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Abstract Based on the work of Adem and Cohen, this note describes an explicit stable decomposition
of the space of commuting n-tuples in SU(2) as a wedge of indecomposable summands.
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1. Introduction

We shall write Z
T for the free abelian group and F (U) for the free group generated,

respectively, by finite sets T and U . Following Adem and Cohen [1], we study the stable
homotopy type of the space of group homomorphisms Hom(ZT × F (U), G) from the
finitely presented discrete group Z

T × F (U) to the compact connected Lie group G =
SU(2). More generally, for a finite family (Ui)i∈I of finite sets we consider the space
Hom(

∏
i∈I F (Ui), G) (topologized as a subspace of

∏
i∈I map(Ui, G)).

Commutativity in the group SU(2) is easy to understand. The centre Z(G) consists
of the two elements ±1. A non-central element g ∈ G has distinct eigenvalues α, β

(with αβ = 1) and decomposes C
2 as an orthogonal sum of one-dimensional eigenspaces

Eα ⊕ Eβ , and the centralizer Z(g) = {h ∈ G | gh = hg} is the one-dimensional maximal
torus consisting of those matrices which preserve Eα (and Eβ).

The space of maximal tori in G is naturally identified with the real projective plane
P (g) of the Lie algebra, g, of G: a circle subgroup L corresponds to its Lie algebra
l ∈ P (g). The Hopf line bundle over P (g), constructed as a sub-bundle of the trivial
bundle P (g)×g, will be denoted by λ. We write λT for the real vector bundle λT = λ⊗R

T

of dimension #T .
The Thom space of a real vector bundle ξ over a compact Hausdorff space X is written

as Xξ and the sphere bundle is denoted by S(ξ). A superscript ‘+’ is used to indicate
the one-point compactification of a locally compact Hausdorff space with basepoint at
infinity, and a subscript ‘+’ is used to indicate adjunction of a disjoint basepoint. When
we say that two pointed spaces X and Y are stably equivalent, we shall mean that there
is a homotopy equivalence ΣkX → ΣkY of their k-fold suspensions for some k � 0.
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Definition 1.1. Given finite sets T and U , we define C(T, U) to be the homotopy
cofibre of the composition

f : S(λT )p∗λU → P (g)λU

↪→ (P (g) × g
U )+ → (gU )+

of the maps induced, in order, by the projection p : S(λT ) → P (g), the inclusion of λU

in the trivial bundle P (g) × gU and the projection to the second factor. In particular,
C(T, ∅) is the join S0 ∗ S(λT ) (with basepoint at the basepoint of S0).

These spaces appear as the wedge summands in our main theorem.

Theorem 1.2. Let V be a finite set decomposed as a disjoint union V = T �U . There
is then a natural stable splitting

Hom(ZT × F (U), SU(2))+ �
∨

W⊆V

C(T ∩ W, U ∩ W ).

The decomposition is natural in the precise sense that it can be realized as a K-equi-
variant stable splitting, where K = Aut(G) × S(T ) × S(U) is the product of the group
of automorphisms of G (= SU(2)) and the permutation groups of T and U .

It is an elementary exercise to establish the following (non-equivariant) description of
the summands in terms of their stably indecomposable factors, which turn out to be
suspensions of S0 and

M , the Thom space of the Hopf line bundle over the real projective line,

N , the Thom space of the tangent bundle of the real projective plane P ,

N∗, the Thom space of the double 2λ of the Hopf line bundle λ over P .

The two-dimensional space M is thus a mod 2 Moore space, and the four-dimensional
spaces N and N∗ are S-dual (by a duality map N∧N∗ → S6). (In the traditional notation
M is RP 2, N∗ is RP 4/RP 2 and ΣN is RP 5/RP 2.) The result will be expressed in terms
of spaces Pn defined for n � 0 by

Pn =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Sn ∨ ΣnM if n ≡ 0 (mod 4),

Σn−1M ∨ Sn+2 if n ≡ 1 (mod 4),

Σn−2N∗ if n ≡ 2 (mod 4),

Σn−2N if n ≡ 3 (mod 4).

Proposition 1.3. Let #T = l, #U = m. The space C(T, U) is stably equivalent to

S3m if l = 0,

(Sm+1 ∨ Sm+3) ∨ S3m if l = 1, m > 1,

(Sm+2−ε ∨ Sm+3−ε ∨ Σm+1+εM) ∨ S3m if l = 2, m > 1, ε = (−1)m,

ΣM ∨ Pl+m if l > 2, m = 0 or m = 1,

(ΣPm ∨ Pl+m) ∨ S3m if l > 2, m > 1,
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and in the remaining low-dimensional cases to

S3 if (l, m) = (1, 0),

S2 ∨ Σ2M if (l, m) = (1, 1) or (2, 0),

ΣM ∨ ΣN if (l, m) = (2, 1).

The existence of stable splittings of this general type was established in Theorems 1.6
and 6.6 in [1]. However, the specific splittings described above are inconsistent with the
homology calculations stated there as Theorems 1.4 and 4.12. I am grateful to the authors
for confirmation that those calculations are incorrect; they have published a correction
in [2].

Example 1.4. There are stable decompositions

Hom(Z2, SU(2))+ � S0 ∨ 2(S3) ∨ (S2 ∨ Σ2RP 2)

and

Hom(Z3, SU(2))+ � S0 ∨ 3(S3) ∨ 3(S2 ∨ Σ2RP 2) ∨ (ΣRP 2 ∨ RP 5/RP 2).

Section 2 contains an account of a general equivariant stable splitting theorem. The-
orem 1.2 is proved in § 3, and an outline proof of Proposition 1.3 is given in the final
section (§ 4). The methods depend very much on the special feature of the group SU(2),
shared trivially with U(1), that any two commuting elements lie in a circle subgroup. The
space Hom(ZT , U(1)) is, of course, a torus of rank l = #T and the stable decomposition
of Hom(ZT , U(1))+ as a wedge of 2l spheres is elementary. But even in this case the
S(T )-equivariant decomposition is of interest and was used in [5] to give a new proof of
Miller’s stable splitting [6] of the unitary group U(l).

2. An equivariant stable splitting

Consider a finite set V of cardinality #V = n and a finite set E of 2-element subsets
of V : (V, E) is thus a finite graph with n vertices. The product Aut(G)×Aut(V, E) of the
automorphism group of G and the subgroup of S(V ) preserving E will be abbreviated
to K. For a subset W ⊆ V , we write EW for the set of edges {u, v} in E with both vertices
u, v in W . Let X(V, E) be the K-space of maps x : V → G such that x(u)x(v) = x(v)x(u)
for all {u, v} ∈ E (topologized as a subspace of the product GV ). The support of such a
map x : V → G is the subset supp(x) = {v ∈ V | x(v) �= 1}, and the cardinality of the
support filters X(V, E) by the closed K-subspaces

X(k)(V, E) = {x ∈ X(V, E) | # supp(x) � k} (0 � k � n).

The group G = SU(2) is a real affine subvariety of the four-dimensional affine space
R ⊕ g. Each of the spaces X(k)(V, E) is a real (not necessarily irreducible) subvariety of
(R⊕g)V that is invariant under the linear action of the compact Lie group K and, hence,
is a compact K-ENR (Euclidean neighbourhood retract). It follows that each inclusion
X(k−1)(V, E) ⊆ X(k)(V, E) is a closed K-cofibration.
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Let A(V, E) be the top-filtration open K-subspace {x ∈ X(V, E) | supp(x) = V } of
X(V, E). There is a homeomorphism

X(k)(V, E)/X(k−1)(V, E) =
∨

W⊆V : #W=k

A(W, EW )+.

The non-equivariant version of the following splitting theorem can be found in [1] as a
special case of Theorem 6.6.

Theorem 2.1. Let (V, E) be a finite graph. There is an Aut(G) × Aut(V, E)-equi-
variant stable splitting

X(V, E)+ �
∨

W⊆V

A(W, EW )+.

Proof. We outline a variant of the proof in [1] to demonstrate K-equivariance. Let

Y (k)(V, E) =
∨

W⊆V : #W�k

A(W, EW )+.

The space Y (V, E) = Y (n)(V, E) is filtered by the subspaces Y (k)(V, E), 0 � k � n. It
will suffice to construct a filtration-preserving equivariant map

π : (RV )+ ∧ X(V, E)+ → (RV )+ ∧ Y (V, E)

that is homotopic to the identity on successive quotients

X(k)(V, E)+/X(k−1)(V, E)+ = Y (k)(V, E)/Y (k−1)(V, E) (1 � k � n).

For W ⊆ V with #W = k, let

πW : X(V, E) → X(W, EW ) → X(k)(W, EW )/X(k−1)(W, EW ) = A(W, EW )+

be the composition of the restriction map and the projection onto the top quotient.
The power set P(V ) is embedded in R

V by mapping a subset W of V to its charac-
teristic function χW . Using this embedding and the Pontryagin–Thom construction we
can ‘add’ the maps πW (W ∈ P(V )) to obtain the required K-equivariant map π. To
be precise, let B ⊆ R

V be the open disc of radius 1
2 (in the Euclidean norm), centred

at 0, and let κ : B → R
V be a scaling homeomorphism a �→ φ(‖a‖)a, with, for exam-

ple, φ(s) = s/(1 − 4s2)1/2. We define π on R
V × X(V, E) by sending (a + χW , x) to

[κ(a), πW (x)] for a ∈ B, x ∈ X(V, E) and mapping points outside the tubular neighbour-
hood

⋃
W∈P(V )(B + χW ) to infinity. On the kth quotient one can use a linear homotopy

t �→ (1 − t)χW (t ∈ [0, 1]) on each factor W ∈ P(V ), #W = k, to deform the quotient
map to the identity. �

If we work non-equivariantly, a single suspension is enough to add the maps πW , and
we obtain, as in [1], a non-equivariant homotopy decomposition of Σ(X(V, E)+) as a
wedge of terms Σ(A(W, EW )+).
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3. Describing the summands

In special cases we can give a concrete description of the terms A(W, EW )+ occurring
in the splitting theorem (Theorem 2.1). This will involve an explicit description of the
group G = SU(2) as a sphere.

Lemma 3.1. There is an Aut(G)-equivariant diffeomorphism

ρ : G − {1} → g,

such that ρ(−1) = 0 and ρ restricts to a diffeomorphism L − {1} → l for each circle
subgroup L � G with Lie algebra the one-dimensional subspace l ∈ P (g) of g.

Proof. The group G is a subspace of the vector space M2(C) of 2 × 2-matrices.
Identifying g with the space of skew-Hermitian matrices of trace zero, we may, for exam-
ple, define ρ(g) = (g + 1)(g − 1)−1. Other choices for ρ are suggested by the identifi-
cation of G with the unit sphere S(R ⊕ g) ⊆ R ⊕ g ⊆ M2(C) in the standard norm:
‖g‖2 = tr(gg∗)/2. �

Proposition 3.2. Suppose that V = T �U and that E = {{t, v} | t ∈ T, v ∈ V −{t}}.
Then A(V, E)+ is K-homotopy equivalent to the space C(T, U) of Definition 1.1.

The proof is by inspection: we shall see that A(V, E)+ is actually homeomorphic to
the mapping cone of the map f that appears in Definition 1.1. A proof in the special
case in which U = ∅, so that (V, E) is the complete graph on the set V , is implicit in
the discussion of cone singularities in [3, p. 739]. Let us look informally at this special
case: A(V, E) is the space of all maps x : T → G − {1} such that x(t)x(v) = x(v)x(t) for
all t, v ∈ T . There is one singular element in A(V, E), namely the constant map taking
the value −1. For any other x ∈ A(V, E), there is some t ∈ T such that x(t) �= −1,
and then, as we noted at the beginning of the paper, the centralizer of x(t) is a circle
subgroup L and x(v) ∈ L for all v ∈ T . So the complement of the singular element
fibres over the space P (g) of circle subgroups in G with the fibre over L consisting of
the maps x : T → L − {1} such that x(t) �= −1 for some t ∈ T . Lemma 3.1 provides a
homeomorphism from this fibre to the space of maps ξ : T → l such that ξ(t) �= 0 for
some t. Using polar coordinates, we can write this space of non-zero vectors in the vector
space lT as (0,∞) × S(lT ). But l is the fibre of the Hopf line bundle λ over P (g). In this
way, we see that the complement of the singular point in A(V, E) is homeomorphic to
(0,∞) × S(λT ). The space A(V, E)+ is obtained by gluing in the point at infinity and
the singular point at zero to produce the join S0 ∗ S(λT ).

Proof. The space A(V, E) of maps x : T �U → G−{1} such that x(t)x(v) = x(v)x(t)
for all t ∈ T , v ∈ V , can be written as a union A0 ∪ B, where A0 is the closed subspace
of maps x ∈ A(V, E) such that x(t) = −1 for all t ∈ T and B is the complementary
subspace consisting of those maps x such that x(t) �= −1 for some t ∈ T . Using the
map ρ of Lemma 3.1 we may identify A0 with the subspace gU of the vector space
gV = map(V, G−{1}). If x ∈ B and x(t) �= −1, then x(t) lies in a unique circle subgroup
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L � G, with Lie algebra l ∈ P (g), and x(v) ∈ L − {1} for all v ∈ V . So we may identify
B, again using the map ρ, with the subspace

⋃
l∈P (g)

(lT − {0}) × l
U

of gV . Using the Euclidean norm on gV arising from the standard norm on g, we have
a diffeomorphism (s, x) �→ s(1 − s2)−1/2x: (0, 1) × S(lT ) → lT − {0}. We thus obtain a
homeomorphism (0, 1) × D → B, where D is the total space of the vector bundle p∗λU

over S(λT ). This homeomorphism extends, in the obvious way, to a continuous map from
[0, 1)×D onto the closure B̄ of B in gV . Its restriction D = {0}×D → A0∩B̄ ⊆ A0 = gU

compactifies to the attaching map f : D+ → (gU )+. And so we see that A(V, E)+ is
homeomorphic to the mapping cone of f . �

We can now deduce Theorem 1.2. For any subset W ⊆ V we may apply Proposition 3.2
to the restricted graph (W, EW ) to see that A(W, EW )+ is equivariantly homotopy equiv-
alent to C(T ∩ W, U ∩ W ). The result then follows from Theorem 2.1.

The description of the summands can be extended to cover groups of the more general
form

∏
i∈I F (Ui). In order to state the result, we note first that the composition of the

map S(λV ) → P (g) × S(gV ) induced by the inclusion of the Hopf bundle λ over P (g)
into the trivial bundle P (g) × g and the projection to S(gV ) gives an embedding

jV : S(λV ) ↪→ S(gV ),

which is a homeomorphism if #V = 1. Now we have a cofibre sequence

C(S(λV )) ∪jV
S(gV ) kV−−→ S0 ∗ S(λV )

1∗jV−−−→ S0 ∗ S(gV ) = (gV )+ (3.1)

in which kV is the map that collapses to a point the subspace S(gV ) of the mapping cone
of jV .

Proposition 3.3. Suppose that ∼ is an equivalence relation on the non-empty finite
set V with equivalence classes (Ui)i∈I of cardinality mi = #Ui. Let E = {{u, v} | u �∼ v}.
Then A(V, E)+ is K-homotopy equivalent to the homotopy cofibre of the pointed map

∨
i∈I : mi>1

(C(S(λUi)) ∪jUi
S(gUi)) → S0 ∗ S(λV )

given on the ith wedge summand by the composition of kUi
with the inclusion

S0 ∗ S(λUi) ↪→ S0 ∗ S(λV ).

Proof. Like Proposition 3.2 this may be verified by inspection. The space A(V, E),
regarded as a closed subspace of gV , may be written as a union of subspaces Ai (i ∈ I)
and B, where Ai = gUi is the space of maps x : V → g such that x(v) = 0 for v /∈ Ui,
and the complement B of

⋃
i Ai fibres as a bundle over P (g) with fibre at l equal to

lV −
⋃

i∈I lUi .
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Now Ai ∩S(gV ) = S(gUi) and B ∩S(gV ) = S(λV )−
⋃

i∈I S(λUi). The space A(V, E)+

is thus realized as S0 ∗ (A(V, E) ∩ S(gV )), where

A(V, E) ∩ S(gV ) = S(λV ) ∪
⋃
i∈I

S(gUi) and S(λV ) ∩ S(gUi) = S(λUi).

If mi = 1, the subspaces S(λUi) and S(gUi) coincide. These observations lead to the
stated description of A(V, E)+ as a mapping cone. The details are omitted. �

4. The non-equivariant stable homotopy type

We outline the proof of Proposition 1.3. Two observations will deal with most of the
cases.

Lemma 4.1. Let ξ and η be real vector bundles over a finite complex X, and let
p : S(ξ) → X be the projection map.

(i) There is a homotopy cofibre sequence

Xξ c−→ S0 ∗ S(ξ)
1∗p−−→ S0 ∗ X.

If dim X < dim ξ, then S0 ∗ S(ξ) is stably homotopy equivalent to Xξ ∨ (S0 ∗ X).

(ii) There is a homotopy cofibre sequence

S(ξ)p∗η p−→ Xη → Xξ⊕η.

If dim X < dim ξ, then ΣS(ξ)p∗η is stably equivalent to ΣXη ∨ Xξ⊕η.

Proof. (i) The map c collapses the zero-section X ⊆ Xξ to a point. The proof that
we have a homotopy cofibre sequence generalizes the familiar special case in which ξ is
the zero vector bundle. If dimX < dim ξ, the projection p has a section X → S(ξ), which
gives a null-homotopy of the next stage S0 ∗ X → ΣXξ in the cofibration sequence and
so splits Σ(S0 ∗ S(ξ)) as ΣXξ ∨ Σ(S0 ∗ X).

(ii) The projection p : S(ξ) → X may be replaced by the inclusion S(ξ) ↪→ D(ξ) of
the sphere bundle into the disc bundle. The quotient D(ξ)/S(ξ) is Xξ. This gives the
cofibration sequence. A section of S(ξ) gives a null-homotopy of the inclusion Xη ↪→ Xξ⊕η

and hence the splitting of the mapping cone. �

Taking T = {1, . . . , l} and U = {1, . . . , m}, we shall write Cl,m for the homotopy
cofibre of the attaching map f : S(lλ)p∗(mλ) → S3m in Definition 1.1. The projective
plane P (g) will be written simply as P .

Suppose first of all that m = 0, so that Cl,0 = S0∗S(lλ). The case l = 1 is easy: S(λ) =
S2 and S0 ∗ S2 = S3. When l = 2, it is convenient to think of the 3-manifold S(2λ) =
(S(g) × S(R2))/{±1} as the sphere bundle S(g ⊗ µ), where µ (for Möbius) is the Hopf
bundle over the real projective line P (R2). By Lemma 4.1 (i), C2,0 is stably equivalent to
P (R2)3µ ∨ S2. If l > 2, then Cl,0 splits stably as P lλ ∨ (S0 ∗ P ), by Lemma 4.1 (i) again.
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The case m = 1 follows at once: Cl,1 is the same as Cl+1,0, because the graph in each
case is the complete graph on l + 1 vertices.

Now consider the case for m > 1. The factor Pmλ → S3m of f is then null-homotopic
for dimensional reasons. Hence Cl,m is stably equivalent to Σ(S(lλ)p∗(mλ)) ∨ S3m. We
consider the first term F = Σ(S(lλ)p∗(mλ)). If l = 0, F is a point. If l = 1, S(λ) = S2 and
p∗λ is trivial, so that F = Σm+1(S2

+), which decomposes stably as Sm+1 ∨ Sm+3. When
l = 2, it is again easier to think of S(2λ) as S(g ⊗ µ), and then F = Σ(S(g ⊗ µ)mµ)
is stably equivalent, by Lemma 4.1 (ii), to Σ(P (R2)mµ) ∨ P (R2)(m+3)µ. Of course, 2µ

is trivial, so that one factor is a suspension of S1
+ and the other is a suspension of the

Moore space M = P (R2)µ. If l > 2, we may again use Lemma 4.1 (ii) to split F as
ΣPmλ ∨ P (l+m)λ.

The calculations are completed by noting that S0 ∗ P = M and checking that the
Thom space Pnλ is stably equivalent to the space called Pn. (The key ingredients are
that the multiple 4λ is trivial, that the stable dual of Pnλ is Σ(P−(n+3)λ) and that P+

is stably S0 ∨ M .)

Remark 4.2. Similar arguments can be used to describe the stable summands in
the decomposition of Hom(F (U1) × F (U2), SU(2))+. It is sufficient to consider the non-
equivariant stable homotopy type of the space A(V, E)+ in Proposition 3.3, for I = {1, 2},
in the case where m1 and m2 are both greater than or equal to 2. For dimensional reasons
the map 1 ∗ jV in the sequence (3.1) is non-equivariantly null-homotopic if dimV > 1:
dim S0 ∗ S(λV ) = dimV + 2 < dim gV = 3 dimV . Hence we have stable equivalences

C(S(λUi)) ∪jUi
S(gUi) � S3mi−1 ∨ (S0 ∗ S(miλ))

and
A(V, E)+ � S3m1 ∨ S3m2 ∨ Σ2(S(m1λ) ×P S(m2λ))+.

The third summand is obtained as the cofibre of the inclusion map

(S0 ∗ S(λU1)) ∨ (S0 ∗ S(λU2)) → S0 ∗ S(λV ),

which is the join of the identity on S0 with the inclusion of the disjoint union

S(λU1) � S(λU2) ↪→ S(λV );

the complement is homeomorphic to S(λU1)×P S(λU2). To complete the analysis one has
to decompose the spaces (S(m1λ)×P S(m2λ))+. For example, there is a stable equivalence

(S(2λ) ×P S(2λ))+ ∼= (S(2λ) × S1)+ � S(2λ)+ ∨ ΣS(2λ)+

because the pullback of the complex line bundle C ⊗ λ to S(C ⊗ λ) is trivial. The space
S(2λ)+ = S(3µ)+ is stably equivalent to S0 ∨ S1 ∨ ΣM .

Note added in proof

Some of the results of this paper have been obtained independently by Baird et al . [4]
(see the bibliography for details). I am grateful to the authors for sending me a copy of
their preprint.
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