THE LIMITING BEHAVIOUR OF CERTAIN SEQUENCES OF CONTINUED FRACTIONS

DAVID ANGELL

We investigate the set of limit points of the continued fractions

$$\frac{1}{x_k+\frac{1}{x_{k-1}+\cdots \frac{1}{x_1}}}, \qquad k=1,2,3,\ldots,$$

where x_1, x_2, \ldots is a given sequence of positive integers. We show that this set is closed, and that it may include any given countable subset of [0, 1] if the integers x_k are chosen appropriately. Our main result, which has applications in transcendence theory, is that the sequence of continued fractions has no rational limit point when the sequence $\{x_k\}$ of partial quotients is bounded.

1. INTRODUCTION

Let $\mathbf{X} = \{x_k\}_{k \ge 1}$ be a sequence of positive integers. We wish to investigate the nature of $\Lambda(\mathbf{X})$, the set of limit points of the sequence $\{Q_k\}_{k \ge 1}$ defined by

(1)
$$Q_k = \frac{1}{x_{k+1}} \frac{1}{x_{k-1+1}} \cdots \frac{1}{x_1}.$$

Let $\xi = \frac{1}{x_1 + x_2 + \cdots} \in \mathbf{R} - \mathbf{Q}$. Then Q_k is the ratio $\frac{q_k}{q_{k+1}}$ of the denominators of successive convergents to ξ , and we shall sometimes write $\Lambda(\xi)$ for $\Lambda(\mathbf{X})$. Conversely, any irrational number ξ , $0 < \xi < 1$, uniquely determines the sequence \mathbf{X} and the set $\Lambda(\mathbf{X})$.

The source of this problem lies in papers by Loxton and van der Poorten [2] and Angell [1] on functional equation methods in transcendence theory. Given a real irrational

$$\omega=\frac{1}{a_1+a_2+}\ldots$$

with bounded partial quotients, it was found necessary to show that the ratio $\frac{q_k}{q_{k+1}}$ approaches an irrational limit as k tends to infinity through some suitable subsequence K of N—that is, in our present notation, that $\Lambda(\omega)$ contains an irrational. In this paper, we shall first see what can be said about $\Lambda(\mathbf{X})$ without imposing the condition of boundedness on X; among our results are that $\Lambda(\mathbf{X})$ is a closed set, and that X may be chosen in such a way that $\Lambda(\mathbf{X})$ contains a given countable subset of [0,1]. We shall then return to the bounded case. We can show what the original problem requires, and even more:

Received 17 October, 1987

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/88 \$A2.00+0.00.

D. Angell

THEOREM. If X is bounded then $\Lambda(X)$ contains no rationals.

In what follows, lower case Greek letters will denote real numbers in the interval [0,1]; the partial quotients in the (finite or infinite) continued fraction expansions of such numbers will be denoted by the corresponding roman letters:

$$\alpha=\frac{1}{a_1+a_2+}\ldots$$

The *j*-th complete quotient of α is written

$$\alpha_j = \frac{1}{a_{j+1}+1} \frac{1}{a_{j+2}+1} \cdots$$

This is valid for j = 0, 1, 2, ... if α is irrational, and for j = 0, 1, ..., n-1 if $\alpha = \frac{1}{a_1 + \frac{1}{a_2 + \cdots + \frac{1}{a_n}}}$ is rational. In the latter case we set $\alpha_n = 0$ and we leave α_j undefined for j > n.

2. EXAMPLES

1. If x_k is a constant x for all large k then $\Lambda(\mathbf{X}) = \{\lambda\}$, where

$$\lambda = \frac{1}{x+1} \frac{1}{x+1} \frac{1}{x+1} \cdots = \frac{1}{2} \left(-x + \sqrt{x^2 + 4} \right)$$

which is irrational.

2. If X is eventually periodic of period p then

$$\Lambda(\mathbf{X}) = \{ [\overline{a_p, a_{p-1}, \ldots, a_1}], [\overline{a_{p-1}, \ldots, a_1, a_p}], [\overline{a_1, a_p, \ldots, a_2}] \},\$$

a finite set of quadratic irrationals, and has precisely p elements. Here $[\overline{a_p, \ldots, a_1}]$ denotes the periodic continued fraction

3. $0 \in \Lambda(\mathbf{X})$ if and only if **X** is unbounded.

PROOF: For any k,

$$\frac{1}{x_k+1} \leqslant Q_k \leqslant \frac{1}{x_k}.$$

(In fact both inequalities are strict when $k \ge 3$.) Hence Q_k is bounded away from zero if X is bounded; conversely, if some subsequence of X increases without limit, then the corresponding subsequence of $\{Q_k\}_{k\ge 1}$ tends to zero.

4. Similarly, $\Lambda(\mathbf{X}) = \{0\}$ (that is, $\lim_{k \to \infty} x_k Q_k = 0$) if and only if $\lim_{k \to \infty} -\infty$.

- 5. In fact $\lim_{k \to \infty} Q_k$ exists (that is, $\Lambda(\mathbf{X})$ is a singleton) if and only if either
 - (i) X is eventually constant; or
 - (ii) $\lim_{k\to\infty} x_k = \infty$

(that is, in the cases covered by examples 1 and 4).

PROOF: We have

[3]

$$x_k = \frac{1}{Q_k} - Q_{k-1}$$

If $Q_k \to 0$ as $k \to \infty$ then $x_k \to \infty$; if, on the other hand, Q_k tends to a non-zero limit then x_k tends to a (finite) limit. In the latter case, since each x_k is an integer, **X** must be eventually constant. This establishes one half of the result; the converse is given by examples 1 and 4 above.

3. Some general results.

It is clear by counting arguments that $\Lambda(\mathbf{X})$ cannot be an arbitrary subset of [0, 1]; in this section we state and prove a few properties of $\Lambda(\mathbf{X})$.

Definition. Two real numbers ξ , η (not necessarily in [0,1]) are said to be equivalent if

$$\xi = \frac{a\eta + b}{c\eta + d}$$

for some integers, a, b, c, d with $ad - bc = \pm 1$.

LEMMA. Let X be as above and $Y = \{y_k\}_{k \ge 1}$, where $y_k = x_{k+1}$. Then $\Lambda(X) = \Lambda(Y)$.

PROOF: Define Q_k as in (1) and

$$Q'_{k} = \frac{1}{y_{k+1}} \frac{1}{y_{k-1+1}} \dots \frac{1}{y_{1}}$$
$$= \frac{1}{x_{k+1+1}} \frac{1}{x_{k+1}} \dots \frac{1}{x_{2}}.$$

Then

(2)
$$Q_{k+1} = \frac{x_1 p + p'}{x_1 q + q'}$$

where $\frac{p}{q} = Q'_k$, and $\frac{p'}{q'}$ is the second last convergent in the continued fraction of Q'_k . Therefore

$$|Q_{k+1} - Q'_k| = \left|Q_{k+1} - \frac{p}{q}\right| = \frac{1}{q(x_1q + q')}$$
 from (2)
 $\rightarrow 0$

since $q \to \infty$ as $k \to \infty$. Hence any limit point of $\{Q_k\}$ is a limit point of $\{Q'_k\}$, and conversely.

D. Angell

COROLLARY. If ξ and η are equivalent irrational numbers between 0 and 1, then $\Lambda(\xi) = \Lambda(\eta)$.

PROOF: If ξ and η are equivalent, their continued fractions have the forms

$$\xi = \frac{1}{x_1 + \dots + \frac{1}{x_m + \frac{1}{z_1 + \frac{1}{z_2 + \dots + \frac{1}{y_1 + \dots + \frac{1}{y_n + \frac{1}{z_1 + \frac{1}{z_2 + \dots + \frac{1}{z_1 + \frac{1}{z_1 + \frac{1}{z_2 + \dots + \frac{1}{z_1 +$$

by m + n applications of the lemma we have

$$\Lambda(\xi) = \Lambda(\mathbf{Z}) = \Lambda(\eta).$$

Examples 1 and 2 above follow easily from this result. The converse is false; for we can clearly construct inequivalent $\xi = \frac{1}{z_1 + z_2 + \ldots}$ and $\eta = \frac{1}{y_1 + y_2 + \ldots}$ with the property $\lim_{k \to \infty} x_k = \lim_{k \to \infty} y_k = \infty$; and then we have, from example 4, $\Lambda(\xi) = \Lambda(\eta) = \{0\}$.

Clearly $\Lambda(\mathbf{X}) \subseteq [0,1]$; conversely, we can show by an example that any $\alpha \in [0,1]$ is in $\Lambda(\mathbf{X})$ for some \mathbf{X} . If $\alpha = 0$, see examples 3 and 4 above; otherwise, suppose first that α is rational and write

$$\alpha = \frac{p}{q} = \frac{1}{a_1 + \cdots + \frac{1}{a_n}}.$$

If η is any (finite or infinite) continued fraction of the form

$$\eta = \frac{1}{a_1 + \cdots + \frac{1}{a_n + \frac{1}{m + \frac{1}{b_1 + \frac{1}{b_2 + \cdots + \frac{1}{b_1 + \frac{1}{b_2 + \frac{1}{b_1 + \frac{1}{b_2 + \frac{1}{b_1 +$$

then $\frac{p}{q}$ is a convergent to η and we have

$$\left|\frac{p}{q} - \eta\right| < \frac{1}{mq^2} = \frac{C}{m}$$

since q is fixed. The sequence

(3)
$$\mathbf{X} = \{1, a_n, a_{n-1}, \ldots, a_1, 2, a_n, a_{n-1}, \ldots, a_1, 3, \ldots\}$$

then does what is required; for if m > 0 we have

$$Q_{m(n+1)} = \frac{1}{a_1 + \cdots + \frac{1}{a_n + m + \cdots + \frac{1}{a_n + 1}} \cdots + \frac{1}{a_n + 1}$$

and by the previous result

$$\left|\frac{p}{q}-Q_{m(n+1)}\right|<\frac{C}{m}.$$

Hence $Q_{m(n+1)} \rightarrow \alpha$ as $m \rightarrow \infty$, and $\alpha \in \Lambda(\mathbf{X})$. If on the other hand $\alpha =$

 $\left|Q_{m(n+1)-j}-\alpha_{j}\right|<\frac{C}{m},$

where α_j is as defined in Section 1, and therefore $\alpha_j \in \Lambda(X)$. For j = n, moreover,

$$\left|Q_{m(n+1)-j}\right| < \frac{1}{m},$$

so $0 \in \Lambda(\mathbf{X})$. Now suppose $\lambda \in \Lambda(\mathbf{X})$; then some sequence $\{Q_k\}_{k \in \mathbf{K}}$ converges to λ . Such a sequence contains, for some fixed $j = 0, 1, \ldots, n$, infinitely many terms

Thus $Q_{\frac{1}{2}(m^2+3m)} \to \alpha$ as $m \to \infty$, and $\alpha \in \Lambda(\mathbf{X})$.

 $\frac{1}{a_1+a_2+\cdots \notin \mathbf{Q}}$, consider the sequence

It is amusing to note that in these constructions we have reversed classical procedure by using an irrational, or a "complicated" rational, as an approximation to one of

 $j = 0, 1, 2, \ldots, n-1$ we have

numbers in [0, 1]. For example, if $\alpha = \frac{1}{1} \dots \frac{1}{2}$, $\beta = \frac{1}{1} \frac{1}{1} \dots$, choose

$$\mathbf{X} = \{1, b_1, 1, a_n, \dots, a_1, 2, b_2, b_1, 2, a_n, \dots, a_1, 3, b_3, b_2, b_1, \dots\}.$$

1. By similar means we can construct X so that $\Lambda(X)$ contains any two given

In [0, 1]. For example, if
$$\alpha = \frac{1}{a_1 + \cdots + a_n}$$
, $\beta = \frac{1}{b_1 + b_2 + \cdots}$, end

$$\mathbf{X} = \{1, b_1, 1, a_1, \dots, a_1, 2, b_2, b_1, 2, a_1, \dots, a_1, 3, b_3, b_2, b_1, \dots\},\$$

Then
$$\alpha, \beta \in \Lambda(\mathbf{X})$$
. We can even make $\Lambda(\mathbf{X})$ contain a given countably infinite subset

2. If X is the sequence defined by (3) we can calculate $\Lambda(X)$ precisely. For

Then
$$\alpha, \beta \in \Lambda(\mathbf{X})$$
. We can even make $\Lambda(\mathbf{X})$ contain a given countably infinite of $[0,1]$; in particular, $\Lambda(\mathbf{X})$ may include all rationals between 0 and 1.

where
$$\frac{p_m}{q_m} = \frac{1}{a_1 + \dots + \frac{1}{a_m}}$$
. But $\left| \alpha - \frac{p_m}{q_m} \right| < \frac{1}{q_m^2}$ since $\frac{p_m}{q_m}$ is a convergent to α ; hence
 $\left| \alpha - Q_{\frac{1}{2} \left(m^2 + 3m \right)} \right| < \frac{m+1}{mq_m^2}$.

$$\left| Q_{\frac{1}{2}(m^{2}+3m)} - \frac{a_{1}}{q_{m}} - \frac{p_{m}}{q_{m}} \right| < \frac{1}{mq_{m}^{2}}$$

 $\mathbf{X} = \{1, a_1, 2, a_2, a_1, 3, a_3, a_2, a_1, 4, \dots\}.$

$$Q_{\frac{1}{2}(m^2+3m)} = \frac{1}{a_1+} \cdots \frac{1}{a_m+} \frac{1}{m+} \cdots \frac{1}{a_1+1}$$

(4)

and so

https://doi.org/10.1017/S0004972700027246 Published online by Cambridge University Press

D. Angell

 $Q_{m(n+1)-j}$: the sequence of such terms tends to the limit α_j (recall that $\alpha_n = 0$ by definition). Hence $\lambda = \alpha_j$; therefore $\Lambda(\mathbf{X})$ is precisely the set

$$\{0, \frac{1}{a_n}, \frac{1}{a_{n-1}+a_n}, \dots, \frac{1}{a_1+}, \dots, \frac{1}{a_n}\}$$

Observe that $\Lambda(\mathbf{X}) \subseteq \mathbf{Q}$.

3. If X is the sequence (4), then the above reasoning shows that

$$\alpha_j = \lim_{m \to \infty} Q_{\frac{1}{2}(m^2 + 3m) - j}$$

and hence $\Lambda(\mathbf{X}) \supseteq \{0, \alpha_0, \alpha_1, \ldots\}$. Furthermore, if any finite sequence b_1, \ldots, b_n $(n \ge 1)$ occurs infinitely often in $\{a_k\}_{k\ge 1}$ then the sequence $\{Q_k\}_{k\ge 1}$ contains terms of the form

$$\frac{1}{b_1+}\cdots\frac{1}{b_n+}\frac{1}{m+}\cdots\frac{1}{a_1+}\frac{1}{1}$$

for arbitarily large m; hence $\frac{1}{b_1 + \cdots + b_n} \in \Lambda(\mathbf{X})$. It would seem that $\Lambda(\mathbf{X})$ may contain a wide variety of numbers; we close this remark with the observation that it must contain any point of accumulation of all the numbers mentioned so far, for we have:

THEOREM. For any sequence **X**, $\Lambda(\mathbf{X})$ is closed.

PROOF: Let λ be an accumulation point of $\Lambda(\mathbf{X})$; write $\lambda = \lim_{i \to \infty} \xi^{(i)}, \xi^{(i)} \in \Lambda(\mathbf{X})$: without loss of generality $\xi^{(1)} \neq Q_1$. Define k_j inductively by setting $k_1 = 1$ and choosing k_{j+1} to be the least integer $s > k_j$ such that

$$0 < \left| Q_{s} - \xi^{(j+1)} \right| < \frac{1}{2} \left| Q_{k_{j}} - \xi^{(j)} \right|;$$

this is always possible since, for a given j, $\{Q_k\}_{k\geq 1}$ contains elements arbitrarily close to $\xi^{(j+1)}$. (Note that the condition $Q_s \neq \xi^{(j+1)}$ is necessary in order that the process may continue; for the same reason we specified $Q_{k_1} \neq \xi^{(1)}$ above.) Then $\{Q_{k_j}\}_{j\geq 1}$ is a subsequence of $\{Q_k\}_{k\geq 1}$, and

$$\left|\lambda - Q_{k_j}\right| \leq \left|\lambda - \xi^{(j)}\right| + \left(\frac{1}{2}\right)^{j-1} \left|Q_1 - \xi^{(1)}\right|$$

$$\to 0 \text{ as } j \to \infty.$$

Hence $\lambda = \lim_{j \to \infty} Q_{k_j} \in \Lambda(\mathbf{X}).$

COROLLARY. For some **X**, $\Lambda(\mathbf{X}) = [0, 1]$.

PROOF: As in Remark 1 above, $\Lambda(\mathbf{X})$ may contain every rational in [0, 1]; but $\Lambda(\mathbf{X})$ is closed.

[6]

4. BOUNDED SEQUENCES

We have seen (example 2, p.71-72) that without the boundedness condition on X our original problem (to show that $\Lambda(X)$ contains an irrational number) may have no solution. However, in the bounded case the situation is different: we can prove a far stronger result than we actually require.

THEOREM. If X is bounded then $\Lambda(X)$ contains no rationals.

PROOF: This is an immediate consequence of the following theorem.

Definition. For any positive integer M, let \mathbf{B}_M be the set of all real numbers in [0,1] which can be expanded in a continued fraction with partial quotients at most M. For $0 \leq \xi \leq 1$ write

$$\mu(\xi,M) = \inf_{\beta \in B_M, \ \beta \neq \xi} |\xi - \beta|.$$

The following result shows that a number can well be approximated by numbers with bounded partial quotients (if and) only if it is an irrational whose partial quotients satisfy the same bound.

THEOREM. Let M be a positive integer. Then $\mu(\xi, M) = 0$ if and only if ξ is an irrational element of \mathbf{B}_M .

PROOF: The converse statement is quickly proved: if $\xi \in \mathbf{B}_m - \mathbf{Q}$ then the convergents $\beta_m = \frac{p_m}{q_m}$ to ξ satisfy

$$\beta_m \in \mathbf{B}_M, \qquad \beta_m \neq \xi, \qquad \lim_{m \to \infty} \beta_m = \xi$$

so $\mu(\xi, M) = 0$. To prove the forward half of the theorem we first note that if ξ and β are (finite or infinite) continued fractions

$$\xi = \frac{1}{x_1 + x_2 + \dots}, \qquad \beta = \frac{1}{b_1 + b_2 + \dots},$$

and if $x_1 = b_1, \ldots, x_m = b_m$, then

$$\begin{aligned} |\xi - \beta| &= |\xi_0 - \beta_0| = \xi_0 \beta_0 \left| \left(\frac{1}{\xi_0} - x_1 \right) - \left(\frac{1}{\beta_0} - b_1 \right) \right| \\ &= \xi_0 \beta_0 \left| \xi_1 - \beta_1 \right| = \dots \\ &= \xi_0 \dots \xi_{m-1} \beta_0 \dots \beta_{m-1} \left| \xi_m - \beta_m \right|. \end{aligned}$$

Suppose first that $\xi = \frac{1}{x_1 + \cdots + \frac{1}{x_n}} \in \mathbb{Q}$. Let

be a finite or infinite continued fraction in B_M . Since β has at least n+2 partial quotients, $\beta \neq \xi$. Define m to be the greatest integer s such that $x_1 = b_1, \ldots, x_s = b_s$. Then $m \leq n$ and we have

(6)
$$\begin{aligned} |\xi - \beta| \ge \xi_0 \dots \xi_{m-1} \beta_0 \dots \beta_{m-1} |\xi_m - \beta_m| \\ \ge \xi_0 \dots \xi_{n-1} (M+1)^{-n} |\xi_m - \beta_m|. \end{aligned}$$

(The last step is necessary since m depends on β .) We now have

(i) if m = n then $\xi_m = 0$ and

$$|\xi_m - \beta_m| = \beta_m \geqslant \frac{1}{M+1};$$

(ii) if
$$m < n$$
 and $x_{m+1} > b_{m+1}$ then

$$|\xi_m - \beta_m| = \beta_m - \xi_m \ge \frac{1}{b_{m+1} + 1} + \frac{1}{1 + M + 1} - \frac{1}{x_{m+1}}$$

using the fact (from (5)) that β has at least n + 2 partial quotients. Hence

$$\begin{aligned} |\xi_m - \beta_m| &\ge \frac{(M+2)(x_{m+1} - b_{m+1}) - (M+1)}{x_{m+1}((M+2)b_{m+1} + (M+1))} \\ &\ge \frac{1}{N(M^2 + 3M + 1)} \end{aligned}$$

where $N = \max_{1 \leqslant j \leqslant n} x_j$; and

(iii) if m < n and $x_{m+1} < b_{m+1}$ then $|\xi_m - \beta_m| \ge \frac{1}{(N+1)(M^2 + M + 1)}$ as in (ii).

Hence

$$\inf |\xi - \beta| \ge \frac{\xi_0 \dots \xi_{n-1} (M+1)^{-n}}{(N+1)(M^2 + 3M+1)} = C(\xi, M) > 0,$$

where the infimum here extends over all $\beta \in \mathbf{B}_M$ of the form (5). Since by doing this we have excluded only finitely many elements of \mathbf{B}_M , we have

$$\mu(\xi,M)>0.$$

Suppose, on the other hand, that ξ is irrational and not in \mathbb{B}_M . Let *n* be maximal such that $x_1, x_2, \ldots, x_n \leq M$; for any $\beta \in \mathbb{B}_M$ of the form

$$\frac{1}{b_1+}\cdots\frac{1}{b_{n+3}+}\cdots$$

let m, as before, be the greatest integer s such that $x_1 = b_1, \ldots, x_s = b_s$. Then $m \leq n$ and (6) is again valid. We have

(i) if m = n then

$$\begin{aligned} |\xi_m - \beta_m| &= \beta_m - \xi_m \ge \frac{1}{M+1} \frac{1}{1+M+1} - \frac{1}{M+1} \\ &= \frac{1}{(M+1)(M^2 + 3M+1)}, \end{aligned}$$

where we have relied on the form (7) of β ; and

(ii) if m < n then $|\xi_m - \beta_m| \ge C'(\xi, M)$, where $C'(\xi, M)$ is the constant of (ii) or (iii) above.

Hence

$$\inf |\xi - \beta| \ge \frac{\xi_0 \dots \xi_{n-1} (M+1)^{-n}}{(N+1)(M+1)(M^2 + 3M + 1)} = C(\xi, M) > 0,$$

where, as for the case $\xi \in \mathbf{Q}$, the infimum excludes only finitely many values of β . This completes the proof of the theorem.

Remarks.

1. In the case where X is bounded, it is still possible that $\Lambda(X)$ be infinite. For example, write $\alpha^{(j)} = \frac{1}{2+} \dots \frac{1}{2+\frac{1}{1}}$, $\beta^{(j)} = \frac{1}{2+} \dots \frac{1}{2+\frac{1}{2}}$, where each continued fraction has just j + 1 partial quotients. If

$$\xi^{(j)} = \frac{1}{2+} \cdots \frac{1}{2+} \frac{1}{1+} \cdots$$

is a finite or infinite continued fraction whose sequence of partial quotients begins with precisely j twos, then $\xi^{(j)}$ lies in $I^{(j)}$, the closed interval between $\alpha^{(j)}$ and $\beta^{(j)}$ (that is, $I^{(j)} = [\alpha^{(j)}, \beta^{(j)}]$ or $[\beta^{(j)}, \alpha^{(j)}]$ according as j is odd or even). It may be checked that these intervals are pairwise disjoint. Now let **X** be the sequence

$$\mathbf{X} = \{1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 2, 2, 1, 2, 2, 1, 2, 1, \dots\}$$

which contains each finite sequence 1, 2, ..., 2 infinitely often. Then for each j, infinitely many Q_k lie in $I^{(j)}$; and hence each $I^{(j)}$ contains at least one limit point of $\{Q_k\}_{k\geq 1}$. Hence $\Lambda(\mathbf{X})$ is infinite. (In fact for any j the sequence $\{Q_{k_{jn}}\}_{n\geq j}$, where $k_{jn} = 1 + 3 + 6 + \cdots + \frac{1}{2}n(n+1) - \frac{1}{2}j(j-1)$, lies entirely in $I^{(j)}$.)

2. Apart from the limit points already mentioned in the $I^{(j)}$, $\Lambda(X)$ also contains any accumulation point of all these; one such point is easily seen to be

$$\frac{1}{2+}\frac{1}{2+}\cdots = \sqrt{2}-1$$

[9]

[10]

which lies in none of the $I^{(j)}$.

3. We conclude with a question: if X is a bounded sequence of positive integers, can $\Lambda(X)$ be uncountable? It may help to recall that $\Lambda(X)$ is a closed set which contains no rationals.

References

- [1] D.D. Angell, Mahler's Method in Transcencence Theory (Ph.D. thesis, University of New South Wales, 1987).
- [2] J.H. Loxton and A.J. van der Poorten, 'Arithmetic properties of certain functions in several variables III', Bull. Austral. Math. Soc. 16 (1977), 15-47.

School of Mathematics University of N.S.W. Kensington, N.S.W. 2033 Australia