Bull. Austral. Math. Soc.

ELEMENTARY OPERATORS ON \mathcal{J}-SUBSPACE LATTICE ALGEBRAS

Pengtong Li and Fangyan Lu

The abstract concept of an elementary operator was recently introduced and studied by other authors. In this paper, we describe the general form of elementary operators between standard subalgebras of \mathcal{J}-subspace lattice algebras. The result can apply to atomic Boolean subspace lattice algebras and pentagon subspace lattice algebras.

Throughout, if X is a Banach space by $\mathcal{B}(X)$ we mean the algebra of all bounded linear operators on X. The topological dual of X is denoted by X^{*}. For $x \in X$ and $f \in X^{*}$, the operator $x \otimes f$ is defined by $y \mapsto f(y) x$ for $y \in X$, which has rank one if and only if both x and f are nonzero. For any non-empty subset $L \subseteq X, L^{\perp}$ stands for its annihilator, that is $L^{\perp}=\left\{f \in X^{*}: f(x)=0\right.$ for all $\left.x \in L\right\}$.

Let \mathcal{L} be a subspace lattice on a Banach space X, that is, a family of (closed) subspaces of X satisfying
(i) (0), $X \in \mathcal{L}$ and
(ii) $\cap_{\gamma} L_{\gamma} \in \mathcal{L}, \vee_{\gamma} L_{\gamma} \in \mathcal{L}$,
for every family $\left\{L_{\gamma}\right\}_{\Gamma}$ of elements of \mathcal{L}, where $\vee_{\Gamma} L_{\gamma}$ denotes the closed linear span of $\cup_{\Gamma} L_{\gamma}$. The associated subspace lattice algebra $\operatorname{Alg} \mathcal{L}$ is the set of all operators in $\mathcal{B}(X)$ which leave every subspace in \mathcal{L} invariant. It is easy to see that $\operatorname{Alg} \mathcal{L}$ is a unital weakly closed operator algebra. Put

$$
\mathcal{J}(\mathcal{L})=\left\{K \in \mathcal{L}: K \neq(0) \text { and } K_{-} \neq X\right\}
$$

where $K_{-}=\vee\{L \in \mathcal{L}: K \nsubseteq L\}$. Call \mathcal{L} a \mathcal{J}-subspace lattice if
(i) $\vee\{K: K \in \mathcal{J}(\mathcal{L})\}=X$,
(ii) $\cap\left\{K_{-}: K \in \mathcal{J}(\mathcal{L})\right\}=(0)$,
(iii) $K \vee K_{-}=X$ for every $K \in \mathcal{J}(\mathcal{L})$,
(iv) $K \cap K_{-}=(0)$ for every $K \in \mathcal{J}(\mathcal{L})$.

The class of \mathcal{J}-subspace lattices was defined in [14] and subsequently discussed in [$\mathbf{9}, \mathbf{1 0}$]. The simplest example of a \mathcal{J}-subspace lattice is any pentagon subspace lattice $\mathcal{P}=\{(0), K, L, M, X\}$, where K, L and M are subspaces of a Banach space X such

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/03 \$A2.00+0.00.
that $K \vee L=X, K \cap M=(0)$ and $L \subset M$. In this case, $K_{-}=M, L_{-}=K$ and $\mathcal{J}(\mathcal{P})=\{K, L\}$. For further discussions of pentagon subspace lattices may see $[4,6]$. Another important member of the class of \mathcal{J}-subspace lattices is atomic Boolean subspace lattices. The reference [10] tells us that every commutative \mathcal{J}-subspace lattice on a Hilbert space is an atomic Boolean subspace lattice. However, most \mathcal{J}-subspace lattices on a Hilbert space are non-commutative. Therefore, \mathcal{J}-subspace lattices and \mathcal{J}-subspace lattice algebras deserve some attention.

For a subspace lattice \mathcal{L}, the relevance of $\mathcal{J}(\mathcal{L})$ is due to the following lemma, from which we can see that every \mathcal{J}-subspace lattice algebra $\operatorname{Alg} \mathcal{L}$, where \mathcal{L} is a \mathcal{J}-subspace lattice, is rich in rank one operators.

Lemma 1. (Longstaff [8].) If \mathcal{L} is a subspace lattice on a Banach space X, then the rank one operator $x \otimes f \in \operatorname{Alg} \mathcal{L}$ if and only if there exists some $K \in \mathcal{J}(\mathcal{L})$ such that $x \in K$ and $f \in K_{-}^{\perp}$, where K_{-}^{\perp} means $\left(K_{-}\right)^{\perp}$.

Let \mathcal{A}_{1} and \mathcal{A}_{2} be algebras over the same field. In the recent papers $[1,2,13]$, the authors introduced and studied an abstract concept of elementary operators between \mathcal{A}_{1} and \mathcal{A}_{2}. They considered an ordered pair $\left(M, M^{*}\right)$ where $M: \mathcal{A}_{1} \rightarrow \mathcal{A}_{2}$ and $M^{*}: \mathcal{A}_{2}$ $\rightarrow \mathcal{A}_{1}$ are linear mappings such that

$$
\left\{\begin{align*}
M\left(x M^{*}(y) z\right) & =M(x) y M(z) \tag{1}\\
M^{*}(y M(x) u) & =M^{*}(y) x M^{*}(u)
\end{align*}\right.
$$

for all $x, z \in \mathcal{A}_{1}, y, u \in \mathcal{A}_{2}$. Following those references, such a pair $\left(M, M^{*}\right)$ is called an elementary operator of \mathcal{A}_{1} into \mathcal{A}_{2} (of length one). For $a, b \in \mathcal{A}_{1}$, denote by $M_{a, b}$ the two-sided multiplication given by $M_{a, b}(x)=a x b, x \in \mathcal{A}_{1}$. Then ($M_{a, b}, M_{b, a}$) is an elementary operator of \mathcal{A}_{1} into itself. The same is true for every double centraliser of a faithful algebra \mathcal{A}_{1} (see [1, 3]). Further, if ϕ is an algebraic isomorphism of \mathcal{A}_{1} onto \mathcal{A}_{2}, then $\left(\phi, \phi^{-1}\right)$ is also an elementary operator of \mathcal{A}_{1} into \mathcal{A}_{2}.

Let X be a Banach space. Usually, a subalgebra $\mathcal{A} \subseteq \mathcal{B}(X)$ is called a standard operator algebra on X if it contains all finite rank operators in $\mathcal{B}(X)$. For convenience, for a subspace lattice \mathcal{L} on X, we similarly call a subalgebra $\mathcal{A} \subseteq \operatorname{Alg} \mathcal{L}$ an standard subalgebra of $\operatorname{Alg} \mathcal{L}$ if it contains all finite rank operators in $\operatorname{Alg} \mathcal{L}$. In our previous papers [7, 11, 12], we studied derivations, isomorphisms, Jordan derivations and Jordan isomorphisms between standard subalgebras of \mathcal{J}-subspace lattice algebras. Here we turn our attention to elementary operators. The papers \{1, 2] describe the general form of elementary operators on some concrete algebras which include polynomial algebras, finite dimensional central simple algebras, standard operator algebras and some special function algebras. Also, the paper [13] characterises surjective mappings (no linearity is assumed) between standard operator algebras having the property appearing in (1); in particular, such mappings are proved to be automatically additive. Note that one of the main results from [1] is the following.

ThEOREM 1. Suppose that \mathcal{A}_{1} and \mathcal{A}_{2} are standard operator algebras on Banach space X_{1} and X_{2} respectively, and the pair (M, M^{*}) is an elementary operator of \mathcal{A}_{1} into \mathcal{A}_{2}. Then there exist bounded linear operators $T: X_{1} \rightarrow X_{2}$ and $S: X_{2} \rightarrow X_{1}$ such that $M(A)=T A S, A \in \mathcal{A}_{1}$, and $M^{*}(B)=S B T, B \in \mathcal{A}_{2}$.

The aim of this note is to extend this result to the case where $\mathcal{A}_{1}, \mathcal{A}_{2}$ are standard subalgebras of \mathcal{J}-subspace lattice algebras and M, M^{*} are linear surjections. We shall also discuss the continuity of M and M^{*} as well as the case where no surjectivity of M and M^{*} is assumed.

The following lemma is taken from [14], which is just [5, Corollary 3.8] and [4, Lemma 3.1] when \mathcal{L} is an atomic Boolean subspace lattice and a pentagon subspace lattice, respectively.

Lemma 2. Let \mathcal{L} be a \mathcal{J}-subspace lattice on a Banach space X and suppose that $T \in \operatorname{Alg} \mathcal{L}$ is nonzero. Then T has rank one if and only if whenever $A T B=0$ with $A, B \in \operatorname{Alg} \mathcal{L}$, then either $A T=0$ or $T B=0$.

Now let us state our main result, which can apply to atomic Boolean subspace lattice algebras and pentagon subspace lattice algebras.

Theorem 2. Let \mathcal{L}_{i} be a \mathcal{J}-subspace lattice on a Banach space X_{i} and \mathcal{A}_{i} be a standard subalgebra of $\operatorname{Alg} \mathcal{L}_{i}$, where $i=1$, 2. Suppose that the pair $\left(M, M^{*}\right)$ is an elementary operator of \mathcal{A}_{1} into \mathcal{A}_{2}, that is, $M: \mathcal{A}_{1} \rightarrow \mathcal{A}_{2}$ and $M^{*}: \mathcal{A}_{2} \rightarrow \mathcal{A}_{1}$ are linear mappings satisfying

$$
\left\{\begin{align*}
M\left(A M^{*}(B) C\right) & =M(A) B M^{(C)} \tag{2}\\
M^{*}(E M(D) F) & =M^{*}(E) D M^{*}(F)
\end{align*}\right.
$$

for all $A, C, D \in \mathcal{A}_{1}$ and $B, E, F \in \mathcal{A}_{2}$. If in addition, both M and M^{*} are surjective, then there exist two densely defined, closed, injective linear mappings $T: \mathcal{D}(T) \subseteq X_{1} \rightarrow X_{2}$ and $S: \mathcal{D}(S) \subseteq X_{2} \rightarrow X_{1}$ with dense ranges, and with $A \mathcal{R}(S) \subseteq \mathcal{D}(T)$ and $B \mathcal{R}(T)$ $\subseteq \mathcal{D}(S)$ for each $A \in \mathcal{A}_{1}$ and each $B \in \mathcal{A}_{2}$, such that

$$
M(A) y=T A S y \quad \text { and } \quad M^{*}(B) x=S B T x
$$

hold for all $A \in \mathcal{A}_{1}, B \in \mathcal{A}_{2}, x \in \mathcal{D}(T)$ and $y \in \mathcal{D}(S)$. Here the notation $\mathcal{D}(\cdot)$ and $\mathcal{R}(\cdot)$ denote the domain, and respectively the range of a mapping.

For clarity of exposition, we shall organise the proof in a series of lemmas.
Lemma 3. M and M^{*} are bijective.
Proof: To see that M is injective, let $M(A)=0$ for some $A \in \mathcal{A}_{1}$. Let $K \in \mathcal{J}\left(\mathcal{L}_{1}\right)$ be arbitrary. Suppose that there is $x \in K$ such that $A x \neq 0$. For any nonzero $f \in K_{-}^{\perp}$, by Lemma $1, x \otimes f, A x \otimes f \in \mathcal{A}_{1}$. Noting that the surjectivity of M^{*}, we can write $M^{*}(B)=A x \otimes f$ and $M^{*}(D)=x \otimes f$ for some $B, D \in \mathcal{A}_{2}$. We thus by (2) have that $f(A x) A x \otimes f=M^{*}(B) A M^{*}(D)=M^{*}(B M(A) D)=0$, and so $f(A x)=0$. Hence
$A x \in K \cap K_{-}=(0)$, a contradiction. This shows that $A(K)=(0)$. Since $\bigvee\{K: K$ $\left.\in \mathcal{J}\left(\mathcal{L}_{1}\right)\right\}=X_{1}$, it follows that $A=0$. The proof of injectivity of M^{*} goes similarly, completing the proof.

In the following, we shall say that a mapping $\Phi: \mathcal{A}_{1} \rightarrow \mathcal{A}_{2}$ preserves rank one operators in both directions if for any $T \in \mathcal{A}_{1}$, the operator $\Phi(T)$ is of rank one if and only if T is of rank one.

Lemma 4. M and M^{*} preserve rank one operators in both directions.
Proof: Let $T \in \mathcal{A}_{1}$ be arbitrary. Suppose first that T is of rank one and let $B, D \in \mathcal{A}_{2}$ with $B M(T) D=0$. Then $M^{*}(B) T M^{*}(D)=M^{*}(B M(T) D)=0$ by (2). Applying Lemma 2, we get that either $M^{*}(B) T=0$ or $T M^{*}(D)=0$. In the case that $M^{*}(B) T=0$, let $L \in \mathcal{J}\left(\mathcal{L}_{2}\right)$ be arbitrary and choose nonzero $y \in L$. For any $g \in L_{-}^{\perp}$, then $y \otimes g \in \mathcal{A}_{2}$ and there exists $A \in \mathcal{A}_{1}$ such that $M(A)=y \otimes g$ since M is surjective. So $y \otimes(B M(T))^{*} g=M(A) B M(T)=M\left(A M^{*}(B) T\right)=0$, where $(B M(T))^{*}$ is the adjoint of $B M(T)$. It follows that $(B M(T))^{*} g=0$ which implies that $(B M(T))^{*}\left(L_{-}^{\perp}\right)=(0)$. Since $\cap\left\{L_{-}: L \in \mathcal{J}\left(\mathcal{L}_{2}\right)\right\}=(0)$, it is easily seen that the linear span of $\cup\left\{L_{-}^{\perp}: L \in \mathcal{J}\left(\mathcal{L}_{2}\right)\right\}$ is weak ${ }^{*}$ dense in X_{2}^{*}. Thus $(B M(T))^{*}=0$ and then $B M(T)=0$. If $T M^{*}(D)=0$ we can similarly obtain that $M(T) D=0$. Making use of Lemma 2 again, it follows that $M(T)$ is also of rank one.

For the reverse implication, suppose that $M(T)$ is of rank one. Observe that the pair $\left(M^{-1}, M^{*-1}\right)$ is an elementary operator of \mathcal{A}_{2} into \mathcal{A}_{1}, that is, the linear mappings $M^{-1}: \mathcal{A}_{2} \rightarrow \mathcal{A}_{1}$ and $M^{*^{-1}}: \mathcal{A}_{1} \rightarrow \mathcal{A}_{2}$ satisfy

$$
\left\{\begin{array}{l}
M^{-1}\left(E M^{*-1}(D) F\right)=M^{-1}(E) D M^{-1}(F) \tag{3}\\
M^{*-1}\left(A M^{-1}(B) C\right)=M^{*-1}(A) B M^{*^{-1}}(C)
\end{array}\right.
$$

for all $A, C, D \in \mathcal{A}_{1}$ and $B, E, F \in \mathcal{A}_{2}$. Then we must have that M^{-1} maps every rank one operator of \mathcal{A}_{2} to a rank one operator of \mathcal{A}_{1}. So T is of rank one.

The statement that M^{*} preserves rank one operators in both directions can be proved in a similar way. The proof is complete.

In what follows, if \mathcal{L} is a subspace lattice and $K \in \mathcal{J}(\mathcal{L})$, we write $\mathcal{F}(K)$ for the set $\left\{x \otimes f: x \in K, f \in K_{-}^{\perp}\right\}$. For a \mathcal{J}-subspace lattice \mathcal{L}, the following basic properties are clear and will get repeated use.
(i) $K \subseteq L_{-}$for any $K, L \in \mathcal{J}(\mathcal{L})$ with $K \neq L$;
(ii) if the rank one operator $x \otimes f \in \operatorname{Alg} \mathcal{L}$, then there exists a unique $K \in \mathcal{J}(\mathcal{L})$ such that $x \in K$ and $f \in K_{-}^{\perp}$.
Lemma 5. Let $K \in \mathcal{J}\left(\mathcal{L}_{1}\right)$. Then there exists a unique $\widehat{K} \in \mathcal{J}\left(\mathcal{L}_{2}\right)$ such that $M(\mathcal{F}(K))=\mathcal{F}(\widehat{K})$ and $M^{*}(\mathcal{F}(\widehat{K}))=\mathcal{F}(K)$. In particular, the mapping $K \rightarrow \widehat{K}$ from $\mathcal{J}\left(\mathcal{L}_{1}\right)$ into $\mathcal{J}\left(\mathcal{L}_{2}\right)$ is bijective.

Proof: Noting that $K \cap K_{-}=(0)$, choose fixed nonzero elements $x_{K} \in K$ and $f_{K} \in K_{-}^{\perp}$ with $f_{K}\left(x_{K}\right)=1$. By Lemmas 1 and 4 , there exist an element, say \widehat{K}, in
$\mathcal{J}\left(\mathcal{L}_{2}\right), y_{K} \in \widehat{K}$ and $g_{K} \in \widehat{K}_{\underline{-}}^{\perp}$ such that, $M\left(x_{K} \otimes f_{K}\right)=y_{K} \otimes g_{K} \neq 0$. We want to prove that $M(\mathcal{F}(K))=\mathcal{F}(\widehat{K})$. Let $x \in K$ and $f \in K_{-}^{\perp}$ be arbitrary nonzero elements; then $x \otimes f, x \otimes f_{K}, x_{K} \otimes f \in \mathcal{A}_{1}$. Write

$$
\begin{aligned}
M(x \otimes f) & =y \otimes g, \quad y \in L, g \in L_{-}^{\perp}, L \in \mathcal{J}\left(\mathcal{L}_{2}\right) \\
M\left(x \otimes f_{K}\right) & =y_{1} \otimes g_{1}, \quad y_{1} \in L_{1}, g_{1} \in L_{1-}^{\perp}, L_{1} \in \mathcal{J}\left(\mathcal{L}_{2}\right) \\
M\left(x_{K} \otimes f\right) & =y_{2} \otimes g_{2}, \quad y_{2} \in L_{2}, g_{2} \in L_{2-}^{\perp}, L_{2} \in \mathcal{J}\left(\mathcal{L}_{2}\right) .
\end{aligned}
$$

Moreover, since M^{*} is surjective and preserves rank one operators in both directions, we also have $M^{*}\left(y_{0} \otimes g_{0}\right)=x_{K} \otimes f_{K}$ for some nonzero $y_{0} \in L_{0}$ and $g_{0} \in L_{0-}^{\perp}$, where $L_{0} \in \mathcal{J}\left(\mathcal{L}_{2}\right)$. Applying (2) we obtain that

$$
\begin{aligned}
y \otimes g & =M\left(x \otimes f_{K} \cdot M^{*}\left(y_{0} \otimes g_{0}\right) \cdot x_{K} \otimes f\right) \\
& =M\left(x \otimes f_{K}\right) \cdot y_{0} \otimes g_{0} \cdot M\left(x_{K} \otimes f\right) \\
& =g_{1}\left(y_{0}\right) g_{0}\left(y_{2}\right) y_{1} \otimes g_{2}
\end{aligned}
$$

It follows that $L=L_{1}=L_{2}=L_{0}$ since each of $y, y_{1}, y_{2}, g, g_{1}$ and g_{2} is nonzero. In the above equations, substituting x_{K} and f_{K} for x and f respectively, then $L_{0}=\hat{K}$ and so $L=\widehat{K}$. This proves that $M(\mathcal{F}(K)) \subseteq \mathcal{F}(\widehat{K})$. For the reverse inclusion, because of (3), we can similarly obtain an $K^{\prime} \in \mathcal{J}\left(\mathcal{L}_{1}\right)$ such that $M^{-1}(\mathcal{F}(\widehat{K})) \subseteq \mathcal{F}\left(K^{\prime}\right)$. As $x_{K} \otimes f_{K}=M^{-1}\left(y_{K} \otimes g_{K}\right)$, we have $K^{\prime}=K$. Thus $\mathcal{F}(\widehat{K}) \subseteq M(\mathcal{F}(K))$.

Next we shall prove that $M^{*}(\mathcal{F}(\widehat{K}))=\mathcal{F}(K)$. By the symmetry of M and M^{*}, we can get that $M^{*}(\mathcal{F}(\widehat{K}))=\mathcal{F}\left(K^{\prime \prime}\right)$ for some $K^{\prime \prime} \in \mathcal{J}\left(\mathcal{L}_{1}\right)$. It suffices to show that $K^{\prime \prime}=K$. Choose $z \in \widehat{K}$ and $h \in \widehat{K}_{-}^{\perp}$ with $h(z)=1$. Since $M(\mathcal{F}(K))=\mathcal{F}(\widehat{K})$, there exist $u \in K$ and $l \in K_{-}^{\perp}$ such that $M(u \otimes l)=z \otimes h$. Suppose to the contrary that $K^{\prime \prime} \neq K$. Noticing that $M^{*}(z \otimes h)$ is an operator of rank one in $\mathcal{F}\left(K^{\prime \prime}\right)$, we have

$$
\begin{aligned}
z \otimes h & =M(u \otimes l) \cdot z \otimes h \cdot M(u \otimes l) \\
& =M\left(u \otimes l \cdot M^{*}(z \otimes h) \cdot u \otimes l\right) \\
& =M(0)=0
\end{aligned}
$$

which is a contradiction.
The uniqueness of \widehat{K} is obvious.
It remains to prove the last statement. Suppose $L \in \mathcal{J}\left(\mathcal{L}_{2}\right)$; let $y \in L$ and $g \in L_{-}^{\perp}$ be nonzero. Then by Lemma 4 there exist $x \in K$ and $f \in K_{-}^{\perp}$ for some $K \in \mathcal{J}\left(\mathcal{L}_{1}\right)$ such that $M(x \otimes f)=y \otimes g$. Therefore $y \otimes g \in \mathcal{F}(\widehat{K}) \cap \mathcal{F}(L)$ and so $L=\widehat{K}$. This proves the surjectivity. The injectivity is clear. We are done.

Lemma 6. Let $x \in K, f \in K_{-}^{\perp}, y \in L$ and $g \in L_{-}^{\perp}$, where $K \in \mathcal{J}\left(\mathcal{L}_{1}\right)$ and $L \in \mathcal{J}\left(\mathcal{L}_{2}\right)$. Then $g(M(x \otimes f) y)=1$ if and only if $f\left(M^{*}(y \otimes g) x\right)=1$.

Proof: Since

$$
\begin{aligned}
g(M(x \otimes f) y) M(x \otimes f) y & =M(x \otimes f) \cdot y \otimes g \cdot M(x \otimes f) y \\
& =M\left(x \otimes f \cdot M^{*}(y \otimes g) \cdot x \otimes f\right) y \\
& =f\left(M^{*}(y \otimes g) x\right) M(x \otimes f) y
\end{aligned}
$$

the "only if" part follows. The "if" part can be obtained similarly.
Lemma 7. For every $K \in \mathcal{J}\left(\mathcal{L}_{1}\right)$, there exist bijective linear mappings $T_{K}: K$ $\rightarrow \widehat{K}$ and $S_{K}: \widehat{K} \rightarrow K$ such that,

$$
\begin{equation*}
M(A) y=T_{K} A S_{K} y \quad \text { and } \quad M^{*}(B) x=S_{K} B T_{K} x \tag{4}
\end{equation*}
$$

for all $A \in \mathcal{A}_{1}, B \in \mathcal{A}_{2}, x \in K$ and $y \in \widehat{K}$.
Proof: For $K \in \mathcal{J}\left(\mathcal{L}_{1}\right)$, fix two nonzero elements $x_{K} \in K$ and $f_{K} \in K_{-}^{\perp}$. By Lemma $5, M\left(x_{K} \otimes f_{K}\right) \in \mathcal{F}(\widehat{K})$ being nonzero. In fact, it is easy to see that $M\left(x_{K} \otimes f_{K}\right)$ $\neq 0$ on \widehat{K}. So there exist $y_{K} \in \widehat{K}$ and $g_{K} \in \widehat{K}_{-}^{\perp}$ such that $g_{K}\left(M\left(x_{K} \otimes f_{K}\right) y_{K}\right)=1$. Define linear mappings T_{K} and S_{K} by

$$
\begin{aligned}
& T_{K} x=M\left(x \otimes f_{K}\right) y_{K}, \quad x \in K \\
& S_{K} y=M^{*}\left(y \otimes g_{K}\right) x_{K}, \quad y \in \widehat{K}
\end{aligned}
$$

Clearly, $T_{K}(K) \subseteq \widehat{K}$ and $S_{K}(\widehat{K}) \subseteq K$. Let $y \in \widehat{K}$ and $A \in \mathcal{A}_{1}$. Then

$$
\begin{aligned}
M(A) y & =g_{K}\left(M\left(x_{K} \otimes f_{K}\right) y_{K}\right) M(A) y \\
& =M(A) \cdot y \otimes g_{K} \cdot M\left(x_{K} \otimes f_{K}\right) y_{K} \\
& =M\left(A M^{*}\left(y \otimes g_{K}\right) x_{K} \otimes f_{K}\right) y_{K} \\
& =M\left(A S_{K} y \otimes f_{K}\right) y_{K} \\
& =T_{K} A S_{K} y
\end{aligned}
$$

This proves that the first equality is true in (4). To prove the second equality, let $x \in K$ and $B \in \mathcal{A}_{2}$. By Lemma $6, f_{K}\left(M^{*}\left(y_{K} \otimes g_{K}\right) x_{K}\right)=1$. Thus

$$
\begin{aligned}
M^{*}(B) x & =f_{K}\left(M^{*}\left(y_{K} \otimes g_{K}\right) x_{K}\right) M^{*}(B) x \\
& =M^{*}(B) \cdot x \otimes f_{K} \cdot M^{*}\left(y_{K} \otimes g_{K}\right) x_{K} \\
& =M^{*}\left(B M\left(x \otimes f_{K}\right) y_{K} \otimes g_{K}\right) x_{K} \\
& =M^{*}\left(B T_{K} x \otimes g_{K}\right) x_{K} \\
& =S_{K} B T_{K} x .
\end{aligned}
$$

Now we want to prove that T_{K} is bijective. Let us first assume that $T_{K} x=0$ for some $x \in K$. Fix a nonzero $x_{0} \in K$ and let $f \in K_{-}^{\perp}$ be arbitrary. Then there is $B \in \mathcal{A}_{2}$ such that $M^{*}(B)=x_{0} \otimes f$. So $f(x) x_{0}=M^{*}(B) x=S_{K} B T_{K} x=0$, and moreover
$f(x)=0$. This implies that $x \in K \cap K_{-}=(0)$. Hence T_{K} is injective. In order to prove that T_{K} is surjective, let $y \in \widehat{K}$ be nonzero. Pick $g \in \widehat{K}_{-}^{\perp}$ with $g(y)=1$. By Lemma 5 we can write $M(x \otimes f)=y \otimes g$ for some $x \in K$ and $f \in K_{-}^{\perp}$. We thus have $y=M(x \otimes f) y=T_{K} \cdot x \otimes f \cdot S_{K} y=f\left(S_{K} y\right) T_{K} x$. This yields the surjectivity of T_{K}.

Similarly we can prove that S_{K} is bijective. The proof is complete.
In the remainder of this paper, for every $K \in \mathcal{J}\left(\mathcal{L}_{1}\right), T_{K}$ and S_{K} will denote the linear mappings as constructed in Lemma 7. Obviously, they depend on the choices of x_{K}, f_{K}, y_{K} and g_{K}. So it will be assumed that those choices have been made for each $K \in \mathcal{J}\left(\mathcal{L}_{1}\right)$.

For a subspace lattice \mathcal{L}, it will be convenient to denote by $\langle\mathcal{J}(\mathcal{L})\rangle$ the (not necessarily closed) linear span of $\cup\{K: K \in \mathcal{J}(\mathcal{L})\}$. Suppose that \mathcal{L} is a \mathcal{J}-subspace lattice and that K_{1}, \cdots, K_{n} are distinct elements of $\mathcal{J}(\mathcal{L})$. If $x_{i} \in K_{i}$ such that $\sum_{i=1}^{n} x_{i}=0$, then each $x_{i} \in K_{i} \cap\left(\vee_{j \neq i} K_{j}\right) \subseteq K_{i} \cap K_{i-}=(0)$. Thus every $x \in\langle\mathcal{J}(\mathcal{L})\rangle$ has a representation as follows: $x=\sum_{i=1}^{n} x_{i}$ with $x_{i} \in K_{i}, 1 \leqslant i \leqslant n$, where K_{1}, \cdots, K_{n} are distinct elements of $\mathcal{J}(\mathcal{L})$. If x is nonzero and each x_{i} is required to be nonzero, this representation is unique up to permutations of x_{1}, \cdots, x_{n}. In addition, Lemma 5 tells us that the mapping $K \rightarrow \widehat{K}$ from $\mathcal{J}\left(\mathcal{L}_{1}\right)$ onto $\mathcal{J}\left(\mathcal{L}_{2}\right)$ is bijective. Therefore, the following linear mappings T_{0} and S_{0} are well-defined.

Lemma 8. Define $T_{0}:\left\langle\mathcal{J}\left(\mathcal{L}_{1}\right)\right\rangle \rightarrow\left\langle\mathcal{J}\left(\mathcal{L}_{2}\right)\right\rangle$ by $T_{0} x=\sum_{i=1}^{m} T_{K_{i}} x_{i}$, where $x=\sum_{i=1}^{m} x_{i}$ with $x_{i} \in K_{i}, 1 \leqslant i \leqslant n$, and K_{1}, \cdots, K_{m} being distinct elements of $\mathcal{J}\left(\mathcal{L}_{1}\right)$; and define $S_{0}:\left\langle\mathcal{J}\left(\mathcal{L}_{2}\right)\right\rangle \rightarrow\left\langle\mathcal{J}\left(\mathcal{L}_{1}\right)\right\rangle$ by $S_{0} y=\sum_{j=1}^{n} S_{K_{j}} y_{j}$, where $y=\sum_{j=1}^{n} y_{j}$ with $y_{j} \in \widehat{K_{j}}, 1 \leqslant j \leqslant n$, and K_{1}, \cdots, K_{n} being distinct elements of $\mathcal{J}\left(\mathcal{L}_{1}\right)$. Then T_{0} and S_{0} are bijective and satisfy

$$
M(A) y=T_{0} A S_{0} y \quad \text { and } \quad M^{*}(B) x=S_{0} B T_{0} x
$$

for all $A \in \mathcal{A}_{1}, B \in \mathcal{A}_{2}, x \in\left\langle\mathcal{J}\left(\mathcal{L}_{1}\right)\right\rangle$ and $y \in\left\langle\mathcal{J}\left(\mathcal{L}_{2}\right)\right\rangle$.
Proof: By Lemma 7, it is easily proved that T_{0} and S_{0} are bijective.
Let $A \in \mathcal{A}_{1}$ and let $y \in\left\langle\mathcal{J}\left(\mathcal{L}_{2}\right)\right\rangle$ being of the form described in this lemma. Applying (4) we compute

$$
\begin{aligned}
M(A) y & =\sum_{j=1}^{n} M(A) y_{j}=\sum_{j=1}^{n} T_{K_{j}} A S_{K_{j}} y_{j}=T_{0}\left(\sum_{j=1}^{n} A S_{K_{j}} y_{j}\right) \\
& =T_{0} A\left(\sum_{j=1}^{n} S_{K_{j}} y_{j}\right)=T_{0} A S_{0} y .
\end{aligned}
$$

The other equality can be proved similarly, completing the proof.
Now we are in a position to prove our main result.

Proof of Theorem 2: Suppose $G\left(T_{0}\right)=\left\{\left(x, T_{0} x\right): x \in\left\langle\mathcal{J}\left(\mathcal{L}_{1}\right)\right\rangle\right\}$ and $G\left(S_{0}\right)$ $=\left\{\left(y, S_{0} y\right): y \in\left\langle\mathcal{J}\left(\mathcal{L}_{2}\right)\right\rangle\right\}$, which are the graphs of T_{0} and S_{0} respectively. To define T and S, we let

$$
\begin{aligned}
& \mathcal{D}_{1}=\left\{x \in X_{1}:(x, y) \in \overline{G\left(T_{0}\right)} \text { for some } y \in X_{2}\right\} \\
& \mathcal{D}_{2}=\left\{y \in X_{2}:(y, x) \in \overline{G\left(S_{0}\right)} \text { for some } x \in X_{1}\right\}
\end{aligned}
$$

where $\overline{G\left(T_{0}\right)}$ and $\overline{G\left(S_{0}\right)}$ denote the norm closures. Obviously, they are linear manifolds and $\left\langle\mathcal{J}\left(\mathcal{L}_{1}\right)\right\rangle \subseteq \mathcal{D}_{1},\left\langle\mathcal{J}\left(\mathcal{L}_{2}\right)\right\rangle \subseteq \mathcal{D}_{2}$. Since $\left\langle\mathcal{J}\left(\mathcal{L}_{1}\right)\right\rangle$ and $\left\langle\mathcal{J}\left(\mathcal{L}_{2}\right)\right\rangle$ are dense in X_{1} and X_{2} respectively, the same must be true for \mathcal{D}_{1} and \mathcal{D}_{2}.

For every $x \in \mathcal{D}_{1}$, we shall prove that there exists a unique $y \in X_{2}$ such that $(x, y) \in \overline{G\left(T_{0}\right)}$. For this purpose, assume that $\left(x, y_{1}\right),\left(x, y_{2}\right) \in \overline{G\left(T_{0}\right)}$ with $y_{1}, y_{2} \in X_{2}$. Then $\left(0, y_{1}-y_{2}\right) \in \overline{G\left(T_{0}\right)}$. So there is a sequence $\left\{x_{n}\right\}_{1}^{\infty}$ of elements in $\left\langle\mathcal{J}\left(\mathcal{L}_{1}\right)\right\rangle$, such that $x_{n} \rightarrow 0$ and $T_{0} x_{n} \rightarrow y_{1}-y_{2}$. Let $L \in \mathcal{J}\left(\mathcal{L}_{2}\right)$ be arbitrary, and pick a nonzero $y \in L$. Then for any $g \in L_{-}^{\perp}$, we have $M^{*}(y \otimes g) x_{n} \rightarrow 0$. On the other hand, by Lemma 8, $M^{*}(y \otimes g) x_{n}=S_{0} \cdot y \otimes g \cdot T_{0} x_{n}=g\left(T_{0} x_{n}\right) S_{0} y \rightarrow g\left(y_{1}-y_{2}\right) S_{0} y$. Noting that $S_{0} y \neq 0$, it follows that $g\left(y_{1}-y_{2}\right)=0$. Hence $y_{1}-y_{2} \in L_{-}$; moreover, $y_{1}-y_{2} \in \bigcap\left\{L_{-}: L\right.$ $\left.\in \mathcal{J}\left(\mathcal{L}_{2}\right)\right\}=(0)$. Thus $y_{1}=y_{2}$, as desired.

Similarly, we can prove that for every $y \in \mathcal{D}_{2}$, there exists a unique $x \in X_{1}$ such that $(y, x) \in \overline{G\left(S_{0}\right)}$.

Define two mappings $T: \mathcal{D}(T) \subseteq X_{1} \rightarrow X_{2}$ and $S: \mathcal{D}(S) \subseteq X_{2} \rightarrow X_{1}$ in an obvious way, such that $G(T)=\overline{G\left(T_{0}\right)}$ and $G(S)=\overline{G\left(S_{0}\right)}$, where $\mathcal{D}(T)=\mathcal{D}_{1}$ and $\mathcal{D}(S)=\mathcal{D}_{2}$. It is easily seen that T and S are densely defined, closed and linear. Also, they are injective. For example, suppose that $S y=0$ for some $y \in \mathcal{D}(S)$; then $(y, 0) \in \overline{G\left(S_{0}\right)}$. So there exists a sequence $\left\{y_{n}\right\}_{1}^{\infty}$ of elements in $\left\langle\mathcal{J}\left(\mathcal{L}_{2}\right)\right\rangle$, such that $y_{n} \rightarrow y$ and $S_{0} y_{n} \rightarrow 0$. For any $K \in \mathcal{J}\left(\mathcal{L}_{1}\right)$, pick a nonzero $z \in \widehat{K}$. For every $h \in \widehat{K}_{-}^{\perp}$, since $M(\mathcal{F}(K))=\mathcal{F}(\widehat{K})$, there are $x \in K$ and $f \in K_{-}^{\perp}$ such that $M(x \otimes f)=z \otimes h$. We then have $M(x \otimes f) y_{n}$ $\rightarrow M(x \otimes f) y$. But, by Lemma $8, M(x \otimes f) y_{n}=T_{0} \cdot x \otimes f \cdot S_{0} y_{n}=f\left(S_{0} y_{n}\right) T_{0} x \rightarrow 0$. Thus $h(y) z=M(x \otimes f) y=0$, which implies $y \in \widehat{K}_{-}$. Since $\mathcal{J}\left(\mathcal{L}_{2}\right)=\left\{\widehat{K}: K \in \mathcal{J}\left(\mathcal{L}_{1}\right)\right\}$ by Lemma 5 , we get $y=0$. Similar arguments apply to T.

Since T extends T_{0} and the range of T_{0} is $\mathcal{J}\left(\mathcal{L}_{2}\right)$ by Lemma 8, it follows that $\mathcal{R}(T)$ is dense in X_{2}. Similarly, S_{0} has dense range.

Now we shall prove that $A \mathcal{R}(S) \subseteq \mathcal{D}(T)$ and $M(A) y=T A S y$, for every $A \in \mathcal{A}_{1}$, $y \in \mathcal{D}(S)$. Because of $(y, S y) \in \overline{G\left(S_{0}\right)}$, we then choose a sequence $\left\{y_{n}^{\prime}\right\}_{1}^{\infty}$ of elements in $\left\langle\mathcal{J}\left(\mathcal{L}_{2}\right)\right\rangle$ satisfying $y_{n}^{\prime} \rightarrow y$ and $S_{0} y_{n}^{\prime} \rightarrow S y$. So $A S_{0} y_{n}^{\prime} \rightarrow A S y$ and, by Lemma 8, $T_{0} A S_{0} y_{n}^{\prime}=M(A) y_{n}^{\prime} \rightarrow M(A) y$. Noting that $\left(A S_{0} y_{n}^{\prime}, T_{0} A S_{0} y_{n}^{\prime}\right) \in G\left(T_{0}\right)$ for each y_{n}^{\prime}, we get that $(A S y, M(A) y) \in G(T)$. Therefore $A S y \in \mathcal{D}(T)$ and $M(A) y=T A S y$. A similar argument shows that $B \mathcal{R}(T) \subseteq \mathcal{D}(S)$ and $M^{*}(B) x=S B T x$, for every $B \in \mathcal{A}_{2}$ and $x \in \mathcal{D}(T)$. This completes the proof.

Taking into account Theorem 1, a natural question is proposed as follows: In The-
orem 2, if the condition that M and M^{*} are surjective is removed, what is the conclusion? To this question, we have observed that there are linear mappings $T:\left\langle\mathcal{J}\left(\mathcal{L}_{1}\right)\right\rangle$ $\rightarrow\left\langle\mathcal{J}\left(\mathcal{L}_{2}\right)\right\rangle$ and $S:\left\langle\mathcal{J}\left(\mathcal{L}_{2}\right)\right\rangle \rightarrow\left\langle\mathcal{J}\left(\mathcal{L}_{1}\right)\right\rangle$ such that, $M(A) y=T A S y$ and $M^{*}(B) x$ $=S B T x$ for $A \in \mathcal{A}_{1}, B \in \mathcal{A}_{2}, x \in\left\langle\mathcal{J}\left(\mathcal{L}_{1}\right)\right\rangle$ and $y \in\left\langle\mathcal{J}\left(\mathcal{L}_{2}\right)\right\rangle$. Obviously T and S are densely defined. But, we cannot prove that they are also closed.

We shall conclude by considering the continuity of M and M^{*} in Theorem 2.
Proposition 1. Under the assumptions of Theorem 2, if \mathcal{A}_{1} and \mathcal{A}_{2} are closed subalgebras, then M and M^{*} are (norm) continuous.

Proof: Since \mathcal{A}_{1} and \mathcal{A}_{2} are closed, by the closed graph theorem it suffices to show that M and M^{*} are closed operators.

For every $K \in \mathcal{J}\left(\mathcal{L}_{1}\right)$, we first prove that T_{K} and S_{K} are closed operators and hence continuous, where T_{K} and S_{K} are defined as in Lemma 7 . Suppose $K \in \mathcal{J}\left(\mathcal{L}_{1}\right)$. Let $\left\{x_{n}\right\}_{1}^{\infty}, x$ be in K and y in \widehat{K} such that $x_{n} \rightarrow x$ and $T_{K} x_{n} \rightarrow y$. For any $g \in \widehat{K}_{-}^{\perp}$, $g\left(T_{K}\left(x_{n}-x\right)\right) \rightarrow g\left(y-T_{K} x\right)$. On the other hand, choose $z \in \widehat{K}$ with $S_{K} z \neq 0$ since $S_{K}: \widehat{K} \rightarrow K$ is bijective. It follows from (4) that

$$
g\left(T_{K}\left(x_{n}-x\right)\right) S_{K} z=S_{K} \cdot z \otimes g \cdot T_{K}\left(x_{n}-x\right)=M^{*}(z \otimes g)\left(x_{n}-x\right) \rightarrow 0
$$

Hence $g\left(y-T_{K} x\right)=0$, and so $y-T_{K} x \in \widehat{K} \cap \widehat{K}_{-}=(0)$. This shows that T_{K} is closed. By similar arguments, we can conclude that S_{K} is also closed.

Now suppose that $\left\{A_{n}\right\}_{1}^{\infty}, A$ are in \mathcal{A}_{1} and B in \mathcal{A}_{2} satisfying $A_{n} \rightarrow A$ and $M\left(A_{n}\right)$ $\rightarrow B$. Let $K \in \mathcal{J}\left(\mathcal{L}_{1}\right)$ and $y \in \widehat{K}$. Then applying Lemma $7, M\left(A_{n}\right) y=T_{K} A_{n} S_{K} y$ $\rightarrow T_{K} A S_{K} y=M(A) y$. But $M\left(A_{n}\right) y \rightarrow B y$ holds also. So $M(A) y=B y$ for all $y \in \widehat{K}$. Noting that Lemma 5 , we have $M(A)=B$. Hence M is closed. Similarly, M^{*} is closed. This completes the proof.

References

[1] M. Brešar and P. Šemrl, 'Elementary operators', Proc. Roy. Soc. Edinburgh, Sect. A 129 (1999), 1115-1135.
[2] M. Brešar, L. Molnár and P. Šemrl, 'Elementary operators II', Acta Sci. Math. (Szeged) 66 (2000), 769-791.
[3] B.E. Johnson, 'An introduction to the theory of centralizers', Proc. London Math. Soc. 14 (1964), 299-320.
[4] A. Katavolos, M.S. Lambrou and W.E. Longstaff, 'Pentagon subspace lattices on Banach spaces', J. Operator Theory 46 (2001), 355-380.
[5] M.S. Lambrou, 'On the rank of operators in reflexive algebras', Linear Algebra Appl. 142 (1990), 211-235.
[6] M.S. Lambrou and W.E. Longstaff, 'Non-reflexive pentagon subspace lattices', Studia Math. 125 (1997), 187-199.
[7] P. Li and J. Ma, 'Derivations, local derivations and atomic Boolean subspace lattices', Bull. Austral. Math. Soc. 66 (2002), 477-486.
[8] W.E. Longstaff, 'Strongly reflexive lattices', J. London Math. Soc. 11 (1975), 491-498.
[9] W.E. Longstaff, J.B. Nation and O. Panaia, 'Abstract reflexive sublattices and completely distributive collapsibility', Bull. Austral. Math. Soc. 58 (1998), 245-260.
[10] W.E. Longstaff and O. Panaia, ' \mathcal{J}-subspace lattices and subspace M-bases', Studia Math. 139 (2000), 197-211.
[11] F. Lu and P. Li, 'Algebraic isomorphisms and Jordan derivations of \mathcal{J}-subspace lattice algebras', Studia Math. 158 (2003), 287-301.
[12] F. Lu and P. Li, 'Jordan isomorphisms of \mathcal{J}-subspace lattice algebras', Linear Algebra Appl. 371 (2003), 255-264.
[13] L. Molnár and P. S̆emrl, 'Elementary operators on standard operator algebras', Linear and Multilinear Algebra 50 (2002), 315-319.
[14] O. Panaia, Quasi-spatiality of isomorphisms for certain classes of operator algebras, Ph.D. Dissertation (University of Western Australia, Australia, 1995).

Department of Mathematics
College of Science
Nanjing University of
Aeronautics and Astronautics
Nanjing 210016
People's Republic of China
e-mail: pengtonglee@vip.sina.com

Department of Mathematics Suzhou University Suzhou 215006
People's Republic of China e-mail: fylu@pub.sz.jsinfo.net

[^0]: Received 31st March, 2003
 The authors would like to thank the referee for some helpful comments.

