 − β0R0z1c

]
=

I2z1s

2G0
+ ν1c(z2c − z20)+ ν1sz2s + z1c(ν20 − ν2c)− z1sν2s, (C 4)

B̄
2G0R0

[
R′1c + ι0(1+ ν

′

0)R1s −
R1c

R0
R′0 − ι0ν1sR′0 + β0R0z1s

]
=

I2z1c

2G0
+ ν1s(z2c + z20)− ν1cz2s − z1s(ν20 + ν2c)+ z1cν2s, (C 5)

B̄
2G0R0

[
z′1s − ι0(1+ ν

′

0)z1c −
R1s

R0
z′0 + ι0ν1cz′0 + β0R0R1c

]
=−

I2R1s

2G0
+ ν1c(R20 − R2c)− ν1sR2s + R1c(ν2c − ν20)+ R1sν2s, (C 6)

B̄
2G0R0

[
z′1c + ι0(1+ ν

′

0)z1s −
R1c

R0
z′0 − ι0ν1sz′0 − β0R0R1s

]
=−

I2Rc1

2G0
− ν1s (R20 + R2c)+ ν1cR2s + R1s (ν2c + ν20)− R1cν2s, (C 7)

B̄
G0R0

[
−

R1s

2R0
(`′)2 + R0R1s + R′0R′1s + z′0z′1s

]
= [z1c(R20 − R2c)− z1sR2s + R1c(z2c − z20)+ R1sz2s] (1+ ν ′0)+

sGB̄
2R0B0

`′ν ′1s,

(C 8)
B̄

G0R0

[
−

R1c

2R0
(`′)2 + R0R1c + R′0R′1c + z′0z′1c

]
= [−z1s(R2c + R20)+ z1cR2s + R1s(z20 + z2c)− R1cz2s](1+ ν ′0)+

sGB̄
2R0B0

`′ν ′1c.

(C 9)

In the last two equations we have used (2.24).
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While these six equations contain R2, ν2 and z2, all these subscript-2 quantities can
be eliminated to give a constraint on the subscript-1 quantities by forming

(1+ ν ′0)[(C4)R1c − (C5)R1s + (C6)z1c − (C7)z1s] − (C8)ν1c + (C9)ν1s. (C 10)

The β0 terms happen to vanish as well in this combination. Multiplying the result
through by 2G0R0/B̄, we obtain

(1+ ν ′0)
[
R1cR′1s − R1sR′1c + z1cz′1s − z1sz′1c + (R1cz1s − R1sz1c)z′0/R0

− ι0(1+ ν ′0)(R
2
1c + R2

1s + z2
1c + z2

1s)

+ ι0R′0(ν1cR1c + ν1sR1s)+ ι0z′0(ν1cz1c + ν1sz1s)
]

− 2ν1c

[
−

R1s

2R0
(`′)2 + R0R1s + R′0R′1s + z′0z′1s

]
+ 2ν1s

[
−

R1c

2R0
(`′)2 + R0R1c + R′0R′1c + z′0z′1c

]
=
|G0|

B0
`′(ν1sν

′

1c − ν1cν
′

1s)+
2I2R0

B̄
(1+ ν ′0)(R1cz1s − R1sz1c). (C 11)

Eliminating ν0, we find (T − ι0V)(`′)2B2
0/G

2
0 = 0 where

T =
|G0|

3

B3
0`
′
(ν1cν

′

1s − ν1sν
′

1c)

+
|G0|

B0`′

[
R1cR′1s − R1sR′1c + z1cz′1s − z1sz′1c +

(R1cz1s − R1sz1c)

R0
z′0

]
−

2G2
0ν1c

B2
0(`
′)2

[
−

R1s

2R0
(`′)2 + R0R1s + R′0R′1s + z′0z′1s

]
+

2G2
0ν1s

B2
0(`
′)2

[
−

R1c

2R0
(`′)2 + R0R1c + R′0R′1c + z′0z′1c

]
+

2I2G0

B2
0
, (C 12)

and

V = R2
1c + R2

1s + z2
1c + z2

1s −
|G0|

B0`′
[R′0(ν1cR1c + ν1sR1s)+ z′0(ν1cz1c + ν1sz1s)]. (C 13)

Eliminating ν1s and ν1c using (2.27) results in (2.35)–(2.36).
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