Equations of motion in Poincaré-Četaev variables with constraint multipliers

Q.K. Ghori

Suslov's constraint multipliers are used to derive the equations of motion of dynamical systems (holonomic or nonholonomic) in the form of Poincaré-Četaev equations and in the canonical form. For holonomic systems defined by redundant variables, the constraint multipliers occurring in the canonical equations are determined and a modification of the Hamilton-Jacobi Theorem for integrating the canonical equations is presented.

1. Introduction

The method of constraint multipliers going back to Suslov [7] allows the reduction of Lagrange's equations of motion of a holonomic dynamical system to the ordinary canonical equations which can be integrated by the Hamilton-Jacobi Theorem. Employing such multipliers, Šul'gin [5], Šehaïdarova [4], and others have published equations of motion of holonomic systems in redundant generalised coordinates. In his recent paper [6], Šul'gin has extended these equations to the case of linear nonholonomic systems.

We shall be concerned with the generalisations of these results in the Poincaré-Četaev variables. We begin with a conservative dynamical system whose position at any time t is specified by the variables x_1, x_2, \ldots, x_n. As in [2], let the set of operators X_0, X_1, \ldots, X_n...
with commutators

\[(x_0, x_p) = C_{0pq} x_q, \quad (x_p, x_q) = C_{pqr} x_r \quad (p, q, r = 1, 2, \ldots, n)\]

define the infinitesimal displacements of the system; and let the parameters \(\eta_1, \eta_2, \ldots, \eta_n\) and \(\omega_1, \omega_2, \ldots, \omega_n\) characterize the real and possible displacements, so that the variation of an arbitrary function \(f(x_1, \ldots, x_n; t)\) in a real and possible displacement of the system is determined by the relation

\[df = \left[\dot{x}_0(f) + \eta_p x_p(f)\right] dt, \quad \delta f = \omega_p x_p(f) \quad (p = 1, 2, \ldots, n)\]

and the differential constraints (holonomic or linear nonholonomic) are expressed by \(m (< n)\) equations

\[F_\alpha = A_{\alpha p} \eta_p + A_{\alpha 0} = 0 \quad (\alpha = 1, 2, \ldots, m; p = 1, 2, \ldots, n),\]

the \(\omega\)'s satisfying the relations

\[\frac{\partial F_\alpha}{\partial \eta_p} \omega_p = 0 \quad (\alpha = 1, 2, \ldots, m; p = 1, 2, \ldots, n).\]

Here \(C_{0pq}, C_{pqr}, A_{\alpha p}\), and \(A_{\alpha 0}\) are functions of \(x_1, x_2, \ldots, x_n, t\), and the convention of summing over a repeated suffix is adopted.

2. Equations of motion with constraint multipliers

It has been shown in [3] that the motion of the dynamical system under consideration, for which the kinetic potential is

\[L(x_1, \ldots, x_n; \eta_1, \ldots, \eta_n; t),\]

is determined by the differential equations

\[\frac{d}{dt} \frac{\partial L}{\partial \eta_p} - C_{0pq} \frac{\partial L}{\partial \eta_q} - C_{pqr} \eta_q \frac{\partial L}{\partial \eta_r} - x_p(L) - \lambda \frac{\partial F_\alpha}{\partial \eta_p} = 0 \quad (\alpha = 1, 2, \ldots, m; p, q, r = 1, 2, \ldots, n),\]

where \(\lambda_1, \ldots, \lambda_m\) are the Lagrange undetermined multipliers.

According to Suslov [7], we introduce the constraint multipliers \(M_\alpha\) by the relations

\[\frac{\partial F_\alpha}{\partial \eta_p} = M_\alpha \quad (\alpha = 1, 2, \ldots, m).\]
Equations of motion

\[dM_\alpha = -\lambda_\alpha dt \quad (\alpha = 1, 2, \ldots, m). \]

We also note from (2) and (3) that

\[X_p(F_\alpha) = \eta_q X_p(A_{\alpha q}) + X_p(A_{\alpha 0}), \]

and

\[\frac{d}{dt} \frac{\partial F_\alpha}{\partial \eta_p} = X_\alpha(A_{\alpha p}) + \eta_q X_q(A_{\alpha q}). \]

In view of the last relations, equations (4) assume the form

\[\frac{d}{dt} \left(\frac{\partial L}{\partial \eta_p} + M_\alpha \frac{\partial F_\alpha}{\partial \eta_p} \right) - C_{\alpha pq} \frac{\partial L}{\partial q} - C_{\alpha qr} \eta_q \frac{\partial L}{\partial \eta_r} - X_p(L) - M_\alpha X_p(F_\alpha) \]

\[= M_\alpha \left(\Omega^\alpha_{qp} + \eta_q \Omega^\alpha_{qc} \right) \quad (\alpha = 1, 2, \ldots, m; \ p, q, r = 1, 2, \ldots, n), \]

where

\[\Omega^\alpha_{op} = X_0(A_{\alpha p}) - X_0(A_{\alpha q}) \quad \Omega^\alpha_{qp} = X_q(A_{\alpha p}) - X_q(A_{\alpha q}). \]

The equations (5) are the Poincaré-Četaev equations of motion of the nonholonomic system with constraint multipliers. The \((n+m)\) equations (5) and (3) are sufficient to determine the \((n+m)\) unknown quantities \(x_1, x_2, \ldots, x_n, M_1, M_2, \ldots, M_m\) as functions of \(t\).

Let us assume the vanishing of the nonholonomy terms \(\Omega^\alpha_{op}\) and \(\Omega^\alpha_{qp}\), occurring in equations (5). It follows that the constraint equations (3) are integrable and the system is holonomic. In such a case the \(x\)'s and \(t\) are connected by relations in the finite form

\[f_\alpha(x_1, x_2, \ldots, x_n; t) = 0 \quad (\alpha = 1, 2, \ldots, m), \]

and equations (3) may be taken to be equivalent to

\[F_\alpha = \frac{df_\alpha}{dt} = X_0(f_\alpha) + \eta_p X_p(f_\alpha) = 0. \]

Consequently we have

\[A_{\alpha p} = X_p(f_\alpha), \quad A_{\alpha 0} = X_0(f_\alpha), \]

and, in view of (1), the following relations hold:
\[\dot{\rho}_p^\alpha = (x \dot{x}_p - x \dot{x}_p') f_\alpha = c_{0pq} \dot{x}_q \{ f_\alpha \} = 0, \]
\[\dot{\rho}_q^\alpha = (x_q \dot{x}_p - x_q \dot{x}_p') f_\alpha = c_{qpr} \dot{x}_r \{ f_\alpha \} = 0. \]

The preceding analysis shows that, for a holonomic system defined by redundant variables, the equations of motion with constraint multipliers are
\[\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\eta}_p} + M \frac{\partial F}{\partial \dot{\eta}_p} \right) = C_{0pq} \frac{\partial L}{\partial \eta_q} - C_{qpr} \eta_q \frac{\partial L}{\partial \eta_r} - \dot{x}_p (L) - M \dot{x}_p (F_\alpha) = 0 \]
\[(a = 1, 2, \ldots, m; p, q, r = 1, 2, \ldots, n). \]

3. Canonical equations

In order to pass from equations (5) for the motion of a nonholonomic system to the canonical equations, we introduce new variables \(y_p \) by the relations
\[y_p = \frac{\partial L}{\partial \dot{\eta}_p} + M \frac{\partial F}{\partial \dot{\eta}_p} \quad (p = 1, 2, \ldots, n). \]

Let us assume that in the \((n+m)\) equations (11) and (3) the Jacobian of the \((n+m)\) functions
\[\frac{\partial L}{\partial \eta_p} + M \frac{\partial F}{\partial \eta_p}, F_\alpha \]
with respect to the \(\eta \)'s and \(M \)'s is different from zero. We can then solve these equations to obtain
\[\eta_p = \eta_p (x_1, \ldots, x_n; y_1, \ldots, y_n; t), \]
\[M_\alpha = M_\alpha (x_1, \ldots, x_n; y_1, \ldots, y_n; t). \]

Varying the function \(L \) in accordance with (2) and using (3) and (11), we get...
Equations of motion

\[\delta L = \omega_p X_p(L) + \frac{\partial L}{\partial \eta_p} \delta \eta_p \]

\[= \omega_p \left(\frac{dy}{dt} - M_{\alpha} X_{\alpha}(p) - C_{0pq}(y_q - M_{\alpha} A_{\alpha q}) - \eta_q C_{qpr}(y_r - M_{\alpha} A_{\alpha r}) - M_{\alpha} \left(\omega_{0p} + \eta_q \alpha \right) \right) + \left(y_p - M_{\alpha} \frac{\partial \alpha}{\partial \eta_p} \right) \delta \eta_p \]

which reduces to

\[\delta L + M_{\alpha} \delta F = \omega_p \left[\frac{dy}{dt} - C_{0pq} y_q - C_{qpr} \eta_q y_r \right. \]

\[\left. + M_{\alpha} \left(C_{0pq} A_{\alpha q} + \eta_q C_{qpr} A_{\alpha r} - \omega_{0p} - \eta_q \alpha \right) \right] + y_p \delta \eta_p . \]

Let us introduce the function

\[H(x_1, \ldots, x_n; y_1, \ldots, y_n; t) = y_p \eta_p - L . \]

In the functions \(F_{\alpha} \), we replace the \(\eta \)'s by their values obtained from (12) and denote the resulting function by \(H_{\alpha}(x_1, \ldots, x_n; y_1, \ldots, y_n; t) \), so that \(\delta F_{\alpha} = \delta H_{\alpha} \) and the constraint equations (3) become

\[\delta H_{\alpha}(x_1, \ldots, x_n; y_1, \ldots, y_n; t) = 0 \quad (\alpha = 1, 2, \ldots, m) . \]

Varying the function \(H \) and using (13), we find that

\[\delta H - M_{\alpha} \delta H = \eta_p \delta y_p - \omega_p \left[\frac{dy}{dt} - C_{0pq} y_q - C_{qpr} \eta_q y_r \right. \]

\[\left. + M_{\alpha} \left(C_{0pq} A_{\alpha q} + \eta_q C_{qpr} A_{\alpha r} - \omega_{0p} - \eta_q \alpha \right) \right] . \]

On the other hand, we have

\[\delta H - M_{\alpha} \delta H = \omega_p (X_p(L) - M_{\alpha} X_{\alpha}(H_{\alpha})) + \left(\frac{\delta H}{\delta y_p} - M_{\alpha} \frac{\partial \alpha}{\partial \eta_p} \right) \delta y_p . \]

It follows that
\[\eta_p = \frac{\partial H}{\partial y_p} - M_\alpha \frac{\partial H_\alpha}{\partial y_p}, \]

(15) \[\frac{dy_p}{dt} = -x_p(H) + M_\alpha x_\alpha(H_\alpha) + C_{opq} y_q + C_{qpr} \eta_q y_r - \\
- M_\alpha \left[C_{opq} A_{aq} + \eta_q C_{qpr} A_{qr} - \eta_{op} - \eta_{aq} \right] \]

(\(a = 1, 2, \ldots, m; \ p, q, r = 1, 2, \ldots, n\)).

In case the dynamical system is holonomic satisfying conditions (8) and (9), the equations (15) reduce to the form

\[\eta_p = \frac{\partial H}{\partial y_p} - M_\alpha \frac{\partial H_\alpha}{\partial y_p}, \]

(16) \[\frac{dy_p}{dt} = -x_p(H) + M_\alpha x_\alpha(H_\alpha) + C_{opq} y_q + C_{qpr} \eta_q y_r \]

(\(a = 1, 2, \ldots, m; \ p, q, r = 1, 2, \ldots, n\)).

Finally we define a function \(K \) by the relation

\[K = H - M_\alpha H_\alpha. \]

To transform equations (15) we note that along a trajectory the constraint equations (14) hold, so that we may write

\[M_\alpha \frac{\partial H_\alpha}{\partial y_p} = \frac{\partial}{\partial y_p} \left(H_\alpha \right), \quad M_\alpha x_\alpha(H_\alpha) = x_\alpha(H_\alpha) \]

Consequently the equations (15) for a nonholonomic system assume the form

\[\eta_p = \frac{\partial K}{\partial y_p}, \]

(18) \[\frac{dK}{dt} = -x_p(K) + C_{opq} y_q + C_{qpr} \eta_q y_r - M_\alpha \left[C_{opq} A_{aq} + \eta_q C_{qpr} A_{qr} - \eta_{op} - \eta_{aq} \right] \]

(\(a = 1, 2, \ldots, m; \ p, q, r = 1, 2, \ldots, n\)).

In the case of a holonomic system, the canonical equations (16) take the form
Equations of motion

\[\eta_p = \frac{\partial \eta}{\partial y_p}, \]

(19) \[\frac{dy_p}{dt} = -X_p(\alpha) + C_{opq}y_q + C_{qpr}x_qy_r \quad (p, q, r = 1, 2, \ldots, n). \]

If the \(x \)'s are assumed to be generalised coordinates and \(\eta_p = \dot{x}_p \), then all the \(C_{opq}, C_{qpr} \) vanish. In this special case equations (19) reduce to the equations obtained by Šabátová [4] and equations (18) are identical with those published by Šul'gin [6].

In the rest of this work we limit ourselves to a holonomic system whose motion in the presence of integrable constraints of the form (3) or (14) is governed by the equations (16) or (18).

4. Determination of the constraint multipliers

Consider the motion of a holonomic system which is subjected to constraints of the form (14), the equations governing the motion being given by (16). We shall determine the constraint multipliers \(M_\alpha \) as the solution of a system of \(m \) linear equations.

For the sake of simplicity, let us assume the constraints to be stationary. Then equations (14) have the form

(20) \[H_\alpha[x_1, \ldots, x_n, y_1, \ldots, y_n] = 0 \quad (\alpha = 1, 2, \ldots, m), \]

and the canonical equations (16) reduce to the form

\[\eta_p = \frac{\partial H}{\partial y_p} - M_\alpha \frac{\partial H}{\partial x_p}, \]

(21) \[\frac{dy_p}{dt} = -X(p, H) + M_\alpha X_\alpha(p, H) + C_{qpr}x_qy_r \quad (\alpha = 1, 2, \ldots, m; p, q, r = 1, 2, \ldots, n). \]

Differentiating (20) with respect to the time, we obtain

\[\eta_p x_\alpha(p, H) + \frac{\partial H}{\partial y_p} \frac{dy_p}{dt} = 0. \]

Substituting for \(\eta_p \) and \(\frac{dy_p}{dt} \) from (21), we have
Let us define the Poisson bracket \((f, g)\) by the relation
\[
(f, g) = \left[\frac{\partial f}{\partial y_{p}} \right] X_{p}(h_{\alpha}) + \frac{\partial f}{\partial y_{q}} \left[-X_{p}(h_{\alpha}) + m_{\beta} X_{p}(h_{\beta}) + c_{pqrs} y_{r} \left(\frac{\partial f}{\partial y_{q}} - m_{\beta} \frac{\partial f}{\partial y_{q}} \right) \right] = 0
\]
\((\alpha, \beta = 1, 2, \ldots, m; p, q, r = 1, 2, \ldots, n)\).

In view of (23), the equations (22) are equivalent to
\[
(H, h_{\alpha}) - m_{\beta} (h_{\beta}, h_{\alpha}) = 0 \quad (\alpha, \beta = 1, 2, \ldots, m).
\]
These equations are a set of \(m\) linear equations to find \(M_{1}, M_{2}, \ldots, M_{m}\). Substituting their values in (21), we have \(2n\) equations to find the \(\eta\)'s and \(y\)'s.

5. Hamilton-Jacobi Theorem

We again consider holonomic systems whose motion in the presence of constraint equations (3) or (14) is described with redundant variables by canonical equations of the form (19) or with constraint multipliers by equations of the form (16). For such systems, the integration of the equations of motion can be effected by a method analogous to the well-known Hamilton-Jacobi method.

In order to formulate the Hamilton-Jacobi Theorem for the canonical equations (16), we consider, as in [1, 3], the partial differential equation
\[
\frac{\partial \phi}{\partial t} + H(x_{1}, \ldots, x_{n}; H_{1}(S), \ldots, H_{n}(S); t) = 0.
\]
The function \(\phi\) is to be determined in such a way that if \(S(x_{1}, \ldots, x_{n}; a_{1}, \ldots, a_{n}; t)\), containing \(n\) arbitrary constants \(a_{1}, \ldots, a_{n}\), is a complete integral of (24), then the integrals of equations (16) are given by
\[
y_{p} = X_{p}(S),
\]
\[
b_{p} = A_{p}(S) \quad (p = 1, 2, \ldots, n),
\]
where the A_p define the set of infinitesimal operators for the a's, and b_p are new arbitrary constants.

Let us suppose that the complete integral $S(x_1, \ldots, x_n; a_1, \ldots, a_n; t)$ is substituted in (24). Then, applying the operator A_p to (24) and using (25), we get

$$A_p x_0(S) + \frac{\partial H}{\partial y_p} A_p x(S) + \frac{\partial \phi}{\partial y_p} A_p x(S) = 0 \quad (q = 1, 2, \ldots, n),$$

which, in view of the first set of equations (16), becomes

$$A_p x_0(S) + \eta A_p x(S) + M_a \frac{\partial x}{\partial y_q} A_p x(S) + \frac{\partial \phi}{\partial y_q} A_p x(S) = 0.$$

Again, differentiating (26) with respect to the time, we have

$$X_0 A_p(S) + \eta X_A p(S) = 0.$$

Since S is a complete integral, we have

$$X_0 A_p(S) = A_p x_0(S), \quad A_p x(S) = X_A p(S),$$

and the determinant $|X_A p(S)| \neq 0$. It follows from (27) and (28) that

$$\left\{M_a \frac{\partial x}{\partial y_q} + \frac{\partial \phi}{\partial y_q}\right\} X_A p(S) = 0,$$

which, in view of (17), is equivalent to

$$\frac{\partial}{\partial y_q} (M_a \phi + \phi X_A p(S) = 0.$$

As the determinant of the coefficients is non-vanishing, the only solution of the last equations is the trivial solution. This implies that

$$\phi = -M_a \phi + \phi(x_1, \ldots, x_n; t).$$

Next we again apply the operator X_p to (24) with ϕ given by (29) and use (25). Then we obtain

$$X_p x_0(S) + X_p x(S) + \frac{\partial H}{\partial y_p} X_p x(S) - \frac{\partial}{\partial y_p} (M_a \phi) X_p x(S) + X_p(\psi) = 0.$$
which, by virtue of (17) and the first set of equations (16), becomes
\[X_p X_0(S) + X_p(H) + \eta X_p X_0(S) - M_p X_p(H) + X_p(\psi) = 0. \]

Finally, differentiating (25) with respect to the time, we get
\[\frac{dy_p}{dt} = X_0 X_p(S) + \eta q X_p(S). \]

From the last two equations it follows that
\[\frac{dy_p}{dt} = (X_0, X_p) + \eta q X_p(S) - X_p(H) + M_p X_p(H) - X_p(\psi) = 0, \]
or, in view of (1) and (25),
\[\frac{dy_p}{dt} = -X_p(H) + M_p X_p(H) + C_{pq} y_q + C_{qpr} y_r - X_p(\psi). \]

A comparison of (16) and (30) shows that \(X_p(\psi) = 0 \) for \(p = 1, 2, \ldots, n \). It follows that \(\psi \) is a function of \(t \) only and can be taken as zero by modifying \(S \). Consequently
\[\phi = -M_p H (\alpha = 1, 2, \ldots, m). \]

This leads to the theorem analogous to the Hamilton-Jacobi Theorem, which may be thus stated. If \(S = S(x_1, \ldots, x_n; \alpha_1, \ldots, \alpha_n; t) \) is a complete integral of the partial differential equation
\[X_0(S) + H(x_1, \ldots, x_n; X_1(S), \ldots, X_n(S); t) - M \alpha H = 0 \]
\((\alpha = 1, 2, \ldots, m) \),
then the integrals of the canonical equations (16) are given by the equations (25) and (26).

It may be remarked that, in view of the definition of the function \(K \), the partial differential equation in the theorem leads to
\[X_0(S) + K(x_1, \ldots, x_n; X_1(S), \ldots, X_n(S); t) = 0, \]
and its complete integral then provides through (25) and (26) the integrals of the equations of motion in the form (19). This result for the case of generalised coordinates and momenta has been stated in [4].

Thus, the modified Hamilton-Jacobi Theorem for integrating canonical
Equations of motion leads to the solution which contains more constants of integration than are necessary to determine the motion. In fact, of the $2n$ constants of integration a_p, b_p only $2(n-m)$ will be arbitrary. The general solution will contain $2(n-m)$ arbitrary constants which are to be determined from the initial conditions of the problem.

References

Department of Mathematics,
University of Islamabad,
Islamabad, Pakistan.