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Abstract

In this paper we consider classes of vector lattices over subfields of the real numbers. Among
other properties we relate the archimedean condition of such a vector lattice to the uniqueness
of scalar multiplication and the linearity of /-automorphisms. If a vector lattice in the classes
considered admits an essential subgroup that is not a minimal prime, then it also admits a
non-linear /-automorphism and more than one scalar multiplication. It is also shown that
each /-group contains a largest archimedean convex /-subgroup which admits a unique scalar
multiplication.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 06 F 20.

1. Introduction

Throughout this paper let F be an ordered subfield of the real field R, and
let VF be the class of all vector lattices over F. Thus, G e VF if G is
an abelian /-group and a vector space over F such that 0 < r e / and
0<geG=i>0<rg. It is well-known that VF is closed with respect to
/-homomorphic images, /-ideals, and cardinal products. In [11] Martinez
asserts that VK is closed with respect to joins of convex /-subgroups and
hence is a torsion class of /-groups. Whether or not this is true is doubtful
and also a very difficult question to answer. In this paper we find several
interesting classes S of /-groups so that Sf)VF is a torsion class.

We first consider the following properties of G e VF with F / Q, the
rational field.

(1) G is archimedean.
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(2) The scalar multiplication on G is unique.
(3) Each /-automorphism of G is linear with respect to F.

We will see that (1) =• (2) => (3) , but whether or not (2) =» (1), (3) =» (1),
or (3) =>• (2) is an open question.

We prove that if G has an essential subgroup that is not a minimal prime,
then it admits an /-automorphism that is not linear and so it has at least two
scalar multiplications. There are several consequences of these results. If Ar
is the class of archimedean /-groups, then Ar n VF is closed with respect
to convex /-subgroups, joins of convex /-subgroups, and images of complete
/-homomorphisms. Hence Ar n VF is a pseudo-torsion class. In partic-
ular, each /-group contains a largest archimedean convex /-subgroup that
admits a unique scalar multiplication by elements of F . Each archimedean
/-group contains a largest /-subgroup that belongs to VF. It follows that
an archimedean /-group G "knows" whether or not it belongs to VF . For
example, G e VF if and only if each maximal osubgroup of G belongs to
VF . Also G € VR if and only if each maximal o-subgroup of G is a-closed.

We will show that for G e F , the following are equivalent:
(1) G is archimedean.
(2) Each maximal archimedean o-subgroup is a subspace.
(3) Each a-closed o-subgroup is a subspace.
In Section 4 we show that each /-group "knows" whether or not it belongs

to VF.
For the class A of abelian /-groups we consider the free product of vector

lattices viewed as members of A . We have that the following properties of
F are equivalent:

(1) FuF is archimedean.
(2) F U F € VF .
(3) U Gt € VF for any family (G,.|i e /) C VF .
(4) F = q.
Finally, if M is the torsion class of all /-groups such that their principal

polars satisfy the DCC, then VF n M is a torsion class. Also, for an abelian
/-group G e M . w e have G € VF if and only if G/P G VF for each minimal
prime P.

NOTATION AND DEFINITIONS. If G is an /-group, then we denote by
G its divisible hull. If G is archimedean, then its Dedekind-MacNeille
completion will be written GA . The cardinal sum of a family {G(\i e I)
of /-groups is denote by Yl Gt while the cardinal product of this family is
written \[Gr

A partially ordered set T is a root system if {y e V\y > a} is a chain for
each a e F . Let V(T, F) be the set of all functions of T into F whose
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supports satisfy the ACC. A component vy of v e V = V(T, F) is maximal
if D i 0 and va = 0 for all a > y. Define v e V to be positive if each
maximal component is positive. Then V e VF and eaph group in VF can be
embedded in such a V (see [3] or [5]) for an appropriate choice of T. Let

I = Z(r , F) = {v € V\v has finite support}.

Then Z is an /-subgroup of V and also a subspace.
For further information on terms and notation, the reader is referred to

Conrad [5].

Let us begin by considering G, H eVF with H archimedean. Before we
prove the uniqueness of scalar multiplication on G we make the following
two observations.

(A) Each /-homomorphism of G into H must be linear (for a proof see
[4, p. 227]).

(B) If S is an /-automorphism of G that is not linear and we define

rAg = {r(gd))d~l,

then A is a new scalar multiplication for G and d is a linear /-isomorphism
of G onto (G, A).

Now consider the following properties of G.
(1) G is archimedean.
(2) The scalar multiplication of G is unique.
(3) Each /-automorphism of G is linear with respect to F.

Note that if F = Q, then (2) and (3) hold. The implications (1) => (2) => (3)
are established in [8], but for completeness we give a proof here.

(1) => (2): If o and # are scalar multiplications on G, then by (A) the
identity map is a linear map of (G, o) onto (G, #) so the multiplications
must agree.

(2) =*• (3): This is an immediate consequence of (B).

THEOREM 2.1. If G e VF with F / Q and if G has an essential subgroup
Gx that is not a minimal prime, then G admits an I-automorphism that is
not linear and hence G admits at least two scalar multiplications.

PROOF. Let T(G) be the set of all pairs (Gy, Gy) of convex /-subgroups of
G such that Gy is maximal without some element of G and Gy covers Gy.

https://doi.org/10.1017/S1446788700029918 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700029918


362 P. Bixler, P. Conrad, W. B. Powell and C. Tsinakis [4]

Without loss of generality (see (3)) we may assume that G is an /-subgroup
and an F-subspace of V = V(T(G), R). Now since Gx is essential and not
minimal there exists an element 0 < b € G so that each value of b is less
than X and so that each maximal component of b is less than X.

Now let p be the projection of the elements of G onto the X th compo-
nent. Note that Gp is a subgroup of V, but Gp need not be a subset of G.
Let a be a group homomorphism of Gp into the subgroup Fb of G that
is not linear (here we use the hypothesis of F ^ Q). Finally, for each g GG
define gx = g + gpa. Clearly x is an endomorphism of G. Now gpa e Fb
so its projection onto X is zero. Thus, gpap = 0 so (g — gpa)x = g and
hence x is onto. If 0 = g + gpa, then 0 = gp + gpap = gp so g = 0.
Thus, T is an automorphism of G.

If gpa ^ 0, then X is contained in the support of g so \g\ > n\gpa\ for
all positive integers n . But this implies g > 0 if and only if g + gpa > 0,
and hence x is an /-automorphism of G that is not linear.

In particular, if F is a root system that is not trivially ordered, then
V(T, F) and X(F, F) have more than one scalar multiplication. Also, a
non-archimedean completely distributive G e VF has more than one scalar
multiplication since G has a representing system of essential subgroups.

We turn now to the problem of embedding abelian /-groups into vector
lattices over F . To this end we say that U is an .F-hull of an abelian /-group
G if

(a) UeVF,
(b) G is a large /-subgroup of U, and
(c) no proper /-subspace of U contains G.
For the case where F = R the following four propositions have been

proved in [6], [2], [7], and [8], respectively. Analogous proofs yield the cor-
responding results when F is an arbitrary subfield of R.

PROPOSITION 2.2. Each abelian l-group admits an F-hull. If G is an
archimedean l-group, then G admits a unique F-hull GF. This F-hull is
l-isomorphic to the I-subspace of the F-vector space (G )A that is generated
by G, and hence it is archimedean.

PROPOSITION 2.3. If G is archimedean, then GF is the smallest archime-
dean member of VF that contains G.

PROPOSITION 2.4. If G is an archimedean f-ring, then there exists a
unique multiplication on GF making GF into an f-ring with G as a subring.
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PROPOSITION 2.5. Each archimedean l-group G contains a largest I-sub-
group F(G) that belongs to VF . F(G) is the largest l-subspace of GF that
is contained in G, and it is also a characteristic l-subgroup of G.

In this section we consider archimedean /-groups and their relationship to
VF . In particular, if G is archimedean, then from Section 2 we have

F{G) c 6 c G f c (Gd)A.

Note that G e VF if and only if G is an F-subspace of (Gd)A . Thus an
archimedean /-group "knows" whether or not it belongs to VF . Later we will
get some nicer versions of this fact.

We now describe the F-space F(G) c G whose existence is guaranteed
in Proposition 2.5.

PROPOSITION 3.1. If G is an archimedean l-group, then

F(G) = {xe G\Fx c G}.

PROOF. If x e F(G), then clearly Fx C G. Conversely, suppose x e G
and Fx C G (the product Fx is formed in GF). For 0 < a G F we have
(ax)+ - (ax)~ = a(x+) = ax e G so a{x+) = (ax)+ € G. Thus, Fx+ is an
/-subgroup of G that belongs to VF and x+ e F(G). Similarly, x~ e F(G)
and thus x e F(G).

COROLLARY 3.2. If G is an archimedean f-ring, then F(G) is a ring ideal
ofG.

PROOF. If x e F(G) and y e G, then FxCG so F{xy) = F(x)y c G.
Hence, xy 6 F(G).

Now let A be an archimedean o-subgroup of G G VR. We may assume
that G is an /-subspace of V(T, R) (see [3]). Pick 0 < a e A and consider
the set {as\8 e A} of the maximal components of a . Let p be the projection
of V onto A and for each d € A let pS be the projection of V onto 8.
Using this notation we establish the next important lemma.

LEMMA 3.3. (1) p and pd induce o-isomorphisms on A and Ap c
R(ap).

(2) A is maximal if and only if Ap = R(ap) if and only if A is a-closed.
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(3) If G is archimedean, then A CRa, and A = Ra if and only if A is
maximal.

(4) If H is an o-subgroup of an archimedean l-group K and 0 < h e H,
then H c Rh, the subspace of KR determined by h .

PROOF. (1) By using a suitable /-automorphism of V we may assume
each ag = 1. Now for 0 < b e A, na > b and nb > a for some n > 0,
so {bs\8 e A} is the set of maximal components of b . It follows that for
x, y e A we have

x < y if and only if xg < yg for all 8 e A

if and only if xs < ys for some 8 € A and

x — y if and only if xs — ys for all 8 e A

if and only if xs = ys for some 8 e A.

Thus, p and p8 induce o-isomorphisms on A. Now, consider x G A and
a, /? e A. The map xa —• xfi is an o-isomorphism so xfi = k^xa for some
fixed 0 < L G R . But since a „ = aa = 1 we have kg = 1 so JCQ = x» for
all a J e A . Thus, ap c R(ap).

(2) Let D = {r e R\r(ap) e Ap} -{re R\xs = r for some x e A} = A .
Now suppose A is maximal. Then A is divisible so R — D © K. By way of
contradiction let us suppose 0 < k e K. Then ka&G and so A®(ka) is an
archimedean o-subgroup of G that properly contains A. This contradiction
implies K = 0 so A = D = R and Ap = R(ap).

(3) Let B be a maximal archimedean o-subgroup that contains A . Then
as above we get Bp — R(ap) so />~ is an /-isomorphism of the vector space
Bp into the archimedean vector lattice G. This means p~x must be linear,
and therefore A c B — Ra.

(4) H is contained in a maximal o-subgroup A of K so by (3) we have
HCA = Rh.

We note that the proof of (1) is valid for GeVF .
Using Lemma 3.3 we are able to determine when certain o-subgroups are

subspaces.

THEOREM 3.4. For G € VK the following are equivalent.
(1) G is archimedean.
(2) Each maximal archimedean o-subgroup is a subspace.
(3) Each a-closed o-subgroup is a subspace.

PROOF. (1 => 2) This follows from (3) of Lemma 3.3.
(1 => 3) Since each a-closed o-subgroup is a maximal archimedean o-

subgroup this is a consequence of the preceding implication.
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(2 => 1 and 3 => 1) Suppose G is not archimedean. Then 0 < b <c a
for some a,b&G. Now, R = Q e D so let A = Q(a + b) + Da = R. This
is a maximal archimedean o-subgroup of G which is a-closed, but it is not
a subspace of G.

THEOREM 3.5. For an archimedean l-group G the following are equivalent.
(1) G&VF.
(2) Each maximal o-subgroup H belongs to VF.
(3) Each 0 < x e G is contained in an o-subgroup H where H e VF .

PROOF. (1 =>• 2) By (4) of Lemma 3.3 we get that H c Rh and that
Fh is an o-subgroup of G. Thus, H + Fh is contained in the o-group
Rh. Since H is a maximal o-subgroup of G we have Fh c H, and hence
HeVF.

(2 => 3) This is clearly true since each x > 0 in G is contained in a
maximal o-subgroup H.

(3 => 1) Since FxCHCG,we have G = F(G) € ^ .
When F = R w e get an even stronger version of Theorem 3.5.

THEOREM 3.6. For an archimedean l-group G the following are equivalent.
(1) G e F R .
(2) Each maximal o-subgroup is a-closed.
(3) Each 0 < x € G is contained in an o-subgroup that is a-closed.
(4) IfO < x € Gy\Gy, then Gy = Gy®Dy where D is an a-closed o-group

that contains x.

PROOF. Since an archimedean o-group H is a-closed if and only if H —
R we see that (1), (2), and (3) are equivalent. Also, it is clear that (4) implies
(3).

(1 =• 4) We have Gy D Gy © Rx and R = (Gy © Rx)/Gy c Gy/Gy = R
so this gives an o-isomorphism of R into E which must be onto. Hence
G © Rx = Gy.

In the above theorem the hypothesis that G is archimedean cannot be re-
moved. For example, consider G = Ylili K,©Z(1, 1, . . . ) . Then G satisfies
(4) but not (1).

In this section we show that an /-group knows whether or not it is a vector
lattice over F . We use the embedding theorem from [3] and some variations
of this theory developed in [5]. Each group VF is divisible so we can restrict
our attention to such a group G. If A is a plenary subset of T(G), then there
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exists an embedding T of G into V(A, R) so that g € G^XGg if and only if
(gr)s is a maximal component of gx. Thus, we may assume G c V(A, R)
and for each 8 e A there is an element in G with maximal component at
8. Also, since F c R there is a natural scalar multiplication on V so that
it is a vector lattice over F .

An n-automorphism of F is an /-automorphism that induces the identity
on the maximal components of each element of V.

PROPOSITION 4.1. G e VF if and only if there exists an I-automorphism
a of V such that Go is an F-subspace of V.

PROOF. It is clear that if the condition is satisfied then G e VF. As-
sume now that G G VF. By the embedding theorem there exists a linear
/-isomorphism a of G into V so that g e G has a maximal component
at 8 if and only if ga has a maximal component at 8. By following a
with a suitable /-automorphism of V we may assume this a induces the
identity on the maximal components of the elements from G. Finally, these
two embeddings are connected by an /-automorphism a of V, and since
for each 6 e A there is an element in G with maximal component at 8, it
follows that a is an //-automorphism of V.

Now suppose that G e VF . We may assume without loss of generality that
G is an F-subspace of V .

COROLLARY 4.2. Each scalar multiplication of G by F with G 6 VF is
determined by the n-automorphism a of V so that Ga is also a subspace of
V. Here r#g = (r(ga))a~l is the new scalar multiplication.

PROOF. This follows from Proposition 4.1. An alternate proof can be
found in [8].

Now, let o and # be scalar multiplications for G so that (G, o) and
(G, #) are vector lattices over F. It is an open question whether or not
these scalar multiplications are connected by an /-automorphism of G. In
fact it is not known whether (G, o) and (G, #) have the same dimension.
Once again the answer is related to the automorphism structure of V. We
can assume from the above that (G, o) is a subspace of V and that there
exists an //-automorphism a of V that induces a linear /-isomorphism of
(G,#) into V.

PROPOSITION 4.3. The scalar multiplications o and # are connected by an
I-automorphism of G if and only if there exists a linear I-automorphism of
V such that Gi = Go.
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PROOF. Suppose first that /? is an /-automorphism of G with {rog)p =
r#gfi for all r e F and g e G. Then Pa is a linear /-isomorphism of G
onto Go and hence it can be lifted to a linear /-automorphism x of V .

Conversely, suppose there exists a linear /-automorphism r of K such
that Gx = Ga. Then ax~l induces an /-automrophism on G and

Now, let H be the class of all F-vector lattices such that any two scalar
multiplications are connected by an /-automorphism. Also let K be the class
of all F-vector lattices A such that if B e VF with A = B as /-groups, then
they are isomorphic as F-vector lattices.

It is easy to show that H = K and H is closed with respect to cardinal
sums and products. In particular the following are equivalent.

(1) Any two scalar multiplications for an F-vector lattice are connected
by an /-automrophism.

(2) If two F-vector lattices are isomorphic as /-groups, then they are iso-
morphic as F-vector lattices.

In this section we investigate the relationship between VF and the free
product of abelian /-groups. If G and H are abelian /-groups, then GuH
will denote their abelian /-group free product. Hence, GuH is an abelian
/-group and each pair of /-homomorphisms of G and H into an abelian
/-group K can be extended to an /-homomorphism of GuH into K.

Let A and B be subgroups of R. Then (a, b), (c, d) e ABB are
separated if (a, b) + r{c, d) = 0 for some 0 < r e R, and they are positively
independent if m(a, b) + n(c, d) < 0 for 0 < m , n e Z implies m = n = 0 .

THEOREM 4.1 (Martinez [10]). For subgroups A and BofR, the following
are equivalent:

(1) A u B is a subdirect product of copies of R.
(2) AuB is archimedean.
(3) A E B contains no separated positively independent pair.

The next proposition gives a condition that is a bit more informative and
easier to check than (3).

PROPOSITION 5.2. For subgroups A and BofR, the following are equiv-
alent.
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(1) A u B is not archimedean.
(2) xA n B has rank > 1 for some 0 < x e R.

PROOF. Assume first that AuB is not archimedean and let (a, b) and
(c, d) be a separated, positively independent pair from A ffl B . Thus, for
some 0 < r e R we have {a, b) + r(c, d) = 0. If r is rational, then (a, 6)
and (c, d) are not positively independent so r must be irrational. Now,
a + re = 0 in ,4 and b + rd = 0 in 5 . If c = 0, then a = 0. But then
(0, 6) and (0, d) are not positively independent; for either b = d = 0 or
bd < 0 so mZ> + nrf < 0 for 0 < m, n e Z. Thus, c ^ 0 and similarly
d^O.

Now, multiply ^ by l/\c\ and get a/|c| + r(±l) = 0. Then r, 1 G
(l/|c|V4n(l/|«/|)2*. Hence, (l/|c|M n (1/|</|)5 has rank > 1 and so also
does |rf/c|4n.B.

Conversely, assume that there exists 0 < x e I such that xAn B has
rank > 1. Pick 0 <y e xAnB. Then 1 ey~l{xAf]B) =y~lxAr\y~lB
and y~lxAu y~lB = Au B. So without loss of generality we have 1,
t G A n B with 0 < t irrational and (t, -t) + t(-1, 1) = 0. Suppose that
m(t, -t) + n{-l, 1) <0. Then mt-n <0 and -mt + n < 0 so mt-n = 0
and hence m = n = 0. Thus, (f, -f) and ( - 1 , - 1 ) is a separated, positively
independent pair from ASB and AuB cannot be archimedean.

Several corollaries are immediate from Proposition 5.2.

COROLLARY 5.3. AuB is archimedean if and only if xAnB has rank 1
for all 0 < x e R.

COROLLARY 5.4. AuA is archimedean if and only if A has rank 1.

COROLLARY 5.5. If A has rank 1, then AuB is archimedean.

PROPOSITION 5.6. If H is a divisible abelian subgroup of an l-group G,
then the l-subgroup K of G that is generated by H is also divisible and
abelian.

PROOF. If k e K, then k = V,-€/ A,e/ htJ with htj e H and / and /
finite. Thus, for a fixed positive integer n we can find t{j € H so that nt{j —
hu for all i G / and j G / , and then t = V A ttj G K and nt-VA nttj - k .
Thus, K is divisible and abelian.

COROLLARY 5.7. The largest divisible subgroup M of an abelian l-group
G is an l-subgroup.
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COROLLARY 5.8. If {Gt\i e /} is a set of divisible abelian I-groups and
G = \JGi is the abelian l-group free product of the Gi, then G is divisible.

PROOF. The subgroup H of G that is generated by the Gt is divisible
and G is generated as /-group by H.

Thus, if we restrict our attention to abelian /-groups, the class of divisible
/-groups is closed with respect to /-homomorphisms, /-ideals, joins of /-
subgroups, cardinal sums and products, and free products. Further, the class
of p-divisible /-groups has these properties (where G is /^-divisible if pG =
G).

PROPOSITION 5.9. For an ordered subfield F ofR the following are equiv-
alent.

(1) FuF is archimedean.
(2) FuF is an F-vector lattice.
(3) If {G{\i e /} is a set of F-vector lattices, so is uG(.
(4) If {Gt\i E 1} is a set of l-subgroups of an abelian l-group G and each

G is an F-vector lattice, then so is the I-subgroup of G that is generated by

(5) F = Q.

PROOF. By Corollary 5.4 we have (1) o (5) and by the above (5) =>• (4).
Clearly, (4) => (3) => (2). It remains only to show (2) => (5). If F D Q
than as a group F = D ® Q. Let G = F©Q which is an o-group. Then
(d + q, x) - ^ {d + q, q + x) is an o-automorphism of G and S = F xO -^
D( 1, 0) + Q( 1, 1) = T. Thus, S and T are one-dimensional F-vector
lattices, but G = S + T is not an F-vector lattice. Now, clearly G is an
/-homomorphic image of F u F so F u F is not an F-vector lattice.

COROLLARY 5.10. If F D Q then an o-group of rank 2 need not contain
a largest subgroup that belongs to VF .

COROLLARY 5.11. If F ^ Q and G{ and G2 are F-vector lattices, then
Gl u G2 is not archimedean.

PROOF. F is an /-subgroup of Gx and G2 so F u F is an /-subgroup of
Gx u G2 [12]. Since F u F is not archimedean neither is Gx u G2.

For a subgroup A of K, let A be the torsion class of all normal valued
/-groups G where each G7 /Gy = A .

PROPOSITION 5.5. G = A u A $ A.
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PROOF. If G e A, then Gd = Ad u Ad e Ad since (Gd)y/{Gd)y is the
divisible hull of Gy/G . Thus, it suffices to show that if A is divisible then
AUA £ A.

Case 1. If A = Q, then let H = Q®Qn c R with the natural order. Then
H is an /-homomorphic image of G but H £ A.

Case 2. If A D Q, then A = D © Q so H = A © Q e A, but it is
an /-homomorphic image of G (see proof of Proposition 5.9). Therefore,
A u A £ A.

In this section we investigate torsion classes T so that T n VF is also a
torsion class. Let

N = torsion class of all normal lest sums of o-groups

= class of all /-groups such that the principal polars

satisfy the DCC.

(See [5, p. 3.7] for a proof of the equality of these classes.)

THEOREM 6.1. VF n N is a torsion class.

PROOF. It suffices to show that each /-group G contains a largest convex
/-subgroup that belongs to VF n N. Now, such a subgroup must be abelian
and divisible. Since the class D of all divisible abelian groups forms a torsion
class we may assume that G e DO N. But then [9, Theorem 5.1] we may
assume that G = £(A, Ag) where A is a root system that satisfies the DCC
and each Ag is a divisible abelian o-group. Now each of the o-groups As

contains a largest convex subgroup VF(AS) that is an F-space [8, Proposition
4.2]. Let

A = {A e A|«J < k implies A&VF and VF(Ak) ± 0}.

Then A is an ideal of A so H = Z(A, VF{Ak)) is an /-ideal of G that
belongs to VF.

Now, suppose that K is an /-ideal of G that belongs to VF and consider
0 < ^ 6 ^ with maximal component ks. If a < 3 , then G(Aa) = {g e G\
each maximal component gx has A < a} is an /-ideal of K and hence
belongs to VF. Moreover A is an /-homomorphic image of G{Aa) so
Aa € VF . Similarly, As n K must belong to VF so it follows that K c H.
Therefore, H is the torsion kernel of VF n N in G.
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Note that if K is a torsion class and K c N, then VFnK=VFnNnK
is also a torsion class.

COROLLARY 6.2. VFr\F and VFf)FvnD are torsion classes where
F = all l-groups such that each bounded disjoint set is finite.
Fv = all finite-valued l-groups.
D - all l-groups such that the regular subgroups satisfy the DCC.

THEOREM 6.3. For an abelian I-group GGN the following are equivalent.
(1) GeVF.
(2) G/P e VF for each minimal prime P.

PROOF. (1 => 2) This is obvious.
(2 => 1) Since each G/P is divisible, G is divisible [1]. Without loss

of generality let G = Z(A, As) where A is a root system that satisfies the
DCC and each As is a divisible o-group. Consider 8 € A and let P be
a minimal prime that does contain As . Then P = A'x where X < a since
all minimal primes are of this form. Let A be the sum of all the Aa with
X < a < S. Then P + A is an /-ideal of G and G/(P + A) e VF since
it is a homomorphic image of G/P. Now As is oisomorphic to a convex
subgroup of G/(P + A) so As e Vf . Therefore, 6 = Z ( A , ^ ) e F f .

REMARK. In [ 1 ] there is an example of a hyperarchimedean /-group G
such that G/P = R for each prime P but G <£ VR .

EXAMPLE 7.1. Let V = FI^i^; a n d le t / be an isomorphism of R onto
Yl°l2 ^ i • T h e n the m a p {x{, x2, ...) -—> ( x , , x2 + f(x{ ) 2 , * 3 + f(xl ) 3 , . . . )

is an o-isomorphism of V. Let

B = {(x, 0 , 0 , 0 , . . . ) | x e R } S R .

Then ^ and 5 are archimedean subgroups of V and A + B = V.

EXAMPLE 7.2. Let H - MeReR D G = Re{0}©R. Now R = D © Q so
(rf + q, x, y) -^-* (d + q, x + q, y) is an o-automorphism of H. Define

r*(d + q,x, y) = (r((d + q, x, y)r))T~l = (rd + rq, rx + rq, ry)T~l . Now,
rd + rq = a + beD®Q so r*(d + q, x, y) = (rd + rq, rx + rq - b, ry).
Thus, H is an R-hull of G even though GeVR.

It is easy to extend the preceding construction to get the following result.

https://doi.org/10.1017/S1446788700029918 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700029918


372 P. Bixler, P. Conrad, W. B. Powell and C. Tsinakis [14]

PROPOSITION 7.3. If G is a non-archimedean totally ordered group that
belongs to VR then G admits an R-hull that is a proper extension.

EXAMPLE 7.4. The quotient of two /-groups that are not even divisible can
be a vector lattice. Let B denote the convex /-subgroup of f l ^ i ^ consisting
of the bounded sequences of integers. Then n z / 5 is a vector lattice.

PROOF. Let A be the convex /-subgroup of Y\°lx R consisting of bounded
sequences. Then let

O: Y\z/B —» J^R// i be the obvious /-homomorphism given by

<l>: (x, x , . . . ) + 5 -> (x, x , . . . ) + ,4.

Clearly, O is one-to-one. To show that O is onto let [x] denote the largest
integer less than or equal to x. Then for (x, , x2, ...) e \[ R notice that
0 < (x, , x2,...)- ([x,], [x2] , . . . ) < ( 1, 1, . . . ) and hence is in A. Thus

* : ([*,], t*2]> •••) + B -> ([*iM*2]> •••) + A = (*i» x2, . . . ) + A.

Thus n z/-# i s /-isomorphic to the vector lattice Y\ R/A . The scalar multi-
plication is given by r • ( (n , , n2,...) + B) = {[rnx], [rn2],...) + B for each
real number r.

EXAMPLE 7.5. The class of vector lattices is not closed with respect to
extensions, let V = ]J?!i R, and let G = {v e V: there are real numbers
rl ' r2 ' • • • > rn S U c h t h a t f o r e a c n ' ' Vi - tU|] - rj f o r s o m e J' ~ 1 , - • • , « } •
Let B be the set of bounded sequences in G. Then B and G/B are vector
lattices but G is not.

P R O O F . First we show that G is an /-subgroup of V. Let x , y e G and
let r , , . . . , rn and s{, ... , sm be the real numbers associated with x and j ; ,
respectively. Then the real numbers rk-st and l + (rk-st) for k = I, ... , n
and t — 1, . . . , m will suffice for x-y. To see this let xi and yi be the ith
components of x and y . Then by definition of G we have xt, = p + rk and
yt = q+st and so xryt = (p-q)+(rk-st). If rk-st > 0 then [xi-yi]=p-q
and so we get x,. - yi - [x,. - y.] = (p - q) + {rk - st) -{p-q) = rk-st.

1 1 1 1—
p-q-l p-q xi~yi P-q + l

If rk - st < 0 then [x(. - yt] = p - q - 1 and so we get x, - yi - [x( - y(] =
{p-q) + (rk-st)-(p-q-l) = rk-st + l

1 1 1 1
p-q-i xi-yi P-Q p-q + i

Thus G is a group. It is clear that if x e G then so is 0 V x and, hence, G
is an /-subgroup of V.
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If G were a vector lattice then it would be a sub-vector lattice of V and
hence n-{\, 2, 3 , . . . ) = (n, In, in, ...) would be in G. Thus there would
be real numbers rx, ... , rk such that for each integer n , nn — [nn] = r for
some j . But then for at least one of the real numbers, say r , , we would have
nn - [nn] — r{ — mn - [mn] with n / m . This says (« - m)n = [nn] - [mn]
which is a contradiction. Thus G is not a vector lattice.

Now consider B, the set of bounded sequences in G. B is a convex
/-subgroup of G and is precisely the set of sequences in G that have finite
range. To see this let 0 < b = (bl, b2,...) e B and let bt < M for all
/ . Let r{, ... , rm be the real numbers associated with b. Then for each
i, bt = n + Tj for some integer n < M and some rjt j = 1, ... , m. That is,
b has finite range. It is also easy to see that any sequences with finite range
is in B. If a sequence has finite range then so does any scalar multiple of it.
Thus B is a sub-vector lattice of V.

Finally, G/B is a vector lattice since it is /-isomorphic to the vector lat-
tice V/A where A is the bounded sequences in V. The isomorphism is
<J>: G/B —> V/A given by O(g + B) = (g + A) as in the previous example.
It is also worth mentioning that G is an a-closure of n ~ i Z(-.

The following example was given in [8] as one in which G}'/G = R for
all y e f but which might not be a vector lattice. We show that it is, in fact,
a vector lattice.

EXAMPLE 7.6. G = J2j=\ M ® Q (1 , 1, 1, . . . ) is a vector lattice.

PROOF. Let <J>: £)°!i R —> G be defined as follows. Choose a basis {ba}
for R over Q that includes 1, and let r e R . Let r — q + q{ba + q2ba +
—I- qnba be the unique representation of r as a linear combination of basis
elements. Then let

and extend O to all of Y^=\ ^, m t n e obvious way. It is clear that O is an
o-isomorphism and it is easy to see that <J> is onto since

< D : ( l , 0 , 0 , . . . ) - ( l , l , l , . . . ) and

Thus G is o-isomorphic to Y^l\ K , a nd , hence, is a vector lattice.

Furthermore we have Y^l\ ^, ^ H%i ^/ a n d s 0 ^ n a s a unique exten-
sion to an o-automorphism of f\ R, call it <I>. Notice that
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which, by the above, is o-isomorphic to J2%i K, © Q ( 1 , 2 , 3 , . . . ) and by
an argument similar to the one above this is o-isomorphic to £ " ! , E , . The
point is that O(<7) is a vector lattice. In fact, G c O(G) c <J>2(G) c •••
where

(=1 i=0

and ®"(G) is a vector lattice for each n. The question is then: Is \J%L0Q>"(G)
a vector lattice? If so, is the scalar multiplication the same as that on O"(G)
for each n ? If it is not a vector lattice, then there would be an example of
a divisible o-group H with Hy /H =. R that is not a vector lattice.

8

We conclude by listing some open questions.
1. Do the vector lattices (over R) form a torsion class of /-groups?
2. Are any two scalar multiplications on a vector lattice connected by an

/-automorphism? If not, do (G, o) and (G,#) have the same dimension?

In particular is any basis for X)°!i R, as a real vector lattice countable?
3. If G is a divisible abelian o-group with each Gy'/Gy = R, then does

G belong to FR?
4. If G is an abelian a*-closed /-group, then does G belong to FR? The

answer is yes if G is totally ordered or archimedean.
5. If G is an archimedean /-group with each Gy /G divisible then is G

divisible?
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