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THE LIMITING BEHAVIOUR OF CERTAIN SEQUENCES
OF CONTINUED FRACTIONS

DAVID ANGELL

We investigate the set of limit points of the continued fractions

1 1 1 ,

where x\, « } , . . . is a given sequence of positive integers. We show that this set is closed,
and that it may include any given countable subset of [0,1] if the integers ajfc are chosen
appropriately. Our main result, which has applications in transcendence theory, is that
the sequence of continued fractions has no rational limit point when the sequence {a:it}
of partial quotients is bounded.

1. INTRODUCTION

Let X = {xk}k^i be a sequence of positive integers. We wish to investigate the
nature of A(X), the set of limit points of the sequence {Qk}k^i defined by

Xk+ Xk-1+ Xl

Let 6 = —i-r--—• •• • € R — Q. Then Qu is the ratio -2*— of the denominators of
successive convergents to £, and we shall sometimes write A(£) for A(X). Conversely,
any irrational number £, 0 < £ < 1, uniquely determines the sequence X and the set
A(X).

The source of this problem lies in papers by Loxton and van der Poorten [2] and
Angell [1] on functional equation methods in transcendence theory. Given a real irra-
tional

with bounded partial quotients, it was found necessary to show that the ratio -Si-
approaches an irrational limit as k tends to infinity through some suitable subsequence
K of N—that is, in our present notation, that A(w) contains an irrational. In this
paper, we shall first see what can be said about A(X) without imposing the condition
of boundedness on X; among our results are that A(X) is a closed set, and that X
may be chosen in such a way that A(X) contains a given countable subset of [0,1].
We shall then return to the bounded case. We can show what the original problem
requires, and even more:
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68 D. Angell [2]

THEOREM. If X is bounded then A(X) contains no rationeds.

In what follows, lower case Greek letters will denote real numbers in the interval

[0,1]; the partial quotients in the (finite or infinite) continued fraction expansions of

such numbers will be denoted by the corresponding roman letters:

1 1

«i+ +

The j-th. complete quotient of a is written

1

This is valid for j — 0 ,1 , 2 , . . . if a is irrational, and for j = 0 , 1 , . . . ,n — 1 if a =

—IT—^r-.. . — is rational. In the latter case we set an = 0 and we leave a,- undefined
a l ~r a2 + an ^

for j > n.

2. EXAMPLES

1. If Kfe is a constant x for all large k then A(X) = {A}, where
= = - (-x

X+X+X+ 21
X

x+ x+ x+

wliich is irrational.

2. If X is eventually periodic of period p then
A ( X ) = {[oP,ap_1,...,a1], [ap_i, . . . ,ai ,ap], [oi,ap,... ,

a finite set of quadratic irrationals, and has precisely p elements. Here [ap,... ,01]

denotes the periodic continued fraction

1 1 1 1

ap+ 01 +

3. 0 G A(X) if and only if X is unbounded.

PROOF: For any k,

— ^ Qk < — •

(In fact both inequalities are strict when k ^ 3.) Hence Qfc is bounded away from

zero if X is bounded; conversely, if some subsequence of X increases without limit,

then the corresponding subsequence of {Qk}k^si tends to zero. |

4. Similarly, A(X) = {0} (that is, lim XkQk = 0 ) if and only if lim = 00 .
fc —* CO k —-CO

5. In fact lim Qk exists (that is, A(X) is a singleton) if and only if either
fc—»oo

(i) X is eventually constant; or

(ii) lim Xk — 00
fc—>oo
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(that is, in the cases covered by examples 1 and 4).

PROOF: We have

Xk = 7: Qfc-i-
Qk

If Qk —> 0 as fc —> oo then i ^ - t o o ; if, on the other hand, Qk tends to a non-zero
limit then Xk tends to a (finite) limit. In the latter case, since each Xk is an integer,
X must be eventually constant. This establishes one half of the result; the converse is
given by examples 1 and 4 above. |

3. SOME GENERAL RESULTS.

It is clear by counting arguments that A(X) cannot be an arbitary subset of [0,1];
in this section we state and prove a few properties of A(X).

Definition. Two real numbers £, r\ (not necessarily in [0,1]) are said to be equivalent

if
_ arj + b

cq + d

for some integers, o, 6, c, d with ad — be— ± 1 .

LEMMA. Let X be as above and Y = {ykjk^i, where yk = xk+1. Then A(X) =

A(Y).

PROOF: Define Qk as in (1) and

1 1 1
Q'k =

yk+yk-i+ 2/1
i l l

" %2

Then

(2) e?fc+, =

where | = Q'k , and *~r is the second last convergent in the continued fraction of Q'k.
Therefore

- Qk\ =
l

q(xiq+q')

0

from (2)

since j - t o o as le —> oo. Hence any limit point of {Qk} is a limit point of {Q'k}, and
conversely. |
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COROLLARY. If £ and rj are equivalent irrationai numbers between 0 and 1, then

PROOF: If £ and t] are equivalent, their continued fractions have the forms

1 1 1 1

V =
1 1 1

by m + n applications of the lemma we have

A(0 = A(Z) = A(tj).

Examples 1 and 2 above follow easily from this result. The converse is false; for
we can clearly construct inequivalent £ = j ^ - ^ ; • • • and r\ = —^jrr^p • • • with the
property lim xk = lim yk = oo; and then we have, from example 4, A(£) = A(TJ) =

k—«oo fc—»oo

{0}.
Clearly A(X) C [0,1]; conversely, we can show by an example that any a £ [0,1]

is in A(X) for some X . If a = 0, see examples 3 and 4 above; otherwise, suppose first
that a is rational and write

q aj+ an

If T] is any (finite or infinite) continued fraction of the form

1 1 1 1 1
V = an+m+

then £ is a convergent to r) and we have

mq* TO

since q is fixed. The sequence

(3) X = {l,an,on_i, . . . ,ai<,2,an,an_i, .

then does what is required; for if m > 0 we have

Qm(n+1) — T • • •
1 1

;
an+m+ an+and by the previous result

- - Qm(n+1) m
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Hence Qm(n+i) -» a as m —> oo, and a 6 A(X). If on the other hand a -

•^r j i j - • • • ^ Q , consider the sequence

(4) X = { I , a i , 2 , a 2 , a i , 3 , a 3 ) a 2 , o i , 4 , . . . } .

We have

and so

where ^ = •—-... — . But
9m «1 + "m

a _ Em. < i since ^ ^ is a convergent to a ; hence
1m\ qi. 9m °

m

Thus Q i ( m 2 + 3 m ) —• a as m —» oo, and a € A(X). |

It is amusing to note that in these constructions we have reversed classical proce-

dure by using an irrational, or a "complicated" rational, as an approximation to one of

its convergents.

Remarks.
1. By similar means we can construct X so that A(X) contains any two given

numbers in [0,1]. For example, if a = ^ p . . . ^ , 0 — 5 ^ -^ ..., choose

X = {1,61,1, an,..., 01,2,62. &i, 2, o n , . . . , 01,3,63, b2,61,...}.

Then a,/? £ A(X). We can even make A(X) contain a given countably infinite subset

of [0,1]; in particular, A(X) may include all rationals between 0 and 1.

2. If X is the sequence defined by (3) we can calculate A(X) precisely. For

j = 0 ,1 ,2 , . . . , n - 1 we have

l/i 1 C

\Qm(n+l)-j ~ <*j\ < —,
Tib

where aj is as defined in Section 1, and therefore OLJ £ A(X). For j — n , moreover,

\Qm(n+\)~j\ < — ,

so 0 € A(X). Now suppose A 6 A(X); then some sequence {Qk}k£K converges to
X. Such a sequence contains, for some fixed j = 0 , 1 , . . . , n , infinitely many terms
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Qm(n+i)-j '• the sequence of such terms tends to the limit a.j (recall that <xn — 0 by
definition). Hence A — otj; therefore A(X) is precisely the set

( o A r ^
Observe that A(X) C Q.

3. If X is the sequence (4), then the above reasoning shows that

and hence A(X) 15 {0,<xoj<*i>-••}• Furthermore, if any finite sequence 6 i , . . . , 6 n

(n > 1 ) occurs infinitely often in {dk}k^i then the sequence {Qk}k^\ contains terms
of the form

1 1 1 1 1
h+ '" bn+m+ • " o i + T

for arbitarily large m; hence j-f̂  . . . •£- 6 A(X). It would seem that A(X) may contain
a wide variety of numbers; we close this remark with the observation that it must contain
any point of accumulation of all the numbers mentioned so far, for we have:

THEOREM.'For any sequence X, A(X) is closed.

PROOF: Let A be an accumulation point of A(X); write A = lim f^, (^ €
t-<-oo

A(X): without loss of generality £ ^ ^ Qi . Define kj inductively by setting k\ = 1
and choosing fcj+i to be the least integer s > kj such that

0

this is always possible since, for a given j , {Qk}k^i contains elements arbitrarily close
to £<J+1). (Note that the condition Q, ^ £(>+1) is necessary in order that the process
may continue; for the same reason we specified Qkt ^ £ ^ above.) Then {Qkj}j^i is
a subsequence of {Qk}k^i >

f(l>

0 as ;' oo.

Hence A = lim Qk. 6 A(X). |
j—too

COROLLARY. For some X, A(X) = [0,1].

PROOF: AS in Remark 1 above, A(X) may contain every rational in [0,1]; but
A(X) is closed. |
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4. BOUNDED SEQUENCES

We have seen (example 2, p.71-72) that without the boundedness condition on X
our original problem (to show that A(X) contains an irrational number) may have no
solution. However, in the bounded case the situation is different: we can prove a far
stronger result than we actually require.

THEOREM. If X is bounded then A(X) contains no r&tioneds.

PROOF: This is an immediate consequence of the following theorem. |

Definition. For any positive integer M , let BA^ be the set of all real numbers in [0,1]
which can be expanded in a continued fraction with partial quotients at most M. For
0 < £ ^ 1 write

)= inf |£-/?|.

The following result shows that a number can well be approximated by numbers
with bounded partial quotients (if and) only if it is an irrational whose partial quotients
satisfy the same bound.

THEOREM. Let M be a positive integer. Then n(£,M) = 0 if and only if £ is an
irrational eiement of 'BM .

PROOF: The converse statement is quickly proved: if £ 6 B m — Q then the con-
vergents j3m — Esx to £ satisfy

An £ B M , Pm t t , lim (Jm=£
m—>oo

so fi(£,M) = 0. To prove the forward half of the theorem we first note that if £ and
j3 are (finite or infinite) continued fractions

t a- l l

& + 0 +
and if x\ = 61 , . . . , xm = bm , then

Supppose first that ^ = -^—^ . . . ^ - £ Q . Let

(•) bn+2+
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be a finite or infinite continued fraction in B M . Since /? has at least n + 2 partial
quotients, /3 ̂  £ • Define TO to be the greatest integer s such that £i = 6 j , . . . , x, = b,.
Then TO ̂  n and we have

(The last step is necessary since TO depends on/3.) We now have

(i) if TO = n then £m == 0 and

\tm ~ /3m| = Pm ^ M + j i

(ii) if TO < n and £ m +i > bm+i then

. . „ . „ . I l l 1
\sm rm\ — rm sm s- i p 1 i Jl/f i i

Otn+l+l+iW+1 »m+l

using the fact (from (5)) that /? has at least n + 2 partial quotients.
Hence

•2)(a;m+i - 6 m + 1 ) - ( M + l)

where N = max x ,•; and

if TO <

in (ii).

(iii) if TO < n and x m + 1 < 6 m + 1 then \(m - / 3 m | > ( i y + 1 ) ( M 2 + M + 1 }
 a s

Hence

where the infimum here extends over all f3 G B^f of the form (5). Since by doing this
we have excluded only finitely many elements of B^,/ > we have

Suppose, on the other hand, that £ is irrational and not in B^/ . Let « be maximal
such that X\, x^,. • •, xn ^ M; for any /? £ B A / of the form
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let m , as before, be the greatest integer 3 such that x\ = 6 j , . . . , *, = b, . Then rn < n

and (6) is again valid. We have

(i) if m = n then

ICm Pm\ — Pm S
M+l+M + 1 M

1

where we have relied on the form (7) of /?; and
(ii) if m < n then |£m - f3m\ > C"(£, M), where C"(£, M) is the constant of

(ii) or (iii) above.

Hence

where, as for the case £ € Q , the infimum excludes qnly finitely many values of j3.
This completes the proof of the theorem. |

Remarks.

1. In the case where X is bounded, it is still possible that A(X) be infinite. For
example, write a ^ = 5T • • • 5 ^ 1 ' P^ = 2T •' • 5T5 ' w n e r e e£ich continued fraction
has just j' + 1 partial quotients. If

is a finite or infinite continued fraction whose sequence of partial quotients begins with
precisely j twos, then £(^ i j e s m j(i) ( t n e c l o s e d interval between a^^ and / 3 ^ (that
is, / ( J ' = [a^\/3^] or ^ J ' ) ,a^ '^] according as j is odd or even). It may be checked
that these intervals are pairwise disjoint. Now let X be the sequence

X = {1 ,1 ,2 ,1 ,1 ,2 ,2 ,1 ,2 ,1 ,1 ,2 ,2 ,2 ,1 ,2 ,2 ,1 ,2 ,1 , . . .}

which contains each finite sequence 1,2, . . . , 2 infinitely often. Then for each j , in-

finitely many Qk lie in 1^; and hence each 1^ contains at least one limit point of

{Qfc}k>i- Hence A(X) is infinite. (In fact for any j the sequence {Qk n}n^j > where

kjn = 1 + 3 + 6 + • • • + \n{n + 1) - \j(j - 1), lies entirely in I[j).)

2. Apart from the limit points already mentioned in the I1-'1, A(X) also contains

any accumulation point of all these; one such point is easily seen to be
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which lies in none of the
3. We conclude with a question: if X is a bounded sequence of positive integers,

can A(X) be uncountable? It may help to recall that A(X) is a closed set which
contains no rationals.
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