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Abstract

We study the possible weights of an irreducible two-dimensional mod p representation
of Gal(F/F ) which is modular in the sense that it comes from an automorphic form on
a definite quaternion algebra with centre F which is ramified at all places dividing p,
where F is a totally real field. In most cases we determine the precise list of possible
weights; in the remaining cases we determine the possible weights up to a short and
explicit list of exceptions.

1. Introduction

Let F be a totally real field and let p be a prime number. In this paper we formulate, and largely
prove, an analogue of the weight part of Serre’s conjecture [Ser87] for automorphic forms on
quaternion algebras over F which are ramified at all places dividing p.

In recent years, a great deal of attention has been given to the problem of generalising
the weight part of Serre’s conjecture beyond the case of GL(2,Q), beginning with the seminal
paper [BDJ10] which considered the situation for Hilbert modular forms. Let GF denote the
absolute Galois group of F ; then to any irreducible modular representation

ρ :GF →GL2(Fp)

there is associated a set of weights W (ρ), the set of weights in which ρ is modular (see § 2 for the
definitions of weights and of what it means for ρ to be modular of a certain weight). Under the
assumption that p is unramified in F , the paper [BDJ10] associated to ρ a set of weights W ?(ρ),
and conjectured that W ?(ρ) =W (ρ). Schein [Sch08] subsequently proposed a generalisation that,
in the tame case (where the restrictions of ρ to inertia subgroups at places dividing p are
semisimple), removes the restriction that p be unramified in F . When p is either unramified
or totally ramified in F many cases of these conjectures have been proved, in [Gee06, GS]
respectively, but the general case has so far been out of reach.

As far as we know, there is no corresponding conjecture in the literature for automorphic
forms on quaternion algebras that are ramified at p (although the results in the case F = Q
are easily deduced from the discussion in [Kha01, § 4]). We specify a conjectural set of weights
W ?(ρ), depending only on the restrictions of ρ to decomposition subgroups at places dividing p.
In the case that these restrictions are semisimple, the conjecture is completely explicit (and
depends only on the restrictions to inertia subgroups). In the general case the set W ?(ρ) is
defined in terms of the existence of certain potentially Barsotti–Tate lifts of specific type, and
so depends on some rather delicate questions involving extensions of crystalline characters.

Received 7 September 2009, accepted in final form 31 August 2010, published online 9 February 2011.
2000 Mathematics Subject Classification 11F33 (primary), 11F80 (secondary).
Keywords: Galois representations, Serre weights, quaternion algebras, Breuil modules.

The first author was partially supported by NSF grant DMS-0841491, and the second author was partially
supported by NSF grants DMS-0600871 and DMS-0901049.
This journal is c© Foundation Compositio Mathematica 2011.

https://doi.org/10.1112/S0010437X1000518X Published online by Cambridge University Press

http://www.compositio.nl
http://www.ams.org/msc/
http://www.compositio.nl
https://doi.org/10.1112/S0010437X1000518X


T. Gee and D. Savitt

In fact, we always make a definition in terms of the existence of certain potentially Barsotti–Tate
lifts, and in the semisimple case we make this description explicit by means of calculations with
Breuil modules and strongly divisible modules.

We assume that p is odd, and that ρ|GF (ζp)
is irreducible. We make a mild additional assump-

tion if p= 5. All of these restrictions are imposed by our use of the modularity lifting theorems
of [Kis09b] (or rather, by their use in [Gee]). Under these assumptions, we are able to prove that
if for each place v|p, ρ|GFv is not of the form

(ψ1 ∗
0 ψ2

)
with ψ1/ψ2 equal to the mod p cyclotomic

character, then W ?(ρ) =W (ρ). In the exceptional cases we establish that W (ρ)⊂W ?(ρ), with
equality up to a short list of possible exceptions (for example, in the case that there is only one
place of F above p there is only one exception). Our techniques are analogous to those of [Gee06,
GS]. As in those papers, the strategy is to construct modular lifts of ρ which are potentially
semistable of specific type, using the techniques of Khare–Wintenberger, as explained in [Gee].

The significant advantage in the present situation over those considered in [Gee06, GS] is
that the property of being modular of a specific weight corresponds exactly to the property of
having a lift of some specific type (in the case considered in [Gee06] this correspondence was
considerably weaker). Accordingly, we have no regularity assumption on the weights, we do not
have to use Buzzard’s ‘weight cycling’ technique, and especially we do not need to make any
restriction on the splitting behaviour of p in F .

In the case that the restrictions of ρ to decomposition groups at places dividing p are all
semisimple, we establish an explicit description of W ?(ρ) by a computation in two stages. In
one step we make use of Breuil modules with descent data, in the same style as analogous
computations in the literature; our calculations are more complicated than those made in the
past, however, as we have no restrictions on the ramification or inertial degrees of our local fields.

For the second step, we have to exhibit potentially Barsotti–Tate lifts of the appropriate
types. Writing down such lifts is rather non-trivial. We accomplish this by means of an explicit
construction of corresponding strongly divisible modules; again, these calculations are more
complicated than those in the literature, because we make no restrictions on the ramification or
inertial degrees of our local fields.

We also note that while we work throughout with definite quaternion algebras, it should not
be difficult to extend our results to indefinite algebras; one needs only to establish the analogue
of Lemma 2.1 (see for example [DT94, proof of Lemma 6] for the case F = Q).

We now detail the outline of the paper. In § 2 we give our initial definitions and notation. In
particular, we introduce spaces of algebraic modular forms on definite quaternion algebras, and
we explain what it means for ρ to be modular of a specific weight.

In § 3 we explain which tame lifts we will need to consider, and the relationship between
the existence of modular lifts of specified types and the property of being modular of a
certain weight. This amounts to recalling certain concrete instances of the local Langlands and
Jacquet–Langlands correspondences for GL2 and local-global compatibility. All of this material
is completely standard.

Section 4 begins the work of establishing an explicit description of W ?(ρ), by finding necessary
conditions for the existence of potentially Barsotti–Tate lifts of particular type, via calculations
with Breuil modules. The sufficiency of these conditions is established in § 6, by writing down
explicit strongly divisible modules. Both sections make use of a lemma relating the type of
the lifts to the descent data on the Breuil modules and strongly divisible modules, which is
established in § 5.

These local calculations are summarised in § 7. Finally, in § 8 we prove our main theorem.
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2. Notation and assumptions

Let p be an odd prime. Fix an algebraic closure Q of Q, an algebraic closure Qp of Qp, and an
embedding Q ↪→Qp. We will consider all finite extensions of Q (respectively Qp) to be contained
in Q (respectively Qp). If K is such an extension, we let GK denote its absolute Galois group
Gal(K/K). Let F be a totally real field. Let ρ :GF →GL2(Fp) be a continuous representation.
Assume from now on that ρ|GF (ζp)

is absolutely irreducible. If p= 5 and the projective image of ρ
is isomorphic to PGL2(F5), assume further that [F (ζ5) : F ] = 4. We normalise the isomorphisms
of local class field theory so that a uniformiser corresponds to a geometric Frobenius element.

We wish to discuss the Serre weights of ρ for quaternion algebras ramified at all places
dividing p. We choose to work with totally definite quaternion algebras. We recall the basic
definitions and results that we need.

Let D be a quaternion algebra with centre F which is ramified at all infinite places of F and
at a set Σ of finite places which contains all primes dividing p. Fix a maximal order OD of D
and for each finite place v /∈ Σ fix an isomorphism OD,v := (OD)v

∼−→M2(OFv). For any finite
place v let πv denote a uniformiser of Fv.

Let U =
∏
v Uv ⊂ (D ⊗F Af

F )× be a compact open subgroup, with each Uv ⊂O×D,v.
Furthermore, assume that Uv =O×D,v for all v ∈ Σ.

Take A a topological Zp-algebra. For each place v|p fix a continuous representation σv : Uv→
Aut(Wv) with Wv a finite A-module. Let σ denote the representation

⊗
v|p σv of Up :=

∏
v|p Uv,

acting on Wσ :=
⊗

v|pWv. We regard σ as a representation of U in the obvious way (that is,

we let Uv act trivially if v - p). Fix also a character ψ : F×\(Af
F )×→A× such that for any finite

place v of F , σ|Uv∩O×Fv is multiplication by ψ−1. Then we can think of Wσ as a U(Af
F )×-module

by letting (Af
F )× act via ψ−1.

Let Sσ,ψ(U, A) denote the set of continuous functions

f :D×\(D ⊗F Af
F )×→Wσ

such that for all g ∈ (D ⊗F Af
F )× we have

f(gu) = σ(u)−1f(g) for all u ∈ U,
f(gz) = ψ(z)f(g) for all z ∈ (Af

F )×.

We can write (D ⊗F Af
F )× =

∐
i∈I D

×tiU(Af
F )× for some finite index set I and some ti ∈

(D ⊗F Af
F )×. Then we have

Sσ,ψ(U, A) ∼−→
⊕
i∈I

W
(U(AfF )×∩t−1

i D×ti)/F×

σ ,

the isomorphism being given by the direct sum of the maps f 7→ f(ti). From now on we make the
following assumption.

For all t ∈ (D ⊗F Af
F )× the group (U(Af

F )× ∩ t−1D×t)/F× = 1.

One can always replace U by a subgroup (satisfying the above assumptions, and without changing
Up) for which this holds (cf. [Kis09a, § 3.1.1]). Under this assumption Sσ,ψ(U, A) is a finite
A-module, and the functor Wσ 7→ Sσ,ψ(U, A) is exact in Wσ.

We now define some Hecke algebras. Let S be a set of finite places containing Σ and the primes
v of F such that Uv 6=O×D,v. Let Tuniv

S,A =A[Tv, Sv]v/∈S be the commutative polynomial ring in
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the formal variables Tv, Sv. Consider the left action of (D ⊗F Af
F )× on Wσ-valued functions on

(D ⊗F Af
F )× given by (gf)(z) = f(zg). Then we make Sσ,ψ(U, A) a Tuniv

S,A -module by letting Sv
act via the double coset U

(
πv 0
0 πv

)
U and Tv via U

(
πv 0
0 1

)
U . These are independent of the choices

of πv. We will write Tσ,ψ(U, A) or Tσ,ψ(U) for the image of Tuniv
S,A in End Sσ,ψ(U, A).

Let m be a maximal ideal of Tuniv
S,A . We say that m is in the support of (σ, ψ) if Sσ,ψ(U, A)m 6= 0.

Now let O be the ring of integers in Qp, with residue field F = Fp, and suppose that A=O in the
above discussion, and that σ has open kernel and is free as an O-module. Consider a maximal
ideal m⊂ Tuniv

S,O with residue field F which is in the support of (σ, ψ). Then there is a semisimple
Galois representation ρm :GF →GL2(F) associated to m which is characterised up to conjugacy
by the property that if v /∈ S then ρm|GFv is unramified, and if Frobv is an arithmetic Frobenius
at v then the characteristic polynomial of ρm(Frobv) is the image of X2 − TvX + SvNv in F[X].

We have the following basic lemma.

Lemma 2.1. Let ψ : F×\(Af
F )×→O× be a continuous character, and write ψ for the composite

of ψ with the projection O×→ F×. Fix a representation σ′ of Up on a finite free O-module Wσ′ ,
and an irreducible representation σ of Up on a finite free F-module Wσ. Suppose that we have

σ′|Uv∩O×Fv = ψ−1|Uv∩O×Fv and σ|Uv∩O×Fv = ψ
−1|Uv∩O×Fv for all finite places v.

Let m be a maximal ideal of Tuniv
S,O .

Suppose that Wσ occurs as a Up-module subquotient of Wσ′ ⊗ F. If m is in the support of
(σ, ψ), then m is in the support of (σ′, ψ).

Conversely, if m is in the support of (σ′, ψ), then m is in the support of (σ, ψ) for some
irreducible Up-module subquotient Wσ of Wσ′ ⊗ F.

Proof. The first part is proved just as in [Kis09b, Lemma 3.1.4], and the second part follows, for
example from [AS86, Proposition 1.2.3], or from a basic commutative algebra argument. 2

We are now in a position to define what it means for a representation to be modular of some
weight. Let v|p be a place of F , so that Uv =O×D,v. Let σv be an irreducible F-representation of
Uv. Note that if Πv is a uniformiser of OD,v, then k2,v :=OD,v/Πv is a finite field, a quadratic
extension of the residue field kv of Fv. The kernel of the reduction map Uv→ k×2,v is a pro-p
group, so σv factors through this kernel, and is a representation of the finite abelian group k×2,v.
It is therefore one-dimensional. Let σ =

⊗
v|p σv, which we will regard as an O-module via the

natural map O→ F.

Definition 2.2. We say that ρ is modular of weight σ if for some D, S, U , ψ, and m⊂ Tuniv
S,O

as above, we have Sσ,ψ(U,O)m 6= 0 and ρm
∼= ρ.

(Here ρm is characterised as above, and exists by Lemma 2.1 and the remarks above.) Write
W (ρ) for the set of weights σ for which ρ is modular of weight σ. Assume from now on that ρ is
modular of some weight, and fix D, S, U , ψ, m as in the definition.

We also have the following useful lemma, which was first observed by Serre in the case F = Q
(see remark (11) in Serre’s letter to Tate in [Ser96]). For each place v|p we let qv denote the order
of the residue field kv of Fv. If σv is an irreducible F-representation of O×D,v, then by the remarks
above it is a character of k×2,v. Thus σqvv is another irreducible F-representation, and σ

q2v
v = σv.

Serre observed that the set W (ρ) is preserved by this operation. This is essentially a consequence
of the structure of OD,v. Let K2,v =W (k2,v)[1/p], a subfield of Dv. Note that there is a choice
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of uniformiser Πv of Dv with the property that conjugation by Πv preserves K2,v, and acts on it
via a non-trivial involution. In particular, the induced action on k2,v is via the qvth power map.

Lemma 2.3. Let v be a place of F dividing p, and let σ be a weight as above. Let σ′ =
σqvv ⊗w|p,w 6=v σw. Then ρ is modular of weight σ if and only if it is modular of weight σ′.

Proof. It suffices to exhibit a bijection

θ : Sσ,ψ(U, F)→ Sσ′,ψ(U, F)

which commutes with the action of Tuniv
S,O . Let Π ∈ (D ⊗F Af )× be trivial away from v, and equal

to Πv at v, where Πv is as in the previous paragraph. Then we define θ by

(θf)(x) := f(xΠ).

It is straightforward to check that this map has the required properties; the key point is that if
u ∈ U , then

(θf)(xu) = f(xuΠ)

= f(xΠ(Π−1uΠ))

= σ(Π−1uΠ)−1f(xΠ)

= σ′(u)−1f(xΠ)

= σ′(u)−1(θf)(x). 2

3. Weights are controlled by lifts of tame type

Continue to let v be a place of F that divides p. We distinguish two types of irreducible
F-representations σv of Uv. Recall that any such representation is one-dimensional, and factors
through k×2,v, with k2,v a quadratic extension of kv.

Definition 3.1. We say that σv is of type I if it does not factor through the norm k×2,v→ k×v .
Otherwise, we say that it is of type II.

We now recall some facts about the local Langlands and local Jacquet–Langlands
correspondences. Let K be a finite extension of Qp, let L be an unramified quadratic extension
of K, and let D be a non-split quaternion algebra over K. Consider L as a subfield of D.
Let k be the residue field of K, of cardinality q. If π is an irreducible admissible (C- or Qp-
valued) representation of D×, we let JL(π) be the corresponding representation of GL2(K). If
π is an irreducible admissible representation of GL2(K), we let LL(π) denote the corresponding
representation of the Weil group WK of K. Let ND :D×→K× be the reduced norm. As usual
we identify characters of L× or K× with characters of the corresponding Weil groups via local
class field theory. If χ is a character of L× which does not factor through the norm to K×, we
denote the corresponding supercuspidal representation of GL2(K) by Wχ.

– If χ is a character of K×, then JL(χ ◦ND) = (χ ◦ det)⊗ St, where St is the Steinberg
representation.

– Suppose that χ is a character of L× of conductor 1. Then LL(π)|IK ∼= χ|IK ⊕ χ|
q
IK

if and
only if π =Wχ′ for some unramified twist χ′ of χ. (See [BM02, §A.3.2].)

– If χ is a character of L× of conductor 1, then JL−1(Wχ) is two-dimensional. Furthermore,
JL−1(Wχ)|O×L

∼= χ|O×L ⊕ χ|
q

O×L
. (See [Pra90, § 7].)
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We now recall some definitions relating to potentially semistable lifts of particular type. We
use the conventions of [Sav05].

Definition 3.2. Let τv be an inertial type. We say that a lift ρ :GFv →GL2(Qp) of ρ|GFv is
parallel potentially Barsotti–Tate (respectively parallel potentially semistable) of type τv if ρ
is potentially Barsotti–Tate (respectively potentially semistable with all Hodge–Tate weights
equal to 0 or 1), has determinant a finite order character of order prime to p times the
cyclotomic character, and the corresponding Weil–Deligne representation, when restricted to
IFv , is isomorphic to τv.

Note that for a two-dimensional de Rham representation with all Hodge–Tate weights equal
to 0 or 1, the condition that all pairs of labeled Hodge–Tate weights are {0, 1} is equivalent to
the condition that the determinant is the product of the cyclotomic character, a finite order
character, and an unramified character; the condition of being parallel is slightly stronger than
this.

If σv is an irreducible F-representation of Uv, we will consider the inertial type of IFv given
by σ̃v ⊕ σ̃qvv , where a tilde denotes a Teichmüller lift (considered as a representation of IFv via
local class field theory).

Lemma 3.3. The representation ρ is modular of weight σ =
⊗

v|p σv if and only if ρ lifts to a

modular Galois representation ρ :GF →GL2(Qp) which for all places v|p is parallel potentially
Barsotti–Tate of type σ̃v ⊕ σ̃qvv at v if σv is of type I, and is parallel potentially semistable of
type σ̃v ⊕ σ̃qvv at v, but not potentially crystalline, if σv is of type II.

Proof. We first tackle the only if direction. If σv is of type I then we choose an arbitrary extension
of σ̃v to a character of F×v,2, where Fv,2 is the unramified quadratic extension of Fv, and if σv
is of type II then we choose an arbitrary extension of σ̃v to a character of F×v . We continue to
denote these extensions by σ̃v. We apply Lemma 2.1, with m and ψ chosen such that ρm

∼= ρ and
Sσ,ψ(U, F)m 6= 0 (such a maximal ideal exists by the assumption that ρ is modular of weight σ),
and

σ′ =
⊗
v|p

σ′v

where

σ′v = (JL−1(Wσ̃v))|O×D,v
if σv is of type I, and

σ′v = σ̃v

if σv is of type II. We take the ψ of Lemma 2.1 to be the Teichmüller lift of ψ. The correspondence
between the algebraic modular forms considered in § 2 and automorphic representations of D× is
explained in [Kis09b, § 3.1.14] (there is a running assumption in that paper that D is split at all
places dividing p, but it is not needed in this discussion, and if one sets the representation Wτalg

of loc. cit. to be the trivial representation the discussion goes through immediately in our case),
and we see that after choosing an isomorphism Qp

∼−→ C there is an automorphic representation
π of D× whose weight is the trivial representation, whose Hecke polynomials at unramified places
lift the characteristic polynomials of the corresponding Frobenius elements for ρ, and such that
for each place v|p, πv is either JL−1(Wχ) for χ an unramified twist of σ̃v if σv is of type I, or
an unramified twist of σ̃v if σv is of type II. (To see this in the case that σv has type I, note
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that if πv|O×D,v contains (JL−1(Wσ̃v))|O×D,v , then the conductor of πv is at most the conductor of

(JL−1(Wσ̃v))|O×D,v . By the results recalled in [Pra90, § 7], we see that πv must be of the form Wχ

for χ a character of F×2,v of conductor 1. Since (for example by the character formulae in [Pra90,
§ 7]) Wσ̃v

∼=Wσ̃qvv
, the result follows from the third bullet point above.)

Applying the Jacquet–Langlands correspondence [JL70, Theorem 16.1] we see that there is
an automorphic representation π′ of GL2(AF ) with the same infinitesimal character as the trivial
representation, whose Hecke polynomials at unramified places lift the characteristic polynomials
of the corresponding Frobenius elements for ρ, and such that for each place v|p, πv is either Wχ

for χ an unramified twist of σ̃v if σv is of type I, or an unramified twist of (σ̃v ◦ det)⊗ St if σv is of
type II. The compatibility of the local and global Langlands correspondences at places dividing p
(see [Kis08]), and the results on the form of the local Langlands correspondence recalled above,
show that the Galois representation corresponding to π′ gives a representation of the required
form (note that the Galois representation has determinant ψε, so is indeed parallel).

For the converse, we may reverse the above argument, and we see that Lemma 2.1 guarantees
that ρ is modular of a weight µ=

⊗
v|p µv, where for each v|p if σv is of type II then µv = σv,

and if σv is of type I then µv = σv or σqvv . The result then follows from Lemma 2.3. 2

This motivates the following definition of W ?(ρ).

Definition 3.4. For each place v|p, let W ?(ρ|GFv ) denote the set of σv of type I such that ρ|GFv
has a parallel potentially Barsotti–Tate lift of type σ̃v ⊕ σ̃qvv , together with the set of σv of type II
such that ρ|GFv has a parallel potentially semistable lift of type σ̃v ⊕ σ̃qvv which is not potentially
crystalline. Let W ?(ρ) be the set of weights σ =

⊗
v|p σv with σv ∈W ?(ρ|GFv ) for all v|p.

Note that by Lemma 3.3 we have W (ρ)⊂W ?(ρ). We will prove under a mild hypothesis that
W (ρ) =W ?(ρ) in § 8. In the intervening sections we will give an explicit description of W ?(ρ) in
the case that ρ|GFv is semisimple for each v|p. It is already possible to see that weights of type II
are rather rare.

Lemma 3.5. If ρ is modular of weight σ =
⊗

v|p σv, and σv is of type II, then

ρ|IFv ∼= σv

(
ε ∗
0 1

)
where σv is regarded as a character of IFv via local class field theory, and ε is the cyclotomic
character.

Proof. This follows from Lemma 3.3, and the well-known fact that two-dimensional semistable
non-crystalline p-adic representations with all pairs of labeled Hodge–Tate weights equal to {0, 1}
are unramified twists of an extension of the trivial character by the cyclotomic character. 2

4. Necessary conditions

4.1 Breuil modules with descent data
Let k be a finite extension of Fp, define K0 =W (k)[1/p], and let K be a finite totally ramified
extension of K0 of degree e′. Suppose that L is a subfield of K containing Qp such that
K/L is Galois and tamely ramified. Assume further that there is a uniformiser π of OK such
that πe(K/L) ∈ L, where e(K/L) is the ramification degree of K/L, and fix such a π. Since K/L
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is tamely ramified, the category of Breuil modules with coefficients and descent data is easy to
describe (see [Sav08]). Let kE be a finite extension of Fp. The objects of the category BrModdd,L

are quadruples (M, Fil1M, φ1, {ĝ}) consisting of the following.

– A finitely generated (k ⊗Fp kE)[u]/ue
′p-module M, free over k[u]/ue

′p.

– A (k ⊗Fp kE)[u]/ue
′p-submodule Fil1M of M containing ue

′M.

– A kE-linear and φ-semilinear map φ1 : Fil1M→M with image generating M as a
(k ⊗Fp kE)[u]/ue

′p-module. (Here φ : k[u]/ue
′p→ k[u]/ue

′p is the pth power map.)

– For the g ∈Gal(K/L), additive bijections ĝ :M→M that preserve Fil1M, commute with
the φ1- and kE-actions, and satisfy ĝ1 ◦ ĝ2 = ĝ1 ◦ g2 for all g1, g2 ∈Gal(K/L). Furthermore
1̂ is the identity, and if a ∈ k ⊗Fp kE , m ∈M then ĝ(auim) = g(a)((g(π)/π)i ⊗ 1)uiĝ(m).

The category BrModdd,L is equivalent to the category of finite flat group schemes over OK
together with a kE-action and descent data on the generic fibre from K to L (this equivalence
depends on π).

We choose in this paper to adopt the conventions of [BM02, Sav05], rather than those
of [BCDT01]; thus, rather than working with the usual contravariant equivalence of categories,
we work with a covariant version of it, so that our formulae for generic fibres will differ by
duality and a twist from those following the conventions of [BCDT01]. To be precise, we obtain
the associated GL-representation (which we will refer to as the generic fibre) of an object of
BrModdd,L via the functor TLst,2.

Let E be a finite extension of Qp with integers OE , maximal ideal mE , and residue field kE .
Recall from [Sav05, § 2] that the functor DK

st,2 is an equivalence of categories between the category
of E-representations of GL which are semistable when restricted to GK and have Hodge–Tate
weights in {0, 1}, and the category of weakly admissible filtered (φ, N)-modules D with descent
data and E-coefficients such that Fil0(K ⊗K0 D) =K ⊗K0 D and Fil2(K ⊗K0 D) = 0.

Suppose that ρ is a representation in the source of DK
st,2. Write S = SK,OE (notation and

terminology in this paragraph are as in [Sav05, § 4]). Then TLst,2 is an essentially surjective functor
from strongly divisible modules M (with OE-coefficients and descent data) in S[1/p]⊗K0⊗E
DK

st,2(ρ) to Galois-stable OE-lattices in ρ. This functor is compatible with reduction modulo mE ,
so that applying TLst,2 to the object (k ⊗Fp kE)[u]/(ue

′p)⊗S/mES (M/mEM) of BrModdd,L yields
a reduction modulo p of ρ (see [Sav05, Corollary 4.12, Proposition 4.13]).

To simplify notation, for the remainder of the paper we write simplyM/mEM for the above
reduction modulo mE of M in BrModdd,L (we will never mean the literal S/mES-module). Let
` be the residue field of L, and let urλ denote the unramified character ofGL sending an arithmetic
Frobenius element to λ. Define N`/Fp,kE : (`⊗Fp kE)×→ (Fp ⊗Fp kE)× ∼= k×E to be the norm map
x 7→

∏
β∈Gal(`/Fp) β(x), with each β acting trivially on kE .

The following lemma is a more precise version of [GS, Lemma 5.2].

Lemma 4.1. Let χ : Gal(K/L)→ k×E be a character, and for c ∈ (`⊗Fp kE)× letM(χ, c) denote
the Breuil module with kE-coefficients and descent data from K to L that is free of rank one
with generator v and

Fil1M(χ, c) =M(χ, c), φ1(v) = cv, ĝ(v) = (1⊗ χ(g))v

for g ∈Gal(K/L). Then TLst,2(M(χ, c)) = urλ · χ, where λ= N`/Fp,kE (c)−1.
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Proof. This statement is exactly the same as [GS, Lemma 5.2], except that here we determine
the unramified character multiplying χ. We return ourselves to the proof of that statement, and
in particular we re-adopt the notation from that proof, so that χ is the Teichmüller lift of χ,
the element c̃ ∈ (W (`)⊗Zp OE)× is a lift of c, and D :=D(χ, c̃ ) is a filtered φ-module of rank
one over K0 ⊗Qp E with descent data χ and generator v such that φ(v) = pc̃v; moreover the
filtration on DK =K ⊗K0 D vanishes in degree two. It is possible to choose c̃ to be an element
of finite multiplicative order, and we do so.

The representation V L
st,2(D) giving rise to D is equal to (Bst ⊗K0 D)φ=p

N=0 ∩ Fil1(BdR ⊗K DK)
(see the definition after [Sav05, Corollary 2.10]), and so is generated by some αv with α ∈
(Fil0Bcris)⊗Qp E; then pαv = φ(αv) = φ(α)c̃pv, so that φ(α)c̃= α. If f = [` : Fp] it follows that
φ(f)(α) = NL0/Qp,E(c̃ )−1α, where L0 =W (`)[1/p] and NL0/Qp,E is defined via the obvious analogy
with N`/Fp,kE . Set λ̃= NL0/Qp,E(c̃ )−1.

Since c̃ has finite order we have φ(m)(α) = α for some m> 0, and therefore α is an element of
(Fil0Bcris)φ

(m)=1 ⊗Qp E = Qpm ⊗Qp E. In particular, the action of crystalline Frobenius coincides
with the action of an arithmetic Frobenius on α. As a result, if g ∈GL is a lift of an nth power
of arithmetic Frobenius with n ∈ Z then g(αv) = φ(nf)(α)χ(g)v = (ur

λ̃
· χ)(g)αv. Since λ̃ lifts λ,

the result follows by continuity. 2

For the remainder of this paper we make the hypothesis that kE is sufficiently large as to
contain an embedding of k. Let σ0 be a fixed choice of embedding k ↪→ kE and recursively define
σpi+1 = σi. If M is any (k ⊗Fp kE)-module, we recall from [Sav08] that M decomposes as a direct
sum M =

⊕d−1
i=0 Mi, where d= [k : Fp] and Mi is the kE-submodule on which multiplication

by x⊗ 1 for x ∈ k is the same as multiplication by 1⊗ σi(x). In fact there is a collection of
idempotents ei ∈ k ⊗Fp kE so that Mi = eiM and φ(ei) = ei+1.

Suppose now that M is an object of BrModdd,L. Note that φ1 maps (Fil1M)i into Mi+1.
For g ∈GL let η(g) be the image of g(π)/π in (the e(K/L)th roots of unity of) k. The rank one
objects of BrModdd,L are classified as follows.

Proposition 4.2 [Sav08, Theorem 3.5]. With our fixed choice of uniformiser π, every rank one
object of BrModdd,L with descent data relative to L has the form:

– M= ((k ⊗Fp kE)[u]/ue
′p) · v;

– (Fil1M)i = uriMi;

– φ1(
∑d−1

i=0 u
rieiv) = cv for some c ∈ (`⊗Fp kE)×; and

– ĝ(v) =
∑d−1

i=0 (η(g)ki ⊗ 1)eiv for all g ∈Gal(K/L).

Here 0 6 ri 6 e′ and 0 6 ki < e(K/L) are sequences of integers satisfying ki ≡ p(ki−1 + ri−1)
(mod e(K/L)); furthermore the sequences ri, ki are periodic with period dividing f = [` : Fp].

Corollary 4.3. In the above proposition, suppose that e(K/L) is divisible by pf − 1. Define
s0 = p(pf−1r0 + · · ·+ rf−1)/(pf − 1) and λ= N`/Fp,kE (c)−1. Then TLst,2(M) = (σ0 ◦ ηk0+s0) · urλ.

Remark 4.4. According to [Sav08, Remark 3.6], the congruences

ki ≡ p(ki−1 + ri−1) (mod e(K/L))

imply that

pf−1r0 + · · ·+ rf−1 ≡ 0 (mod pf − 1),
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and k0 is a solution to −p(pf−1r0 + · · ·+ rf−1)≡ (pf − 1)k0 (mod e(K/L)). It follows that s0
is an integer; moreover (pf − 1)(k0 + s0)≡ 0 (mod e(K/L)), so that the image of ηk0+s0 lies in
`× and ηk0+s0 is actually a character.

Proof of Corollary 4.3. We proceed as in [Sav08, Example 3.7].

Define si = p(ripf−1 + · · ·+ ri+f−1)/(pf − 1) with subscripts taken modulo f , and observe
that (ki + si)≡ pi(k0 + s0) (mod e(K/L)). Let χ= σ0 ◦ ηk0+s0 . We check that there is a
morphism M(χ, c)→M with M(χ, c) as in Lemma 4.1 (except that here we will use w to
denote its generator, since v is now our generator of M).

The morphism will send w to
∑

i u
sieiv. One checks easily that this is a morphism of Breuil

modules. Indeed: the filtration is preserved since si > ri; the morphism commutes with φ1 because
si+1 = p(si − ri); and to check that the morphism commutes with descent data, use the fact that
ĝ(w) = (1⊗ (σ0 ◦ ηk0+s0(g)))w =

∑
i(η

ki+si(g)⊗ 1)eiw.

Now the claim follows immediately from Lemma 4.1 and an application of [Sav04,
Proposition 8.3]. (This last step uses our running hypothesis that p > 2.) 2

4.2 Necessary conditions: notation and preliminaries

Let p be a prime of F lying above p, and πp ∈ p our chosen uniformiser. Suppose that the residue
field of Fp has order q = pf .

In the remainder of § 4, we consider the following situation. Let L be the unramified quadratic
extension of Fp, and K the splitting field of up

2f−1 − πp over L. Let $ be a choice of π1/(p2f−1)
p

in K. Let k denote the residue field of K, and if g ∈Gal(K/Fp) then as before we let η(g)
be the image of g($)/$ in k. Suppose that Fp has absolute ramification index e, and write
e′ = e(p2f − 1). (We alert the reader that in what follows, the fields Fp and L will both take
turns being used in the role of the field L of the previous subsection.)

Suppose that k embeds into kE . By Proposition 4.2, any rank one Breuil module M with
kE-coefficients and descent data from K to L may be written in the form:

– M= ((k ⊗Fp kE)[u]/ue(p
2f−1)p) · v;

– (Fil1M)i = uriMi;

– φ1(urieiv) = (1⊗ γi)ei+1v for some γi ∈ k×E ;

– ĝ(
∑2f−1

i=0 eiv) =
∑2f−1

i=0 (η(g)ki ⊗ 1)eiv for all g ∈Gal(K/L).

Here the ki, ri are any integers with ki ∈ [0, p2f − 1) and ri ∈ [0, e(p2f − 1)] satisfying ki+1 ≡
p(ki + ri) (mod p2f − 1). For g ∈Gal(K/L) we write ĝ(eiv) = (1⊗ χi(g))eiv where χi = σi ◦ ηki .
Note that χi, defined on Gal(K/L), is a homomorphism.

Let χ : IFp →O×E be an inertial character with χ= χq
2

but χ 6= χq, and let χ denote its
reduction modulo the maximal ideal of OE . In what follows we will be concerned with Breuil
modulesM as above that have the extra property χi ∈ {χ, χq} for all i. In the remainder of this
subsection we introduce some notation that is special to this situation (and that will be used
repeatedly throughout the rest of the paper), and we derive a variant of Corollary 4.3.

Let ηi = (σi ◦ η)|IFp
for 0 6 i < 2f be a system of fundamental characters of niveau 2f of

IFp ; note that ηpi = ηi−1. Then ωi = ηiηi+f for 0 6 i < f is a system of fundamental characters
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of niveau f . Write

χ=
2f−1∏
i=0

ηcii (4.5)

with 0 6 ci 6 p− 1; since χ is non-trivial, this is unambiguous. We let J be the set of i ∈
{0, . . . , 2f − 1} such that χi = χ. References to elements of J should always be taken modulo
2f , so that e.g. if i= 2f − 1 then i+ 1 refers to 0.

The congruence ki+1 ≡ p(ki + ri) (mod p2f − 1) is equivalent to the relation χi+1 = χiη
ri
i . If

i ∈ J and i+ 1 ∈ J , or if i /∈ J and i+ 1 /∈ J , this gives ri ≡ 0 (mod p2f − 1). In either case, write
ri = (p2f − 1)xi for some 0 6 xi 6 e. If i ∈ J and i+ 1 /∈ J , we see that

ri = (p2f − 1)xi + (pf − 1)(pf−1(ci+f+1 − ci+1) + pf−2(ci+f+2 − ci+2) + · · ·+ (ci − ci+f ))

for some xi, and if i /∈ J and i+ 1 ∈ J , then

ri = (p2f − 1)xi + (pf − 1)(pf−1(ci+1 − ci+f+1) + pf−2(ci+2 − ci+f+2) + · · ·+ (ci+f − ci)).

Since the expression (pf − 1)(pf−1(ci+f+1 − ci+1) + pf−2(ci+f+2 − ci+2) + · · ·+ (ci − ci+f ))
is non-zero and is strictly between 1− p2f and p2f − 1, we allow either 0 6 xi 6 e− 1 or
1 6 xi 6 e, depending on whether the sign of this expression is positive or negative. If i ∈ J
and i+ 1 /∈ J , then the allowable range is 0 6 xi 6 e− 1 precisely when there is a j > 1 with
ci+k = ci+k+f for all 1 6 k < j and ci+j+f > ci+j , and the situation is reversed in the case i /∈ J
and i+ 1 ∈ J . We summarise these conditions in the following definition.

Definition 4.6. Fix J and χ as above. We say that xi ∈ {0, 1, . . . , e} is allowable in each of
the following situations, and not allowable otherwise.

– i, i+ 1 ∈ J or i, i+ 1 6∈ J .
– i ∈ J , i+ 1 6∈ J : we require xi 6= e if there is j > 1 with ci+k = ci+k+f for all 1 6 k < j and
ci+j < ci+j+f ; we require xi 6= 0 otherwise.

– i 6∈ J , i+ 1 ∈ J : we require xi 6= 0 if there is j > 1 with ci+k = ci+k+f for all 1 6 k < j and
ci+j < ci+j+f ; we require xi 6= e otherwise.

Here subscripts should be taken modulo 2f . We also say xi is not allowable if xi 6∈ {0, 1, . . . , e}.
We say that the list x0, . . . , x2f−1 is allowable if each xi is allowable.

Thus a rank one Breuil module M with the property that χi ∈ {χ, χq} for all i gives rise to
a set J and an allowable collection x0, . . . , x2f−1. Conversely, it is straightforward to check that
this construction can be reversed: any J and any allowable list x0, . . . , x2f−1, together with any
choice of γi’s, determines a Breuil module M with the desired property.

Let ψ denote the restriction to inertia of TLst,2(M), and note from Corollary 4.3 that ψ depends
only on the χi’s and ri’s, or equivalently only on J and the xi’s.

Lemma 4.7. LetM be a rank one Breuil module with kE-coefficients and descent data from K
to L with χi ∈ {χ, χq} for all i. Then

ψ =
∏
i∈J

ηcii
∏
i/∈J

η
ci+f
i

2f−1∏
i=0

ηxii . (4.8)

Proof. Recall that

s0 =
p

(p2f − 1)
(r0p2f−1 + r1p

2f−2 + · · ·+ r2f−1),
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so that ψ = ηk0+s0
0 = χ0η

s0
0 . Write s0 as p2fx0 + p2f−1x1 + · · ·+ px2f−1 plus a linear expression

in the ci’s.
We compute the coefficient of c0 in this linear expression. For each transition i ∈ J , i+ 1 6∈ J

with i ∈ [0, f), the coefficient of c0 in p2f−iri is p2f (pf − 1); on the other hand for each transition
i 6∈ J , i+ 1 ∈ J with i ∈ [0, f) the coefficient of c0 in p2f−iri is −p2f (pf − 1).

For i ∈ [f, 2f − 1) the respective coefficients are −pf (pf − 1) for transitions i ∈ J , i+ 1 6∈ J ,
and pf (pf − 1) for the reverse. As a consequence:

– if 0, f ∈ J or 0, f 6∈ J then the net number of transitions out of J from i= 0 to i= f is zero,
and similarly from f to 2f . In either case the coefficient of c0 in s0 is zero;

– if 0 ∈ J and f 6∈ J , then the net number of transitions out of J from i= 0 to i= f is 1,
and from i= f to i= 2f is −1. In this case the coefficient of c0 in s0 is (p2f (pf − 1) +
pf (pf − 1))/(p2f − 1) = pf ;

– similarly if 0 6∈ J and f ∈ J , the coefficient of c0 in s0 is −pf .

From (4.5) and the definition of J , the contribution of c0 to χ0 is ηc00 if 0 ∈ J and ηp
f c0

0 if
0 6∈ J . Thus the total contribution of c0 to ψ = χ0η

s0
0 is:

– ηc00 if 0 ∈ J , f ∈ J ;

– ηc00 η
pf c0
0 = ηc00 η

c0
f if 0 ∈ J , f 6∈ J ;

– η−p
f c0

0 ηp
f c0

0 = 1 if 0 6∈ J , f ∈ J ;

– ηp
f c0

0 = ηc0f if 0 6∈ J , f 6∈ J .

In each case we obtain precisely the contribution of c0 to the first two products on the right-hand
side of (4.8). The lemma follows by cyclic symmetry, together with the fact that η0 raised to the
power p2fx0 + · · ·+ px2f−1 is the third product on the right-hand side of (4.8). 2

4.3 Necessary conditions: the reducible case

Suppose that we have ρ :GFp →GL2(kE) with kE a finite field into which k may be embedded,
and assume that ρ is the reduction modulo mE of a parallel potentially Barsotti–Tate
representation ρ of type χ⊕ χq. Let H be the mE-torsion of the Barsotti–Tate group over OK
corresponding to ρ; then H is a finite flat group scheme over OK with descent data to Fp, and
ρ is the generic fibre of H.

In this subsection we suppose that ρ∼=
(ψ1 ∗

0 ψ2

)
is reducible, and we wish to restrict the

possibilities for ψ1 and ψ2. Note that by a standard scheme-theoretic closure argument,
ψ1 corresponds to a finite flat subgroup scheme G ofH. LetM be the rank-one Breuil module with
kE-coefficients and descent data from K to Fp corresponding to G, and let χi for i= 0, . . . , 2f − 1
be defined as in the previous subsection. It follows from Corollary 5.2, which does not depend
on anything in this paper before § 5, that the descent data for H is of the form χ⊕ χq, so that
we have χi ∈ {χ, χq} for all i. Therefore we may define J and x0, . . . , x2f−1 as in the previous
subsection, and the analysis of the previous subsection applies to M.

Since the descent data on M is from K to Fp and not simply from K to L, we in fact
have from Proposition 4.2 that ri+f = ri and ki+f = ki for all i, or equivalently χi = χqi+f and
xi = xi+f for all i. In particular for all i we have exactly one of i, i+ f in J , and xi+f = xi is
allowable if and only if xi is. Letting π denote the natural projection from Z/2fZ to Z/fZ,
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we deduce from Lemma 4.7 that ψ1|IFp
has the form

ψ1|IFp
=
∏
i∈J

ωciπ(i)

f−1∏
i=0

ωxii (4.9)

where J contains exactly one of i, i+ f for all i, and x0, . . . , xf−1 are allowable for χ and J .

Proposition 4.10. If e> p− 1, then (for fixed χ) any inertial character of niveau f occurs as
the right-hand side of (4.9) for some choice of J with exactly one of i, i+ f ∈ J for all i, and
some allowable values x0, . . . , xf−1.

Proof. The proposition is immediate if e> p, because for any J the allowable range for each xi
contains p consecutive integers; so we suppose that e= p− 1, where the matter is more delicate.
Observe that the claim is invariant under twisting χ by a character ω of niveau f : replacing χ
with ωχ replaces each χi with ωχi, leaving the possibilities for the integers ri and s0 arising
from the relevant Breuil modules unchanged. The claim is similarly invariant under replacing χ
with χp. As a consequence of these observations we may suppose without loss of generality that
c0, . . . , cf−1 = 0 while c2f−1 6= 0.

Consider first the set J = {0, . . . , f − 1}. The allowable range for xf−1 is [1, p− 1] (since there
is some 1 6 j 6 f with cf−1+j > 0 while each cj−1 = 0), and x0, . . . , xf−2 can range over [0, p− 1].
Writing the right-hand side of (4.9) as ωf−1 raised to the power pf−1x0 + · · ·+ pxf−2 + xf−1, we
see that the exponent of ωf−1 obtains every integer value in [0, pf − 1] except those divisible by p.

Now consider the sets J = {2f − i, . . . , 2f − 1, 0, . . . , f − i− 1} with 1 6 i6 f − 1. The
allowable range for xf−i−1 is [0, p− 2] since c2f−1 > 0 while each cf−i, . . . , cf−1 equals 0; for
each other xi the allowable range is [0, p− 1]. For this choice of J the right-hand side of (4.9)
becomes ωf−1 raised to the power

(pi−1c2f−i + · · ·+ c2f−1) + (pf−1x0 + · · ·+ pxf−2 + xf−1). (4.11)

The right-hand term varies over all integers in the range [0, pf − 1] except those whose
pi-coefficient in base p is p− 1. In particular the base p sum in (4.11) does not have a carry
from the pi-place to the pi+1-place. Since c2f−1 6= 0, it follows that the values taken by (4.11)
(with allowable x0, . . . , xf−1) include all integers in [0, pf − 1] that are exactly divisible by pi.

All together, we find that for suitable choices of J the right-hand side of (4.9) when written
as a power of ωf−1 can take every exponent in the range [1, pf − 1]. This is a complete set of
powers of ωf−1. 2

4.4 Necessary conditions: the irreducible case
We retain the notation and hypotheses of the previous subsection, but now we consider the case
of an irreducible ρ. In this case, ρ|GL ≡

(ψ1 0
0 ψ2

)
with ψ2 = ψq1. Again, we examine the possibilities

for ψ1|IFp
. Let H be the finite flat group scheme with generic fibre descent data from K to L

corresponding to ρ|GL , and let G be the finite flat subgroup scheme corresponding to ψ1. Note
that the descent data on H must extend to Gal(K/Fp) while the descent data on G must not.

LetM be the Breuil module with kE-coefficients and descent data from K to L corresponding
to G. It follows once again from Corollary 5.2 that the descent data for H is of the form χ⊕ χq,
so that we have χi ∈ {χ, χq} for all i. Thus the analysis of § 4.2 applies toM, and we may employ
the notation of that subsection; in particular we take J = {i : χi = χ}.

Remark 4.12. In an earlier version of this paper we claimed to show that H must decompose
as a product G × G′ where G′ is the finite flat subgroup scheme with descent data from K to L
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corresponding to ψ2, in which case it would follow that i ∈ J if and only if i+ f ∈ J , and also
that xi + xi+f = e for all i. Our proof of this claim was in error and we do not know whether or
not the claim is true. Nevertheless we have the following proposition.

Proposition 4.13. There exists J ⊂ {0, . . . , 2f − 1} with i ∈ J if and only if i+ f ∈ J , and an
allowable list x0, . . . , x2f−1 with xi + xi+f = e for all i, such that

ψ1|IL =
∏
i∈J

ηcii
∏
i/∈J

η
ci+f
i

∏
i

ηxii . (4.14)

Per Remark 4.12, the J in the proposition may not necessarily be the J coming from M.
The proof of Proposition 4.13 occupies the remainder of this section.

Lemma 4.15. If ρ has a parallel potentially Barsotti–Tate lift of type χ⊕ χq, then det ρ|IFp
=

ε · χq+1, where ε is the mod p cyclotomic character.

Proof. This follows at once from Definition 3.2 and the results of [CDT99, §B.2]. 2

By Lemma 4.15, we must have (ψ1|IL)q+1 = ε · χq+1. A straightforward computation shows
that for any J with i ∈ J if and only if i+ f ∈ J , and any x0, . . . , x2f−1 with xi + xi+f = e for
all i, the character ψ on the right-hand side of (4.14) has ψq+1 = ε · χq+1 as well; this uses the
fact that ε= ωe0 · · · ωef−1.

Lemma 4.16. If e> p− 1, then as J varies over subsets of {0, . . . , 2f − 1} with i ∈ J if and only
if i+ f ∈ J , and x0, . . . , x2f−1 varies over allowable lists for J with xi + xi+f = e for all i, the
right-hand side of (4.14) varies over all inertial characters ψ with ψq+1 = ε · χq+1. In particular
Proposition 4.13 is true if e> p− 1.

Proof. First take J = {0, . . . , 2f − 1}, so that any x0, . . . , x2f−1 ∈ [0, e] are allowable. We let
x0, . . . , xf−1 vary over [0, e] and take xi+f = e− xi, and we consider the characters ψ that occur.

If X = pf−1x0 + · · ·+ xf−1 then ψ = χ · ηe(p
f−1)/(p−1)

2f−1 · η(1−pf )X
f−1 and depends only on X

(mod pf + 1). If e> p then as x0, . . . , xf−1 range over the interval [0, e], the integer X ranges
over an interval that includes [0, pf ], and ψ ranges over all pf + 1 inertial characters ψ with
ψq+1 = ε · χq+1.

If instead e= p− 1, then X only ranges over the interval [0, pf − 1], and we obtain all
possibilities for ψ satisfying the condition on ψq+1 except ψ = χ. However, performing the same
analysis with J = ∅ gives us all possibilities for ψ except ψ = χq; in particular since χ 6= χq we
obtain ψ = χ as a possibility with J = ∅. 2

Before continuing with the proof of Proposition 4.13, we make the following observation.
Suppose that i ∈ J if and only if i+ f ∈ J , and x0, . . . , x2f−1 is an allowable list such that the
product ψ on the right-hand side of (4.14) satisfies ψq+1 = εχq+1. If e < p− 1, then the condition
xi + xi+f = e must be satisfied automatically. Indeed, the condition ψq+1 = εχq+1 comes down
to
∏f−1
i=0 ω

xi+xi+f
i =

∏f−1
i=0 ω

e
i . Since xi + xi+f ∈ [0, 2e] and e < p− 1, the only possibility is

xi + xi+f = e for all i.

Proof of Proposition 4.13. Thanks to Lemma 4.16 we may assume e < p− 1. Let J be any subset
of {0, . . . , 2f − 1}, let x0, . . . , x2f−1 be allowable for J , and write

ψ =
∏
i∈J

ηcii
∏
i6∈J

η
ci+f
i

∏
i

ηxii .
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We wish to prove that if ψq+1 = ε · χq+1 (so that, for instance, J and x0, . . . , x2f−1 might be
the data associated to M) then there exists some J ′ with i ∈ J ′ if and only if i+ f ∈ J ′, and
allowable x′0, . . . , x

′
2f−1 such that if we write

ψ′ =
∏
i∈J ′

ηcii
∏
i6∈J ′

η
ci+f
i

∏
i

η
x′i
i

then in fact we have ψ = ψ′. (Then the desideratum x′i + x′i+f = e also holds, by the observation
immediately before we began the remainder of the proof.)

Assuming that J does not already satisfy i ∈ J if and only if i+ f ∈ J , it suffices to produce
J ′ and allowable x′0, . . . , x

′
2f−1 such that ψ′ = ψ and J ′ has more pairs (i, i+ f) with i ∈ J ′ if

and only if i+ f ∈ J ′ than J does. (Then repetition of this step will complete the argument.)
This is what we now carry out.

Let S be the set of indices i such that ci appears as an exponent twice in the product for ψ
(equivalently, such that i ∈ J and i+ f 6∈ J), and similarly let T be the set of indices i such that
ci occurs zero times (equivalently, i 6∈ J and i+ f ∈ J). Note that S = f + T (with the obvious
meaning for this notation). Then the condition on ψq+1 is

f−1∏
i=0

ω
xi+xi+f
i

∏
i∈T

ω−cii

∏
i∈S

ωcii =
f−1∏
i=0

ωei

which we re-write as
f−1∏
i=0

ω
xi+xi+f−e±[ci−ci+f ]
i = 1

where the brackets around ci − ci+f denote that the term may not occur (in this case, it occurs
with sign + if i ∈ S, with sign − if i ∈ T , and not at all if i is in neither S nor T ).

Each exponent in this product lies in the interval [−e− p+ 1, e+ p− 1]⊂ [−(2p− 3),
(2p− 3)] since e < p− 1. Now, if

∏f−1
i=0 ω

yi
i = 1 then the vector (y0, . . . , yf−1) must be an integral

linear combination

a0(p, 0, . . . , 0,−1) + a1(−1, p, 0, . . . , 0) + · · ·+ af−1(0, . . . , 0,−1, p).

It is easy to check that if each yi lies in [−(2p− 3), (2p− 3)] then in fact each ai must be 0 or ±1.

Writing the vector (xi + xi+f − e± [ci − ci+f ])i as such a linear combination, we have

xi + xi+f − e± [ci − ci+f ] = pai − ai+1

for all i ∈ {0, . . . , 2f − 1} where we conventionally set ai+f := ai; take all subscripts modulo 2f ;
and the sign is + if i ∈ S and − if i ∈ T , and 0 otherwise.

Choose any maximal interval [j′, j]⊂ Z such that i 6∈ J and i+ f ∈ J for i ∈ [j′, j]. (As usual,
we abuse notation and take all indices modulo 2f .) By definition this interval cannot contain
both i and i+ f for any i, so it contains at most f integers. Now if i ∈ [j′, j] we have i ∈ T and
i+ f ∈ S, so that in fact

xi + xi+f − e− (ci − ci+f ) = pai − ai+1 (4.17)

for i ∈ [j′, j].
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First consider the case j = j′ + (f − 1). Define J ′ = {0, . . . , 2f − 1}, and set:

– x′i = xi − (ci − ci+f )− pai + ai+1 if i ∈ [j′, j′ + f − 1);
– x′j′+f−1 = xj′+f−1 − (cj′+f−1 − cj′−1)− paj′−1;
– x′j′−1 = xj′−1 + aj′ ; and
– x′i = xi for all other indices i.

One checks easily that ψ′ = ψ, and by construction x′i + x′i+f = e for all i. We next verify that
x′j′−1 remains in the interval [0, e]. Note that by our choice of interval [j′, j] we have j′ − 1 ∈ J
while j′ 6∈ J . If we had aj′ =−1 then (4.17) for i= j′ implies cj′ > cj′+f , and according to the
definition of allowability we must have xj′−1 > 0; hence x′j′−1 remains non-negative. Similarly if
aj′ = 1 we still have x′j′−1 6 e. This completes the verification.

Since x′i = xi for i 6∈ [j′ − 1, j′ + f − 1], we in fact have x′i ∈ [0, e] for all i ∈ [j′ − f, j′ − 1].
However, x′i + x′i+f = e for all i, and one of the two summands always lies in [0, e]; therefore so
does the other. Since J ′ = {0, . . . , 2f − 1} the list x′0, . . . , x

′
2f−1 is allowable and we are done.

Henceforth suppose that j − j′ < f − 1. Consider the following two ‘moves’.

(i) Set J ′ = J ∪ {j′, . . . , j}, and define:
– x′i = xi − (ci − ci+f )− pai + ai+1 if i ∈ [j′, j);
– x′j = xj − (cj − cj+f )− paj ;
– x′j′−1 = xj′−1 + aj′ ;
– x′i = xi for all remaining indices.

(ii) Set J ′ = J\{j′ + f, . . . , j + f} and define:
– x′i+f = xi+f − (ci − ci+f )− pai + ai+1 if i ∈ [j′, j);
– x′j+f = xj+f − (cj − cj+f )− paj ;
– x′j′+f−1 = xj′+f−1 + aj′ ;
– x′i = xi for all remaining indices.

In either case we have ψ′ = ψ. For i ∈ [j′, j) we have x′i + x′i+f = e, from which it follows that
x′i, x

′
i+f ∈ [0, e] (since at least one is in that interval); moreover i, i+ 1 are either both in J ′ or

both not in J ′ for i ∈ [j′, j) or [j′ + f, j + f). Thus x′i, x
′
i+f are allowable for i ∈ [j′, j).

To decide whether the list x′0, . . . , x
′
2f−1 is allowable, the only issue that remains is

the allowability of x′j′−1 and x′j after move (i), or of x′j′+f−1 and x′j+f after move (ii). Note
that x′j′−1 and x′j are not the same object since j − j′ < f − 1, and similarly for x′j′+f−1 and
x′j+f . We will argue that at least one of these two pairs must be allowable.

First consider move (i) and the allowability of x′j . We have x′j + x′j+f = e− aj+1, so in
particular x′j ∈ [−1, e+ 1]. Note that if aj+1 6= 0 then the last term on the left-hand side of

xj+1 + xj+f+1 − e± [cj+1 − cj+f+1] = paj+1 − aj+2

must be non-zero, so j + 1 is in S or T . By maximality of [j′, j] we have j + 1 6∈ T , so j + 1 ∈ S
and the sign ± must be +. In particular either aj+1 = 1 and cj+1 > cj+f+1, or aj+1 =−1 and
cj+1 < cj+f+1.

There are several conceivable ways that x′j might be non-allowable.

– If x′j =−1, then x′j+f = xj+f = e and aj+1 = 1. We have seen that aj+1 = 1 implies
j + f + 1 6∈ J and cj+1 > cj+f+1. However, since j + f ∈ J , under these conditions xj+f = e
would not have been allowable to begin with. Thus x′j =−1 cannot occur.

1074

https://doi.org/10.1112/S0010437X1000518X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X1000518X


Serre weights for quaternion algebras

– If x′j = e+ 1, then x′j+f = xj+f = 0 and aj+1 =−1. We have seen that aj+1 =−1 implies
j + f + 1 6∈ J and cj+1 < cj+f+1. However, since j + f ∈ J , under these conditions xj+f = 0
would not have been allowable to begin with. Thus x′j = e+ 1 cannot occur.

– If x′j = 0 and is not allowable, then since j ∈ J ′ we must have j + 1 6∈ J ′. By maximality of
[j′, j] we have j + f + 1 6∈ J ′ and j + 1 6∈ S ∪ T . In particular aj+1 = 0 and x′j+f = xj+f = e.
The allowability of xj+f = e when j + f ∈ J , j + f + 1 6∈ J implies the allowability of x′j = 0
when j ∈ J ′, j + 1 6∈ J ′, a contradiction.

– If x′j = e and is not allowable, then since j ∈ J ′ we must have j + 1 6∈ J ′. By maximality
of [j′, j] we have j + f + 1 6∈ J ′ and j + 1 6∈ S ∪ T . In particular aj+1 = 0 by the remarks
above, and x′j+f = xj+f = 0. The allowability of xj+f = 0 when j + f ∈ J , j + f + 1 6∈ J
implies the allowability of x′j = e when j ∈ J ′, j + 1 6∈ J ′, a contradiction.

We deduce that in all cases, x′j is allowable after move (i). By an identical argument, in all
cases x′j+f is allowable after move (ii).

Now consider move (i) and the allowability of x′j′−1 = xj′−1 + aj′ . Note that if aj′ 6= 0 then
the last term on the left-hand side of

xj′ + xj′+f − e− (cj′ − cj′+f ) = paj′ − aj′+1

must be positive if aj′ = 1 and negative if aj′ =−1. That is, if aj′ = 1 then cj′ < cj′+f and if
aj′ =−1 then cj′ > cj′+f . There are again several conceivable ways that x′j′−1 might be non-
allowable.

– If x′j′−1 =−1, then aj′ =−1 and xj′−1 = 0. We obtain cj′ > cj′+f . Since j′ 6∈ J , if we had
j′ − 1 ∈ J it would contradict the allowability of xj′−1 = 0. Hence in this case we must have
had j′ − 1 6∈ J to begin with.

– If x′j′−1 = 0 or e, then since j′ ∈ J ′, in order to be non-allowable we must have j′ − 1 6∈ J ′,
and so j′ − 1 6∈ J .

– If x′j′−1 = e+ 1, then aj′ = 1 and xj′−1 = e. We obtain cj′ < cj′+f . Since j′ 6∈ J , if we had
j′ − 1 ∈ J it would contradict the allowability of xj′−1 = e. Hence yet again we must have
had j′ − 1 6∈ J .

We deduce that in all cases, x′j′−1 is allowable after move (i) provided that j′ − 1 ∈ J . By an
identical argument, in all cases, x′j′+f−1 is allowable after move (ii) provided that j′ + f − 1 6∈ J .

By maximality of [j′, j], we must have either j′ − 1 ∈ J or j′ + f − 1 6∈ J . Therefore at least
one of moves (i) and (ii) results in an allowable collection J ′ and x′0, . . . , x

′
2f−1 with ψ′ = ψ.

After such a move, the set T for J ′ is strictly smaller than it was for J . The result follows. 2

5. Descent data on strongly divisible modules and Galois types

For this section only, let F/Qp be a finite extension. Suppose thatK/F is a tamely ramified Galois
extension with ramification index e(K/F ). Suppose moreover that there exists a uniformiser
π ∈ OK with πe(K/F ) ∈ L, where L is the maximal unramified extension of F contained in K;
then K = L(π) and L contains all of the e(K/F )th roots of unity. Let k denote the residue field
of K (also equal to the residue field of L), and K0 the maximal unramified extension of Qp

contained in K. Let E/Qp be a finite extension.
Suppose that ρ is a potentially Barsotti–Tate representation GF →GLn(E) that becomes

Barsotti–Tate over K. We assume as usual that K0 embeds into the coefficients E.
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Write D :=DK
st,2(ρ) and let N be a strongly divisible module with descent data over S := SK,OE

contained in S[1/p]⊗K0⊗QpE D.

Let τ be the inertial Galois type of ρ. Note that τ factors through IL/IK ∼= Gal(K/L). Since
Gal(K/L) is abelian, τ decomposes as a direct sum of n characters χi : IL→O×E , and we use the
isomorphism IL/IK ∼= Gal(K/L) to identify each χi as a character of Gal(K/L).

Proposition 5.1. We have τ = χ1 ⊕ · · · ⊕ χn if and only if there is an S-basis v1, . . . , vn of N
such that the descent data acts on N via ĝ · vi = (1⊗ χi(g))vi for all g ∈Gal(K/L).

Proof. For each embedding σ :K0→ E, let eσ denote the corresponding idempotent in W (k)⊗Zp
OE , so that S ∼=

⊕
σ eσS with each eσS a local domain. Since ĝ fixes each eσ, we see that ĝ acts

separately on each eσN .

Suppose we know that N has an S-basis v′1, . . . , v
′
n on which ĝ · v′i = ψi(g)v′i for some

characters ψi : Gal(K/L)→ (W (k)⊗Zp OE)×. The argument in the first three paragraphs of
[GS, proof of Proposition 6.6] proves that D has a K0 ⊗Qp E-basis on which ĝ acts via the
maps ψi. This is enough for the ‘if’ direction; for the ‘only if’ direction, recall that by definition
of τ , we know that D also has a K0 ⊗Qp E-basis on which ĝ acts via the maps 1⊗ χi. Since
K0 ⊗Qp E is not a domain it may not quite be the case that ψi = 1⊗ χi, but at least for each
σ the multiset {eσψi} is equal to the multiset {χi}: that is, we may relabel eσv′1, . . . , eσv

′
n as

v1,σ, . . . , vn,σ in such a way that ĝ · vi.σ = χi(g)vi,σ. If we define vi =
∑

σ vi,σ then v1, . . . , vn is
the desired basis. Thus we are reduced to the statement at the beginning of the paragraph.

In particular it is enough to show for each σ that the free eσS-module eσN of rank n has
a eσS-basis on which ĝ acts by characters Gal(K/L)→O×E . Let eσS0 be the subring of eσS
consisting of power series in ue(K/F ). Observe that eσS is free of rank e(K/F ) as an eσS0-
module, with basis 1, . . . , ue(K/F )−1; this is because e(K/F ) divides the absolute ramification
index of K, so that if pα exactly divides um−1 in S and a larger power of p divides um, then m

is divisible by e(K/F ).

We now regard eσN as a free eσS0-module of rank e(K/F )n. Note that Gal(K/L) acts
trivially on eσS0, so that eσN is actually a Gal(K/L)-representation over eσS0. Since Gal(K/L)
is abelian and p - #Gal(K/L), and since O×E contains the e(K/F )th roots of unity, the module
eσN actually has a simultaneous eσS0-basis of eigenvectors y1, . . . , ye(K/F )n for the action
of Gal(K/L). Relabel the elements yi so that y1, . . . , yn are a basis for the kE-vector space
eσN/(meσS)eσN ; here meσS is the maximal ideal of eσS and kE is the residue field of E. By
Nakayama’s lemma [Mat89, Theorem 2.3], the elements y1, . . . , yn are the desired eσS-basis
of eσN . 2

The following corollary is immediate.

Corollary 5.2. Let N denote the Breuil module with descent data corresponding to the πE-

torsion in the Barsotti–Tate group corresponding to ρ|GK . If τ = χ1 ⊕ · · · ⊕ χn, then N has a

(k ⊗ kE)[u]/(ue
′p)-basis v1, . . . , vn such that ĝ · vi = (1⊗ χi(g))vi for all g ∈Gal(K/L). (Here e′

is the absolute ramification index of K.)

Let ei ∈ k ⊗ kE be one of our usual idempotents. Since the descent data fixes ei, we see in
particular that the descent data acts via χ1 ⊕ · · · ⊕ χn on each piece eiN of N .
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6. Local lifts

6.1 Lifts of certain rank-two Breuil modules
We continue to use the following notation from §§ 4.2–4.4. Let L be the unramified quadratic
extension of Fp, and K the splitting field of up

2f−1 − πp over L. Let $ be a choice of π1/(p2f−1)
p

in K. Let k0 and k denote the residue fields of Fp and K respectively. If g ∈Gal(K/Fp) then
we define η(g) = g($)/$ ∈W (k), so that η(g) is the image of η(g) in k. Suppose that Fp has
absolute ramification index e, and write e′ = (p2f − 1)e.

Let E0(u) be an Eisenstein polynomial for πp, so that E(u) = E0(up
2f−1) is an Eisenstein

polynomial for $. Write E(u) = ue
′
+ pF (u); then F (u) is a polynomial in up

2f−1 over W (k0)
whose constant term is a unit.

Let E, a finite extension of Qp, denote the coefficient field for our representations, with integer
ring OE and maximal ideal mE . Enlarging E if necessary, we assume that a Galois closure of
K embeds into E. In particular E is ramified and W (k) embeds into E. Let kE denote the
residue field of E. Write S = SK,OE (notation as in [Sav05, § 4]). Recall that φ : S→ S is
the W (k)-semilinear, OE-linear map sending u to up. The group Gal(K/Fp) acts W (k)-
semilinearly on S via g · u= (η(g)⊗ 1)u. Set c= (1/p)φ(E(u)) ∈ S×. Let ϕ ∈Gal(K/Fp) denote
the element fixing $ and acting non-trivially on L, so that ϕ−1gϕ= gq for g ∈Gal(K/L).

We now define a rank-two Breuil module N over (k ⊗ kE)[u]/(ue
′p) with descent data from

K to Fp with generators v̄ and w̄, as follows. Choose J ⊂ {0, . . . , 2f − 1}, and set χi = χ if i ∈ J
and χi = χq otherwise. For each i, choose ri ∈ [0, e′] such that χi+1 = χiη

ri
i . (This is equivalent

to choosing an allowable xi for J and χ.) Set r′i = e′ − ri and χ′i = χqi , and note that χ′i+1 = χ′iη
r′i
i

since each ri is divisible by q − 1. We define N as follows.

– The submodule Fil1N is generated by
∑2f−1

i=0 urieiv̄ and
∑2f−1

i=0 ur
′
ieiw̄.

– We have φ1(urieiv̄) = (1⊗ γi)ei+1v̄ and φ1(ur
′
ieiw̄) = (1⊗ γ′i)ei+1w̄.

– We have ĝ(eiv̄) = (1⊗ χi(g))(eiv̄) and ĝ(eiw̄) = (1⊗ χi(g)q)(eiw̄) for g ∈Gal(K/L).

Here γi, γ′i ∈ k
×
E . Finally, we assume that one of the following two sets of additional conditions

holds: 

i ∈ J if and only if i+ f 6∈ J,
χi+f = χqi ,

ri = ri+f and r′i = r′i+f ,

γi = γi+f and γ′i = γ′i+f ,

ϕ̂(v̄) = v̄ and ϕ̂(w̄) = w̄;

(RED)

or 

i ∈ J if and only if i+ f ∈ J,
χi+f = χi,

ri = r′i+f ,

γi = γ′i+f ,

ϕ̂(v̄) = w̄ and ϕ̂(w̄) = v̄.

(IRR)

The second line in each set of conditions is equivalent to the first. Note that the relation
ϕ̂−1 ◦ ĝ ◦ ϕ̂= ĝ q holds in either case, and so the module N so-defined is indeed a Breuil module
with descent data from K to Fp. Since r′i+f = e′ − ri+f , in case (IRR) the condition ri = r′i+f is
equivalent to xi + xi+f = e.
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Theorem 6.1. For each Breuil module N as above, the generic fibre ρ of N lifts to a parallel
potentially Barsotti–Tate representation ρ with inertial type χ⊕ χq.

Proof. We will show that N lifts to a strongly divisible module N with OE-coefficients and
tame descent data from K to Fp such that ρ′ := T

Fp

st,2(N )[1/p] is a potentially Barsotti–Tate
representation with inertial type χ⊕ χq and with all its pairs of labeled Hodge–Tate weights
equal to {0, 1}. The representation ρ′ need not be parallel, but since det(ρ′) is the product of the
cyclotomic character, a finite order character of order prime to p, and an unramified character,
we may take ρ to be the twist of ρ′ by a suitable unramified character with trivial reduction
modulo p.

Let N be the free S-module generated by v and w; as one would imagine, v, w will lift
v̄, w̄ respectively. Let ei ∈W (k)⊗Zp OE also denote the idempotent lifting ei ∈ k ⊗Fp kE , and let
σ̃i :K0 ↪→ E be the embedding that lifts σi. We define Fil1N to be the sum of (Fil1S)N and the
submodules N ′i of eiN defined for each 0 6 i < 2f as follows.

If χi = χi+1, let gihi be a monic factorisation of σ̃i(E0(u)) in OE [u] such that deg(gi) =
ri/(p2f − 1) and deg(hi) = r′i/(p

2f − 1). This is where we use our hypothesis that E contains all
conjugates of πp over Qp. Take Gi = gi(up

2f−1) and Hi = hi(up
2f−1), so that GiHi = σ̃i(E(u)),

and let N ′i be the S-module generated by (1⊗Gi(u))eiv and (1⊗Hi(u))eiw.
If χi 6= χi+1, let yizi be a factorisation of −pσ̃i(F (u)) in OE [u] such that yi ∈mE and

zi ∈mE [u] or vice-versa. This is where we use our hypothesis that E is ramified. Take N ′i to
be the S-module generated by ei(uriv + (1⊗ yi)w) and ei((1⊗ zi)v + ur

′
iw).

We impose the following extra conditions. IfN satisfies (RED), then we insist that Gi+f =Gi,
Hi+f =Hi, yi+f = yi, and zi+f = zi; on the other hand if N satisfies (IRR), then we require
Gi =Hi+f and yi = zi+f . Note that this is possible because E(u) is defined over W (k0), so that
σ̃i+f (E(u)) = σ̃i(E(u)).

We define descent data from K to Fp on N as follows, semilinearly with respect to the action
of Gal(K/Fp) on S. Let χ̃i be the Teichmüller lift of χi.

– If g ∈Gal(K/L), set ĝ(eiv) = (1⊗ χ̃i(g))eiv and ĝ(eiw) = (1⊗ χ̃i(g)q)eiw.

– If N satisfies (RED) then set ϕ̂(v) = v and ϕ̂(w) = w.

– If N satisfies (IRR) then set ϕ̂(v) = w and ϕ̂(w) = v.

In either of the last two cases, using the fact that ϕ acts trivially on OE and takes ei to ei+f , one
checks that ϕ̂−1ĝϕ̂= ĝ q, so that this descent data extends to Gal(K/Fp) in a well-defined way.
One checks with little difficulty from the definition of Fil1N and the conditions on N that this
descent data preserves Fil1N . (Note in particular that Gal(K/Fp) acts trivially on Gi, Hi, yi, zi
since they are all polynomials in up

2f−1.)
Finally we wish to define a map φ :N →N , semilinear with respect to φ on S and such that

φ1 = (1/p)φ|Fil1N is well defined and satisfies

φ1((1⊗Gi(u))eiv) = γ̃iei+1v, (6.2)
φ1((1⊗Hi(u))eiw) = γ̃′iei+1w (6.3)

if χi = χi+1 and

φ1(ei(uriv + (1⊗ yi)w)) = γ̃iei+1v, (6.4)
φ1(ei((1⊗ zi)v + ur

′
iw)) = γ̃′iei+1w (6.5)
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if χi 6= χi+1. Here γ̃i, γ̃′i are lifts of γi, γ′i to O×E that satisfy γ̃i+f = γ̃i and γ̃′i+f = γ̃′i in case (RED)
and γ̃′i+f = γ̃i in case (IRR).

If χi = χi+1 we may satisfy (6.2) and (6.3) by setting

φ(eiv) = c−1φ(1⊗Hi(u))γ̃iei+1v,

φ(eiw) = c−1φ(1⊗Gi(u))γ̃′iei+1w.

If χi 6= χi+1, then since

(E(u)⊗ 1)eiv = ur
′
i(ei(uriv + (1⊗ yi)w))− yi(ei((1⊗ zi)v + ur

′
iw))

and similarly for (E(u)⊗ 1)eiw, we should set

φ(eiv) = c−1ei+1(upr
′
i γ̃iv − φ(yi)γ̃′iw),

φ(eiw) = c−1ei+1(upri γ̃′iw − φ(zi)γ̃iv).

Extending this map additively φ-semilinearly to all of N , one checks that equations (6.2)–(6.5)
hold, so that φ(Fil1N ) is contained in pN and generates it over S. One checks furthermore that
φ commutes with the descent data on N that was constructed in preceding paragraphs.

It is now evident that (N , Fil1N , φ) with the given descent data is a lift of N . It remains to
check that N satisfies the rest of the axioms of a strongly divisible module with coefficients and
descent data (namely, conditions (2), (5)–(8), and (12) of [Sav05, Definition 4.1]) and to prove
our claims about the representation ρ′.

To check that Fil1N ∩ IN = IFil1N for an ideal I ⊂OE , observe that it suffices to check
separately for each i that eiFil1N ∩ eiIN = eiIFil1N . If χi 6= χi+1 then this is follows by
exactly the same argument as in the proof of [GS, Theorem 6.5] (the algebraic claim being
made is literally identical). If χi = χi+1 then the argument is even easier. Each coset in
ei(Fil1N/(Fil1S)N ) has a representative of the form ei(aGiv + bHiw) with a, b ∈ OE [u] such
that deg(a)< deg(Hi) and deg(b)< deg(Gi): terms of higher degree can be absorbed into
(Fil1S)N by using the relation E(u)⊗ 1 = 1⊗GiHi in eiS. If aGieiv + bHieiw + s1v + s2w lies
in eiIN (with s1, s2 ∈ eiFil1S) then aGiei + s1 must lie in eiIS; the same must be true of aGiei
and s1 individually since they have no terms in common of the same degree in their unique
expansions of the form

∑
j>0 qj(u)E(u)j/j! with deg(qj)< deg(E(u)). Then since Gi is monic

the coefficients of a must lie in I. Similarly s2 ∈ eiIS and the coefficients of b lie in I. It follows
that aGieiv + bHieiw + s1v + s2w actually lies in eiIFil1N .

As for the axioms (5)–(8) and (12) of [Sav05, Definition 4.1] concerning the monodromy
operator N , again we appeal to arguments in the proof of [GS, Theorem 6.5]: ignoring the action
of OE and the descent data and regarding (N , Fil1N , φ) simply as a strongly divisible Zp-module
over K, it follows from [Bre00, Proposition 5.1.3(1)] that there exists a unique W (k)⊗ Zp-
endomorphism N :N →N satisfying axioms (5)–(8) of [Sav05, Definition 4.1], except that we
have axiom (5) only with respect to s ∈ SK,Zp until we know that N commutes with the action of
OE . This commutativity, as well as the commutativity between N and the descent data (axiom
(12)), follows by uniqueness of the operator N . This completes the proof that N is a strongly
divisible module.

As before, set ρ′ = T
Fp

st,2(N )[1/p], the potentially Barsotti–Tate Galois representation
associated to N , and let D :=DK

st,2(ρ′). The claim that the Galois type of ρ′ is χ⊕ χq follows
directly by Proposition 5.1 applied with respect to the S-basis v′ =

∑
i∈J eiv +

∑
i6∈J eiw and

w′ =
∑

i6∈J eiv +
∑

i∈J eiw of N .
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The last thing to verify is that all pairs of labeled Hodge–Tate weights of ρ′ are {0, 1}.
Recall that if we regard K ⊗Qp E as an S[1/p]-algebra via the map u 7→$ ⊗ 1, then by [Bre97,
Proposition 6.2.2.1] there is an isomorphism

f$ : (K ⊗Qp E)⊗S[1/p] N [1/p]∼=DK :=K ⊗W (k)[1/p] D

that identifies the filtrations on both sides. It follows that DK is the free (K ⊗Qp E)-module
generated by f$(v) and f$(w), and we need to show that Fil1DK is a free submodule of rank
one in DK . It suffices to check for each i that eiFil1DK is a free ei(K ⊗Qp E)-submodule of
rank one in eiDK . If χi 6= χi+1 then this follows as in the last paragraph of the proof of [GS,
Proposition 6.6]: the images of ei(uriv + yiw) and ei(ziv + ur

′
iw) under f$ are scalar multiples

of one another, and each generates a free submodule of rank one in eiFil1DK .
For the case χi = χi+1, we note that each of our idempotents ei ∈K ⊗Qp E decomposes as

a sum of idempotents eτ , where τ ranges over the e(p2f − 1) embeddings K ↪→ E extending σ̃i.
Since $ ⊗ 1 = 1⊗ τ($) in eτ (K ⊗Qp E), we deduce that the eτ -component of f$(Gi(u)eiv) is
non-zero precisely for those τ such that the root τ($) of σ̃i(E(u)) is not a root of Gi(u), and
similarly the eτ -component of f$(Hi(u)eiw) is non-zero for those τ such that τ($) is not a root of
Hi(u). It follows that eiFil1DK is free of rank one, generated by the image of ei(Gi(u)v +Hi(u)w)
under f$. 2

7. An explicit description of the set of weights

We maintain the notation of the previous three sections, so that F is totally real and p|p is
a place of F . The results of §§ 4 and 6 may be combined to give a complete description of
when a semisimple two-dimensional mod p representation of GFp admits a parallel potentially
Barsotti–Tate lift of type χ⊕ χq with χ 6= χq. In turn, this furnishes an explicit description of
the conjectural set of weights for a global representation whose restriction to each decomposition
group above p is semisimple.

Theorem 7.1. Write χ=
∏2f−1
i=0 ηcii , with 0 6 ci 6 p− 1. Assume that the local representation

ρ is semisimple. Then ρ has a parallel potentially Barsotti–Tate lift of type χ⊕ χq if and only if
one of the following three possibilities holds.

(i) We have e> p− 1 and det ρ|IFp
= ε · χq+1.

(ii) The representation ρ∼=
(ψ1 0

0 ψ2

)
is decomposable, with (ψ1ψ2)|IFp

= ε · χq+1, and

ψ1|IFp
=
∏
i∈J

ωciπ(i)

f−1∏
i=0

ωxii

where J ⊂ {0, . . . , 2f − 1} is a subset with i+ f ∈ J if and only if i 6∈ J , where the xi are
allowable for J and χ (as in Definition 4.6), and where π is the natural projection from Z/2fZ
to Z/fZ.

(iii) The representation ρ is irreducible, and ρ|IFp
∼=
(ψ 0

0 ψq
)

with

ψ =
∏
i∈J

ηcii
∏
i/∈J

η
ci+f
i

∏
i

ηxii

where J ⊂ {0, . . . , 2f − 1} is a subset with i+ f ∈ J if and only if i ∈ J , and where the xi are
allowable for J and χ (as in Definition 4.6) and satisfy xi + xi+f = e.
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Note that by Lemma 4.16 and the observation following its proof, the condition in
case (iii) that the xi are non-negative integers satisfying xi + xi+f = e may be replaced by the
condition that 0 6 xi 6 e for all i and ψq+1|IFp

= ε · χq+1.

Proof. The necessity of these conditions follows from Lemma 4.15 and the discussions of §§ 4.3
and 4.4, particularly (4.9) and Proposition 4.13. For their sufficiency, consider first the case that
ρ is irreducible. Then by the discussion of § 4.4, along with the conditions given in case (iii),
there is a Breuil module N as in § 6 so that the generic fibre of N restricted to IFp is ρ|IFp

.

Since we are in the irreducible case, the generic fibre of N is an unramified twist of ρ, and the
representation coming from Theorem 6.1 applied to N is an unramified twist of the desired lift
of ρ. This completes case (iii), and case (i) with ρ irreducible follows from case (iii) combined
with Lemma 4.16.

In the case that ρ is reducible, note that case (i) will follow immediately from case (ii) and
Proposition 4.10. For case (ii), observe that by the discussion in § 4.3, the generic fibre of the
rank one Breuil module M of § 4.3 agrees with ψ1 up to an unramified twist; but in fact by
Corollary 4.3 the parameters γi may be chosen so that these characters agree on the whole group
GFp. Choosing the parameters γ′i similarly to suit ψ2, the Breuil module M from § 4.3 may be
extended to a Breuil module N as in § 6, satisfying the conditions (RED), whose generic fibre
is ρ. The result again follows from Theorem 6.1. 2

We now return to the situation where ρ :GF →GL2(Fp) is a global representation.

Theorem 7.2. Suppose that ρ :GF →GL2(Fp) is continuous, and that ρ|GFv is semisimple for
each v|p. Let σ =

⊗
v|p σv be a weight. Then σ ∈W ?(ρ) if and only if for each v|p we have one

of the following.

(i) The weight σv is of type I, and the conditions of Theorem 7.1 apply with p = v and χ= σ̃v
(regarded as a character of IFv by local class field theory).

(ii) The weight σv is of type II, and

ρ|IFv ∼= σv

(
ε 0
0 1

)
where σv is regarded as a character of IFv via local class field theory.

In particular, if for each v|p the ramification index of Fv is at least p− 1, and σv is of type I
for each v|p, then σ ∈W ?(ρ) if and only if for each v|p we have det ρ|IFv = ε · σq+1

v .

Proof. This all follows immediately from Definition 3.4 and Theorem 7.1, except for the case that
σv is of type II. In this case, the necessity of the given condition follows from Lemma 3.5, and the
sufficiency is straightforward: twisting reduces to the case σv = 1, when the result follows from
the existence of a non-crystalline extension of the trivial character by the cyclotomic character. 2

8. Proof of the weight conjecture

Recall that we are assuming that F is a totally real field. We now prove in many cases that
W (ρ) =W ?(ρ), by combining the results of earlier sections with the lifting machinery of Khare–
Wintenberger, as interpreted by Kisin. In particular, we use the following result.

Definition 8.1. Let v|p. We say that a representation ρ :GFv →GL2(Qp) is ordinary if ρ|IFv is
an extension of a finite order character by a finite order character times the cyclotomic character.
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Proposition 8.2. Suppose that p > 2 and that ρ :GF →GL2(Fp) is modular. Assume that
ρ|GF (ζp)

is irreducible. If p= 5 and the projective image of ρ is isomorphic to PGL2(F5), assume

further that [F (ζp) : F ] = 4. Suppose that for each place v|p, θv is an inertial type for IFv such
that ρ|GFv has a non-ordinary parallel potentially Barsotti–Tate lift of type θv. Then ρ has a
modular lift which is parallel potentially Barsotti–Tate of type θv for all v|p.

Proof. This is a special case of [Gee, Corollary 3.1.7]. 2

Recall that we defined the set of weights W ?(ρ) conjecturally associated to ρ in § 3, and that in
the case that the restrictions of ρ to decomposition groups above p are semisimple, Theorem 7.2
gives an explicit description of W ?(ρ).

Theorem 8.3. Suppose that p > 2 and that ρ :GF →GL2(Fp) is modular. Assume that ρ|GF (ζp)

is irreducible. If p= 5 and the projective image of ρ is isomorphic to PGL2(F5), assume further
that [F (ζp) : F ] = 4. Then W (ρ)⊂W ?(ρ). If σ ∈W ?(ρ), and σ =

⊗
v|p σv with each σv of type I,

then σ ∈W (ρ). In particular, if there are no places v|p for which ρ|GFv is a twist of an extension
of the trivial character by the cyclotomic character, then W (ρ) =W ?(ρ).

Proof. The inclusion W (ρ)⊂W ?(ρ) already follows from Lemma 3.3. The rest of the result
follows from Lemma 3.3, Proposition 8.2 and Lemma 3.5, because if σv is of type I, any lift
of type σ̃v ⊕ σ̃qvv only becomes crystalline over a non-abelian extension, and is thus certainly
non-ordinary. 2

Remark 8.4. It should be possible to improve this result to prove the equality W ?(ρ) =W (ρ)
under the assumption that ρ has a modular lift of parallel weight two which is ordinary at any
place v such that there is an element of W ?(ρ|GFv ) of type II. This would involve strengthening
Proposition 8.2 to include potentially semistable lifts, and the use of R= T theorems for Hida
families. The required results are not in the literature in the appropriate level of generality,
however.
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Appendix A. Corrigendum to [Sav05]

The second author wishes to take this opportunity to correct an error in [Sav05], as a consequence
of which there is one more family of strongly divisible modules that must be studied by the
methods of [Sav05]. Once this is done, the remaining claims of [Sav05] are unaffected. We adopt
the notation of [Sav05] without further comment, and all numbered references are to that paper.

The mistake is in the statement and proof of Theorem 6.12(4). In the situation of that
item, if m= 1 + (p+ 1)j, i.e., if i= 1, then the two characters ωm+p

2 and ωpm+1
2 are both

characters of niveau 1, and are equal; hence in this case the proof of Theorem 6.12(4) does
not show that TQp

st,2(M/mE)|Ip decomposes as a sum of two conjugate characters. In fact, for
each choice c of square root of w, the map M′2→ME(F2/Qp2 , e2, c, m− 1) extends to a map
M′→ME(F2/Qp, e2, c, j); by Proposition 5.4(1), we conclude when i= 1 that

T
Qp
st,2(M/mE)⊗kE Fp ∼= λc−1ω1+j ⊕ λ−c−1ω1+j .
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This means that when i= 1 and val(b)> 0 we still need to construct a strongly divisible
lattice in Dm,[1:b] whose reduction modulo p has trivial endomorphisms; or, conversely, we need
to study deformations of type ω̃m2 ⊕ ω̃

pm
2 (with i= 1) of non-split residual representations of the

form (
λc−1ω1+j ∗

0 λ−c−1ω1+j

)
.

We rectify this omission now. Our statements are numbered to mesh with the original article if
one drops the A. prefix.

Lemma A.6.7. (2) If i= 1, valp(b)> 0, and w is a square in E, then there is X ∈ S×F2,OE
satisfying

X(1⊗ wb) = 1⊗ w −
(

1 +
upe2

p

)
Xφ(X).

Proof. The constant term ofX may be taken to be 1⊗ x0 where x0 is either root of x2
0 + wbx0 − w

in O×E . The recursion for the coefficient xn of un is xn(x0 + wb) = lower terms, and so the
recursion can be solved to obtain X ∈ S×F2,OE . 2

Moreover, since valp(b)> 0, by putting the variable B for b we obtain an element XB of
SF2,OE [[B]] which specialises to X under the map OE [[B]]→OE sending B to b. Note that the
image of X in (Fp2 ⊗ kE)[u]/ue2p is 1⊗ c with c a square root of w. Assume henceforth that
the coefficient field E contains a square root of w. Now Proposition 6.10 is modified as follows.

Proposition A.6.10. In the case i= 1 and valp(b)> 0, we instead define

Mm,[1:b] = SF2,OE · g1 + SF2,OE · g2

g1 = e1 +
X

pw
up(p−1)e2

g2 = e2,

and this is a strongly divisible OE-module with descent data inside Dm,[1:b].

Proof. Put M = Mm,[1:b]. Observe that h := up−1g1 + (X/w + (1⊗ b))g2 lies in Fil1M. Since
X/w + (1⊗ b) is a unit in SF2,OE and g1 does not lie in Fil1M, we deduce that Fil1M =
SF2,OE · h+ (Fil1SF2,OE )M. From this it is easy to check that IM ∩ Fil1M = IFil1M. Finally,
we compute that

φ(g1) = φ(X)up
2(p−1)g1 +

(
1−Xφ(X)

upe2

pw

)
g2,

φ(g2) = pwg1 −Xup(p−1)g2

both lie in M; using the defining relation for X we find φ1(h) = (1⊗ w)X−1g1 ∈M and conclude
that M is a strongly divisible module. 2

Now amend Theorem 6.12(4) so that it applies only to the case i > 1, and add the following.

Theorem A.6.12. (5) If i= 1 and valp(b)> 0, then T
Qp
st,2(M/mE) is independent of b and

T
Qp
st,2(M/mE)∼=

(
λ−c−1ω1+j ∗

0 λc−1ω1+j

)
with ∗ 6= 0.
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Proof. Write M′ = T0(M/mE). Then Fil1M′ is generated by up−1g1 + c−1g2 and ue2g1, with
φ1(up−1g1 + c−1g2) = cg1 and φ1(ue2g1) = up

2(p−1)cg1 + g2. Note that φ1(up(p−1)g2) =−cg2.
There is evidently a non-trivial map M′→ME(F2/Qp, e2, c, j) sending g2 to 0 and g1 to up

2
e.

On the other hand if f : M′→ME(F2/Qp, e2, d, n) is a non-trivial map sending g1 to αe and
g2 to βe, then α, β must both be polynomials in up since g1, g2 are in the image of φ1. Now if
β 6= 0 then the relation f ◦ φ1 = φ1 ◦ f on up(p−1)g2 implies that β is a unit times up; but then
f(up−1g1 + c−1g2) ∈ 〈ue2e〉 implies that α has a linear term, a contradiction. Therefore β = 0,
and then it is easy to check that c= d and j = n. It follows that ∗ 6= 0. 2

(We also note the following typographical errors in the published version of the proof of
Theorem 6.12(4): in the first sentence, the expression φ1(ue2) should be φ1(ue2g2); in the last
sentence, the characters λc should both be λc−1 .)

The proof of Corollary 6.15(2) should then invoke Theorem 6.12(5) in lieu of Theorem 6.12(4)
in the case of representations ρ to which Theorem 6.12(5) applies, noting that the two choices
for x0 lead to different reductions of ρ.

We now turn to deformation spaces of strongly divisible modules. The proof of the following
proposition is identical to the proof that the corresponding module Mm,[1:b] of Proposition 6.10
is a strongly divisible module. As noted in Remark 6.20, we omit the description of N in the
strongly divisible module below.

Proposition A.6.21. There exists a strongly divisible module with descent data and OE [[B]]-
coefficients as follows.

(vi) If i= 1 and assuming that w is a square in E,

MX = (SF2,OE [[B]]) · g1 ⊕ (SF2,OE [[B]]) · g2,
Fil1MX = SF2,OE [[B]] · (up−1g1 + (w−1XB + (1⊗B))g2) + (Fil1SF2,OE [[B]])MX ,

φ(g1) = φ(XB)up
2(p−1)g1 +

(
1−XBφ(XB)

upe2

pw

)
g2,

φ(g2) = pwg1 −XBu
p(p−1)g2,

ĝ(g1) = (ω̃m2 ⊗ 1)g1, ĝ(g2) = (ω̃pm2 ⊗ 1)g2.

Finally, one must amend the proof of Theorem 6.24 to include a proof that the canonical
injection

R(2, τ(MX), ρ(MX))OE →OE [[B]]

is a surjection; this proceeds exactly along the strategy outlined in the proof of Theorem 6.24.
Indeed, let M′′ denote the minimal Breuil module with descent data from F2 to Qp associated to
the character λ−c−1ω1+j , with generator h such that φ1(h) =−c−1h. Then a map f : M′′→
T0(MX/(mE , B

2)) must send h to an element of the form αue2g1 + β(up−1g1 + (w−1XB +
B)g2) (where, abusing notation, we identify elements of SF2,OE [[B]] with their images in
(Fp2 ⊗ kE [B]/(B2))[u]/ue2p). Write α= α0 +Bα1 and β = β0 +Bβ1 to separate out the terms
involving B. The relation f(φ1(h)) = φ1(f(h)) shows first that α0 = aup, β0 =−aup2 for some
a ∈ kE , by considering the relation modulo B; then, after some algebra, the full relation
eventually implies a= 0. Thus the image of f lies in B · T0(MX/(mE , B

2)), as desired.
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307 (1997), 191–224.

Bre00 C. Breuil, Groupes p-divisibles, groupes finis et modules filtrés, Ann. of Math. (2) 152 (2000),
489–549.

BCDT01 C. Breuil, B. Conrad, F. Diamond and R. Taylor, On the modularity of elliptic curves over
Q: wild 3-adic exercises, J. Amer. Math. Soc. 14 (2001), 843–939 (electronic).
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