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TWO NECESSARY AND SUFFICIENT CONDITIONS FOR
THE EXTENSION OF MOBIUS GROUPS

XIANTAO WANG AND SHOUYAO XIONG

Let SL(2, Fn) be the n-dimensional Clifford matrix group and G C SL(2, Fn) be a
non-elementary subgroup. We show that G is the extension of a subgroup of SL(2, C)
if and only if G is conjugate in SL(2, Fn) to a group G' which satisfies the following
properties:

(1) there exist loxodromic elements go, h € G' such that fix(j/o) = {0,oo},
fix(So) n fix(/i) = 0 and fix(/i) n C jt 0;

(2) tr(g) € C for each loxodromic element g € G'.

Further G is the extension of a subgroup of SL(2, K) if and only if G is conjugate in
SL(2,rn) to a group G' which satisfies the following properties:

(1) there exists a loxodromic element g0 € G' such that fix(p0) n {0, oo}

#0;
(2) tr(g) £ R for each loxodromic element g € G'.

The discreteness of subgroups of SL(2, Fn) is also discussed.

1. INTRODUCTION AND MAIN RESULTS

As in [1] or [8], let SL(2, rn) denote the n-dimensional Clifford matrix group and
M(R ) the full group of n-dimensional sense-preserving Mobius transformations.

In the study of higher dimensional Mobius groups, the following two problems are
fundamental and interesting.

PROBLEM 1. When is a subgroup G C SL(2, Fn) the extension of a group of SL(2, R)?

PROBLEM 2. When is a subgroup G C SL(2, r n ) the extension of a group of SL(2, C)?
Here G is called the extension of a subgroup of SL(2, C) (or SL(2, R)) if G is conjugate

in SL(2,rn) to a subgroup of SL(2,C) (or SL(2,R), respectively).
Many authors have discussed these two problems. For Problem 1, when n = 2,

Maskit ([6]) proved
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THEOREM M. Let G C SL(2,C) be a Kleinian group in which ti2(g) 3? 0 for all

g G G. Then G is Fuchsian.

When n ^ 2, Apanasov ([2]) proved

THEOREM A. If G C SL(2, Fn) is non-elementary and each nontrivial element of
G is either hyperbolic or strictly parabolic or strictly elliptic, then G is the extension of
a group of SL(2,R).

Subsequently, we generalised Theorems M and A into the following form, (see [7]).

THEOREM WY. Let G C SL(2, Tn) be non-elementary. If each loxodromic ele-

ment ofG is hyperbolic, then G is the extension of a group of SL(2, R).

It is well-known that the trace of an element of SL(2,C) is conjugate invariant in
SL(2, C). This property does not hold in SL(2, Tn) when n ^ 3. In order to overcome this
difficulty, Theorems A and WY require that each loxodromic element of G is hyperbolic,
since the trace of a hyperbolic element is conjugate invariant in SL(2, Tn). A natural
problem is how to characterise subgroups of SL(2, Tn) without requiring each loxodromic
element be hyperbolic. As the first aim of this paper, we shall consider this problem. By
using different method, we shall prove

THEOREM 1. LetGc SL(2, Tn) be noa-eiementary. Then G is the extension of

a group of SL(2,R) if and only ifG is conjugate in SL(2, Tn) to G' which satisfies the

following properties:

(1) there exists a loxodromic element g0 € G' such that fix(^0) n {0, oo} ^ 0;
and

(2) tr(<?) e R for each loxodromic element g 6 G'.

COROLLARY 1 . Let G C SL(2, r n) be non-elementary. If each loxodromic ele-

ment ofG is hyperbolic and each elliptic element ofG (if any) is of finite order, then G

is discrete.

REMARK 1. Obviously, Theorem 1 is a generalisation of Theorems M, A and WY.

Example 1 shows the difference between Theorem 1 and Theorem WY.

Concerning Problem 2, recently Chen ([4]) proved

THEOREM C. Let G C SL(2, Tn) be non-elementary. If G contains hyperbolic

elements, then G is the extension of a group of SL(2,C) if and only ifG is conjugate in

SL(2, !"„) to G' which satisfies the following properties:

(1) there exist hyperbolic elements g0, h 6 G' such that fix(g0) = {0,oo},

fix(So) n fix(/i) = 0 and fix(/i) n C ^ 0; and

(2) tr(g) <E C for each g e G'.

The following statement is obvious.

FACT. Each non-elementary subgroup of SL(2,C) (that is, SL(2, F2)) is the extension
of agroupofSL(2,C).
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But when n = 2, Theorem C does not coincide with the above stated fact. This
means that the condition "G containing hyperbolic elements" in Theorem C is too strict.
We can see from [4] that this condition plays a key role in the proof. As the second aim
of this paper, we shall study Theorem C further and prove the following.

THEOREM 2 . Let G C SL(2, Tn) be non-elementary. Then G is the extension of
a group of SL(2, C) if and only if G is conjugate in SL(2, Fn) to G' which satisfies the
following properties:

(i) there exist loxodromic elements g0, h £ G' such that fix(go) — {0,oo},

flx(ffo) n fix(/i) = 0 and fix(ft) n C / 0; and

(ii) tr{g) E C for each loxodromic element g G G'.

COROLLARY 2 . Let G C SL(2, Tn) be non-etementary. If G is conjugate in
SL(2, r n ) to G' which satisfying properties (i) and (ii) as in Theorem 2, then G is discrete
if and only if each non-elementary subgroup ofG generated by two loxodromic elements
is discrete.

REMARK 2. Obviously, Theorem 2 is a generalisation of Theorem C. Also when n = 2,
Theorem 2 completely coincides with the above stated fact, since the traces of elements
of SL(2,C) are invariant under the conjugation in SL(2,C).

We shall prove Theorems 1, 2 and Corollaries 1, 2 in Section 3. In Section 2, we
shall introduce some necessary material which is needed in Section 3.

2. PRELIMINARIES

We need the following preliminaries, see [1, 8] for more detail.
Let Fn denote the n-dimensional Clifford group, SL(2,rn) the group of all n-

dimensional Clifford matrices and

PSL(2,rn) = SL(2,rn)/{±/},

where / is the unit matrix.

Let A = I I 6 PSL(2, Tn) correspond to the mapping in
\ c d I

x i-> Ax = (ax + b)(cx + d) - l

Then this is an isomorphism between PSL(2, Fn) and M(H"). We shall identify the
element in M(R ) with its corresponding element in PSL(2,Fn).

In the following, we shall consider a more general case; that is, we shall consider
subgroups in SL(2,rn) instead of those in PSL(2,rn).
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A nontrivial element / = I I € SL(2,rn) is called is Ioxodromic if / is con-

Vc dJ
jugate in SL(2, Tn) to I r _ J, where r > 0, r / 1, A G Tn and |A| = 1; in

particular, we say that / is hyperbolic if A = ± 1 .

Let

t r ( / ) = a + d* and fix(/) = {x G T : f{x) = x}.

We say that / is vectorial if b, c G R". Then we have (see [1])

LEMMA 1 . A nontrivial element f is hyperbolic if and only if f is vectorial and

t r 2 ( / ) > 4.

COROLLARY 3 . Let f = I ° | G SL(2,Tn) be loxodromic. Then f is

\c dJ
hyperbolic if and only ifb* = b, c* = c and t r ( / ) G R.

For any loxodromic element g G SL(2,C), g is hyperbolic if and only if tr(^) G R.
But the following example shows that when n > 2, this statement is not true.
E X A M P L E 1. Let

_ / \

Then g is loxodromic and ti(g) G R, but g is not hyperbolic.

L e t H n + 1 = {x: x = xo+xle1 + -•- + xnen G 1 " + 1
) xn > 0} and 1 " + 1 = H n + 1 u l " .

As in [3] we call, a subgroup G C SL(2,rn) , elementary if there exists some x G i r + 1

such that the G-orbit G{x) = {g(x) : g G G} at x is finite. Otherwise G is called rcon-

elementary. It follows from [3, 7] that if G is non-elementary, then G contains infinitely

many loxodromic elements, no two of which have a common fixed points.

3. P R O O F S OF THE MAIN RESULTS

Firstly, we introduce a lemma.

LEMMA 2 . Let G C SL(2, Fn) be non-elementary and g0 G G be loxodromic

with fix(go) = {0,oo}. If tr(<?) G C for any loxodromic element g € G, then for any

)

PROOF: If / interchanges the two fixed points of g0 or fix(/) n fix(<70) # 0,
then the result is obvious. Now we assume that g does not interchange 0 and oo, and
fix(p) n {0, oo} = 0. Then max{|a|, |d|} > 0 and be ^ 0. To replace / by f'1 if needed,
we may assume that a ^ 0. Then by [7, Lemma 3.3], we see that g™f are loxodromic for
all large enough m. This completes the proof. D

https://doi.org/10.1017/S0004972700037977 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700037977


[5] Extension of Mobius groups 33

P R O O F O F T H E O R E M 1: The proof follows from [7, Theorem 4.1] and the following

lemma.

LEMMA 3 . Let G' C SL(2, Tn) be non-elementary. If G' satisfies the following
properties:

(1) there exists a loxodromic element g0 G G' such that fix(<70) n {0, oo} ^ 0;

(2) tr(g) G R for each loxodromic element g G G',

then each loxodromic element in G' is hyperbolic.

PROOF: Without loss of generality, we may assume that

r t
0 r"9° ~ I n „-! I '

where r G K, \r\ > 1 and t G S".
By the similar reasoning as in the proof of [7, Theorem 4.1], we may assume further

that t € R.
Let

be any loxodromic element in G'.
If c = 0, then g™g are loxodromic for all large enough m. Condition (2) in Lemma 3

implies that a, d G K and 6, c G R . By Corollary 3, we know that g is hyperbolic.
Now we assume that c / 0. To replace g by g~l if needed, we may assume that

g{oo) £ fix((7o)- Then g™g and gg™ are loxodromic for all sufficiently large m. Condition
(2) in Lemma 3 implies that

(a + -c, a-\ rc'
I r - r~l

 T - r~l

Hence c* = c. It follows from A(g) = ad' -be' = 1 that b' = b. Then Corollary 3
tells us that g is hyperbolic.

The proof of our lemma is completed. D
PROOF OF THEOREM 2: The necessity is obvious. In the following we prove the

sufficiency.
By conditions (i) and (ii), we may assume that gQ has the form:

where r G C and \r\ > 1.
In the following, we shall prove that h G SL(2,C).
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Let

* • ( : : ) •

Then be ^ 0, max{|a|, |d|} > 0 and a + d* G C. Without loss of generality, we may

assume that a ^ 0. Otherwise we replace h by ft"1. Then Lemma 2 implies that a,d £ C.

It follows from ab* and a*c G M" that h has the form:

/ a as\
\a'q d J

n- l n - l
where s = s0 + £ Sjej (s0 G C, Sj G R), g = g0 + Z) 9»e« (?o G C, g* G R).

i=2 .=2

Now A(h) = ad* - (as)(a'q)* = 1 implies that sq G C. Hence s G C if and only if
q G C, since sg ^ 0.

It follows from das € R that od G R or s G C. We claim that s G C. Suppose
s ^ C. Then ad G R. We may assume that

d = ka',

where k G R. Then we have
( a as \
\ a'q ka' J '

This implies that sg G R. Hence there exists ki G R such that q — k\s'. Under the

conjugation of a suitable element in SL(2,R), we may assume that

f r 0 \ fa as \
9=l Q r_, andft=(

n - l
where r G C, \r\ > 1, e = ± 1 , s — s0 + J2 siei> so £ C and s,-, k G R.

i=2
We see from fix(/i) n C 7̂  0 and h being loxodromic that s<) # 0 and a' = -era. Hence

h= f a as \
\ —as' —eka J

Since h2 is loxodromic, by Lemma 2, we know that a2 — asas' G C, which implies that

sas' G C. Then a = a, that is, a G R\{0}. By Corollary 3, h is hyperbolic. Then, by [1],

= {tis, t2s},

where th2 = - [(1 + <rA;)a ± ^ / ( l - ke)2a2 ~ ^)/2a~l\s\-2 G R.

Condition (i) implies that s G C This contradiction shows that s G C.
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Our claim implies that h has the following form:

where a, b, c, d € C with be ^ 0.

For any nontrivial element

€<?',

by Lemma 2, we know that u, 0 € C By considering pg, Lemma 2 implies that v, a £ C.

This shows that p € SL(2, C) which completes the proof. 0

PROOF OF COROLLARY 1: If each loxodromic element of G is hyperbolic, then

Theorem 1 yields that G is conjugate in SL(2, Tn) to a group G' of SL(2,E). Then [5,

Theorem 2] or [3, Theorem 8.4.1] implies that G' is discrete. Hence G is discrete. D

PROOF OF COROLLARY 2: The proof follows from [9, Theorem 2]. D
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