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A GEOMETRICAL REPRESENTATION
THEORY FOR ORTHOGONAL ARRAYS

DAVID G. GLYNN

Every orthogonal array of strength s and of prime-power (or perhaps infinite)
order q, has a well-defined collection of ranks r. Having rank r means that it can
be constructed as a cone cut by q' hyperplanes in projective space of dimension
r over a field of order q.

INTRODUCTION TO THE CLASSICAL REPRESENTATIONS

An orthogonal array k-OA(q,s), is a Jb x q' array 21 containing elements from a
set S := 5(21) of size q such that every s rows of 21 contain precisely once in their
columns every possible ordered a-tuple of S. The parameter s is called the strength of
the OA and q is called its order. We assume also that k ^ a.

A very important combinatorial problem (investigated, for example by R.C. Bose)
is to construct an OA of given order and strength (both finite), but with a maximal
number of rows Jfe. The case of strength 1 is trivial, and strength 2 is well-known: a
k-OA(q,2) is equivalent to the following things.

(1) k — 2 mutually orthogonal latin squares of order q;
(2) a k-net of order q;
(3) a transversal design of order q with k parallel classes.

Also, it is quite easy to show that the maximum value of k for a k-OA(q,2) is q + 1,
and if that bound is attained the structure is equivalent to an affine plane of order q.
The only finite planes presently constructed are of prime-power orders q.

For the reader who isn't conversant with these facts let us show how to construct
a (g + l)-OA(q,2) from a projective plane of finite order q. (Infinite arrays can be
constructed similarly from infinite planes.) Fix any point V in the plane and associate
the 9 + 1 lines passing through V with the rows of the OA. Choose any set S of size
q. For each of the q + 1 lines through V associate with each point different from V
and on that line a distinct element of 5 . Now every point of the plane except for V has
an associated element of S such that no two points on a line through V have the same
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312 D.G. Glynn [2]

element. The columns of the OA are now associated with the q2 lines of the plane not
passing through V. Since in the plane two distinct lines intersect in a unique point,
the element of the OA in a certain row and column is given by the associated element
of the intersection of the pair of lines that correspond to that row and column.

The case of strength 3 is less well known, but if q is finite it is easy to see that
a (9 + l)-OA(q,3) is equivalent to a Laguerre plane of order q. These have only been
constructed for prime-power orders, and all known examples are embeddable in PG(3, q)

as a cone over an oval; see, for example [4]. When q = 2h it is possible to construct
a (9 + 2)-OA(q,3) as a cone over a planar hyperoval (complete oval or (9 + 2)-arc) in
PG(3,q).

This can be generalised to higher dimensions with the construction of an 21 =
k-OA(q,s), but we need q to be a prime-power. First, we have to define a fc-arc of
PG(n, q) , the n-dimensional projective space over GF(q). It is a set of k ^ n+1 points,
every n + 1 of which are linearly independent. The classical examples of (9 + l)-arcs
are the normal rational curves, but there are several other examples; see [1] and [3].

To construct 21 from a k-ajc of PG(n,q) we proceed as follows. We embed the
PG{n,q) as a hyperplane h of PG(n+ l,q), and consider the cone with the fc-arc as
base and having a vertex V which is any point not in h. Next we associate the rows of
21 with the lines (or generators) of the cone through V. Let 5 be any set of size q. On
each generator we label the points distinct from the vertex with the elements of 5 . The
columns of 01 are associated with the qn+1 hyperplanes of PG(n+ l,q), not passing
through the vertex of the cone. Finally, the element of 21 in a certain row and column
is given by the element associated with the point of intersection of the corresponding
generator and hyperplane. The strength of 21 is 8 = n + 1, because any n + 1 points of
the cone, on different generators, are contained in a unique hyperplane of PG[n + l,q).
If this were not the case, then the projection of these points from V to the base h would
be a set of n + 1 points of the fc-arc which could not be independent.

The smallest non-trivial example of a fc-arc is any set of k points of PG(l,q).
Then the above construction gives a k- OA(q, 2), which is equivalent to a sub-net of the
affine plane AG(2,q). In the plane PG(2,q) it is quite hopeless to try to classify all
the A:-arcs, but if we restrict ourselves to the maximal cases

(1) k = q + 1, for q odd, (an odd prime-power);
(2) k = q + 2, for q even (and so q — 2k, h e Z, h > 1);

then Segre's theorem (see [2]) implies in the first case that the arc is an irreducible conic,
and so the corresponding (9 + 1)- OA(q, 3) is equivalent to the Miquelian Laguerre plane
of order q. In the second case there are many examples of (9 + 2)-arcs, and so there
are many examples of Laguerre planes that are embeddable in PG(3,q).

We shall show that if the element set 5 is GF(q) there is a way to label each of
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[3] Orthogonal arrays 313

the generators in the above cone of PG(n + l,q) such that the corresponding array has
rank n + 1. Furthermore, this array is equivalent (up to permutation of the columns)
to the collection of all qn+1 vectors in the column space of the k x (n + 1) matrix,
each row of which forms the coordinates of a point of the As-arc. This set of vectors is
actually an MDS code, but we shall not pursue this any further.

However, the above construction is not the main point of this paper. We shall
show that there is a kind of representation theory of orthogonal arrays, similar to that
of groups. Every orthogonal array of prime-power or infinite order can be represented
as a cone in different ways. In the finite case there is certainly a cone of minimal
dimension — it turns out that this dimension is greater than or equal to its strength,
and that equality occurs if and only if the array has the above construction from a fc-arc
of PG(n, q).

THE THEORY OF GENERAL REPRESENTATIONS

As some notation let S\ := { 1 , . . . , A}, for 1 ^ A, A £ Z.

LEMMA 1. Suppose A is a k x b matrix of rank r ^ 1 over a field F. Then A
can be factorised into the product of two matrices over F

A = XY,

where X is k x r and Y is r X b, and where both X and Y have rank r.

PROOF: Let the i'th column of A be a<, for i G 5 j . Now A has a set of r linearly
independent columns: suppose that this set is {â >(t) 11 6 Sr}, where (f> is an injection
from ST —* Sk. Then define the matrix X so that its t 'th column is a^(t). Thus X
also has rank r. Now the column space of X equals the column space of A, so that

r

each column a.j, (j 6 56), of A may be written in the form &j = ^2 &4(t)V<j> where
*=i

ytj G F. We let Y be the r x b matrix (ytj). The ^(*)'th column of Y is zero except
for Vttp^t) = 1, so that Y contains an identity r xr submatrix. Hence Y also has rank
r and A = XY. D

Suppose from now on that 21 is an OA of order q = \S\, which is also the size
of some field F: that is, q = ph, p is a prime, fc 6 Z, fc > 1; or g is infinite. Also
suppose that s Jj 2.

To each row i of 21 we can apply a bijection 7,-: 5 —> F, so that the elements of
21 belong to F instead of 5 . Indeed, when q is finite, there are (9!) ways of doing
this. Let us call this sequence of mappings a substitution. Also, if F := (7i,-.-i7*)i
the resulting matrix over F is A := 2t(F).
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LEMMA 2. If 21 is a k-OA(q,a), then for each substitution T, A :— 2((F) is an
OA isomorphic to 21, and it has rank r := r(A) ^ a.

PROOF: TWO OA'S, 21 and 21' are considered to be isomorphic if they have the
same sized arrays and element sets, and there exist permutations of the rows and of
the columns of 01' to make an array 21" so that if we superpose 21 onto 21" then for
each row i a bijection /3i is induced that maps the element set 5(21) onto the element
set 5(21') = 5(01"): if the element in position (i,j) of 21 is x then the element in that
position of 21" is (3i(x). In the case of this Lemma, A' = A" and ft = fi, for all i,
so that 21 = A. Also, r(A) ^ a, because every a rows of A are linearly independent,
since every possible column from the field F appears in these rows. D

DEFINITION 1: A substitution F acting on 21 is associated with the rank of the
subsequent matrix A := 2l(F), which is called the rank of the substitution.

THEOREM 1 . A k-OA(q,s), 21, has a substitution of rank r over a field F if
and only if 21 can be represented in TT := PG{r, F) as a cone with point-vertex V, with
k generators through V cut by a set H of q' hyperplanes not passing through V. 2t
has strength s if and only if every set of a points of the cone, none equal to the vertex
and on a different generators, is contained in a unique hyperplane of H.

PROOF: Let A = 2l(F) as above. From Lemma 1 we can write A = XY, where
r(X) = r ( F ) =r(A) = r, X is kxr,Y is rxb, b = q'. Let the points of TT be (c,d),
where c G F, and d 6 Fr, and not both of c and d are zero. We construct a set of k
points in the hyperplane with equation c = 0 by letting Pi :— (0,x,-), where Xj is the
i'th row of X. Let V be the point (1,0) of ir. It is the vertex of a cone with base
{Pi | i 6 5*}: that is, the generators of the cone are the lines gi joining Pi to V.

Now we must construct the hyperplanes that cut this cone. We use dual coordinates
[u,v] for the hyperplanes of n, where u £ f , v E Fr, (not both zero). A point (z,y)
is on a hyperplane [w,v] <=̂ > ux + v-y = 0. Let the hyperplane hj := [—l,y>], where
yj is the j 'th column of Y. This gives b= q' hyperplanes.

We leave it as an exercise to show that if w is a k x 1 vector, then wX = 0 <=^-
wA = 0. Hence a subset of rows of X is dependent if and only if the corresponding
subset of rows of A is dependent. Thus one can check that all the points Pi and the
hyperplanes hj are different, because any a ^ 2 rows of A are independent implies
that any a rows of X are also independent. And if two columns of Y were the same
then the corresponding columns of A would be also the same. This would contradict
the assumption that every possible column appears in the a rows precisely once.

In order to construct the matrix A from the cone and the set of q* hyperplanes, one
only has to note that the element in the (i,j)'th position of A is given by x< -yj. This
can be calculated directly from the intersection of the generator gi with the hyperplane
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hj — a general point of gi is (A,Xj) which is on hj = [—l,y,-] <=> A = x< • yy. What

we are doing is labelling the point (A,Xj) with A. D

DEFINITION 2: The construction of Theorem 1 of an OA in r-dimensional space
is called a representation.

It is important to note that the representation constructed from the substitution
into the OA is essentially unique, (up to collineations of PG(r,F)). This is because
every factorisation of A is of the type XR.R~1Y, where R is r X r and non-singular
over F. Then R really corresponds to a homography of PG(r,F) which takes the
cone and the set of hyperplanes corresponding to XY to the cone and hyperplanes
corresponding to XR.R~XY.

Let us call the set of points defined by the rows of X the base curve, and the set
of hyperplanes H corresponding to Y the cutting hyperplanes. The base curve and the
set of cutting hyperplanes of the cone C defined by the base curve now become the
objects of study.

From the exercise contained in the proof of Theorem 1 above, we know that every
subset of s points of the base curve is independent. The case when r is minimal is
r = s, and then H is the entire set of hyperplanes of TT that do not pass through the
vertex (when q is finite, at least). Then each set of r points (on different generators)
of C are linearly independent, thus implying that the cone intersects any hyperplane
of H in a fc-arc (always pairwise isomorphic). We can define m(2l) to be the minimal
rank of a representation of 21. Thus we have the following result.

THEOREM 2 . A k-OA(q,s), 21, of prime-power order q has m(2l) = s if and
only if it is constructed from a cone C over a fc-arc of PG(s — l,q) intersected by all
the hyperplanes not passing through the vertex of C.

When s — 2 this implies that m(2l) = 2 if and only if the OA is equivalent to
a subnet of the affine plane AG(2,q) of order q, which can be constructed from any
subset of k points of PG(l,q). When s = 3 it implies that m(2l) = 3 if and only if
the OA is constructed from a fc-arc of PG(2,q).

AN EXAMPLE: A REPRESENTATION OF CERTAIN DESARGUESIAN PLANES

Here we describe a non-trivial representation of the Desarguesian projective plane
PG(2, q) as a cone in PG(A,q), (when 3 is not a factor of q — 1 or q, and q ^ 5).
This representation is also valid for the real projective plane. From the classical ex-
amples we have to consider the 21 = (q + \)-OA(q,2) of rank 2 which has columns
(6, a + k\b,..., a + fc,6)*, where a, b € GF(q) = {fci,...,£,}. Using the general repre-
sentation theory on each row of this array we have to assign a permutation of GF(q). In
the case of finite fields a permutation can always be specified by a polynomial of degree
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less than q — 1; see [5]. We want permutations that are not additive so that the rank of
the array is increased slightly. The simplest possible case is when all the permutations
on each row are equal. Then all permutation polynomials of degree less than three are
additive, so that we should choose polynomials of degree at least three. If 3 is not a
factor of q — 1 or q, and if q ̂  5 the mapping x '• x h~f *S is a good choice. (This is
also valid for the real field.) Thus we are using the substitution T :— (x>-">x)- We
can check that the new array A = 2t(F) is of rank 4. The four columns (0 ,1 , . . . , 1)*,
(0,ki,... ,kq) , (0,fci2,... ,fcg

2) , and (l,Jbis,... ,fc,s) generate the column space of
A. Thus we have the decomposition A = XY as follows:

\
(a

kqb)3

/O 0 0 1 \

fc,V

3o26

3ot2

6s

The base curve of the cone is the twisted cubic {(l,x,a!2,zs) | x G GF(q) U {oo}}, (or
an irreducible curve of degree 3, or normal rational curve) of PG(3,q). The set of q2

hyperplanes cutting this cone is given by

{[-I,a3,3a26,3o62,63] \ a,b e GF{q)},

which, using the substitution y := —a/6 and z := 6s, may be re-written as

{[-l,-zys,3zy2,-3zy,z] \y,z G GF(q)} U { [ - 1 , -z,0,0,0] | z G GF(q)}

(J {[-l,0,0,0,0]+2[0,-ys,3y2,-3i,,l]|ZGGF(g)}.
yeGF(.q)u{oo}

Thus it is possible to construct all the cutting hyperplanes by the following method: in
the base PG(Z,q) take the dual curve of q + 1 planes [-ys ,3y2,-3y,l] , {y G GF{q)),

and [1,0,0,0], (y — oo), and consider all the hyperplanes of PG(A,q) passing through
these planes but not passing through the vertex of the cone V = (1,0,0,0,0). Note
that we have omitted the first coordinate (which is zero) of the base curve, and also of
the dual curve above. Then there is a symplectic polarity which takes the base curve to
its dual curve. This is (xo,xi,X2,x3) <-» [—X3,3x2,—3xi,x0]. Each plane p of the dual
curve intersects the curve only at its image P under the polarity — we call this plane
the tangent at the point of the curve. And finally, any four distinct points Pi, P2, P3,

and Pi of the curve have the property that the line pi f) p2 is always skew to the line
P3.P4. These things happen because the particular cone representation above inherits
a certain group of the Desarguesian plane: this is the group of homologies with centre
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V and axis a line not through V (or the base curve). The group is also isomorphic to
the multiplicative group of a field that is the same order as the plane.

Many things can be deduced from the above example, but first let us note that it
is not true that the base curve is always an arc. For if we replace the cubic substitution
by a quintic substitution above, then we require the condition that x: x *~* x* *s a

permutation of the field, and not an automorphism. In particular let us consider fields
of characteristic two; for example in the finite case we require that 5 / q — 1, and so
q = 2h, where h ^ 3 , and 4 / h. Since (z + y)B = x5 + x*y + xy* + ys in characteristic
2, we find that the base curve of the rank 4 representation is (l,x,x*,xs) , which is not
an arc of 3-d space if h = 2 (mod 4); see [l]. One can generalise this even further by
replacing 5 by 2* + 1 , where the latter has no factors in common with q — 1, but let us
omit these considerations, and proceed to the following section.

A N APPLICATION TO THE THEORY OF PROJECTIVE

PLANES OF LENZ-BARLOTTI CLASS AT LEAST 1.2

Recall (see [2]) that a projective plane of Lenz-Barlotti Class at Least 1.2 has a
group G of homologies with a fixed point V as centre and a fixed line 6 as axis, such
that V does not lie on 6 and G is sharply transitive on the points (not V nor on 6) of
any fixed line through V. In the case of a projective plane of finite order q, the group
G has order q — 1. The main examples are the Desarguesian planes over a skew field
F, where G is isomorphic to the multiplicative group F* of F (which is cyclic of order
q — 1 in the finite case, because F = GF(q)), or the planes over the proper near-fields,
in which G is also isomorphic to the multiplicative group of the near-field, but not in
general to that of a field of the same order.

Such a plane can have various representations as cones in [r] := PG(r, F), where
F is a field of the same order as the plane. However, in this section we are interested
in representations with an extra property. Suppose the cone has a certain base (a
distinguished cutting hyperplane). There is a unique group G of homologies of PG(r, F)
which fixes every point of the base (which is the axis of the group), and fixes every line
through the vertex of the cone. It is isomorphic to F*. Suppose the representation
is preserved by G. This is equivalent to the statement that the set H of cutting
hyperplanes ([r — 1] 's) of the cone is fixed set-wise by G. In other words we can
construct H from a certain collection H' of hyperplanes ([r — 2] 's) of the base: we just
take H to be all [r — 1] 's passing through the [r — 2] 's (excepting those through the
vertex V of the cone). The dual coordinates for the [r — 2] 's of H' are then given by
any maximal subset of columns of Y that are not related by a constant factor k.

Conversely, one can see that any plane of type at least 1.2, such that the group of
homologies is isomorphic to the multiplicative group of a field (or perhaps skew-field)
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has a representation as above. This is because we have an orthogonal array representing
the plane, which can be factorised A = XY, where one of the columns of Y can be
assumed to be zero (corresponding to the base hyperplane), and if y is a column of Y,
then so is ky, for all k 6 F. Let us shed light on the way to construct an array with this
property. First, we have to label the points of the base line b with 0: this corresponds
to the distinguished zero columns of A and of Y. Certain points P of the plane (not
on b nor equal to 7 ) are labelled 1; in fact there is one on each line through V. Since
multiplying a row of A by a constant merely gives an equivalent OA, the actual points
P — Pi on each of the q + 1 lines through V, that we choose to have the value 1, are
irrelevant. Any line t, different from b, and not a generator through V, intersects b in
a unique point (which is labelled 0). The other non-zero points on t are mapped by a
homology A 6 G to non-zero points on tx. If such a point Q were labelled fc, then Q*
would be labelled fc.a(A), where the column of A corresponding to t is a(A) times the
column corresponding to t. Thus it follows that a general point P (A £ G), (P has
been labelled 1), is labelled a(A), where o is a fixed isomorphism G —> F*. For each
isomorphism a we obtain a perhaps different representation of the plane. A general a
is the composition of a fixed isomorphism G —> F* with a general automorphism of the
group F*. In the finite case, F* = Z,_i. The automorphisms of a cyclic group map
generators to generators, and so each automorphism is given (in GF(q)) by a power
mapping x •-» xl, where (i, q — 1) = 1. Some of these automorphisms of F* will give
equivalent representations; certainly if they are related by an automorphism of F.

The set of hyperplanes H' must have some special properties which are given in
the following.

THEOREM 3 . Consider a projective plane n with a group G of homologies with
fixed centre V, with axis b, which is transitive on the set of points (not V nor on b)
on any line through V. Suppose that G is isomorphic to the multiplicative group of
some field F. Then IT can be represented by a curve and a dual curve (of hyperplanes)
of PG(r — 1,F). This curve and its dual satisfy the following properties, which are
equivalent to the existence of such a plane.

(1) Each element of the dual curve is a hyperplane which is tangent at a
unique point of the curve.

(2) Tie mapping induced between tangents and points of the curve is a bi-
jection.

(3) Each point of any chord of the curve is contained in a unique hyperplane
of the dual curve and this mapping is bijective.

(4) Each chord through two distinct points of the curve does not intersect the
secundum that is the intersection of the tangent hyperplanes at a further
two points of the curve.
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T ie plane can be represented as a cone in PG(r, F) over the curve, intersected by the
hyperplanes of PG(r, F), not passing through the vertex V but passing through the
elements of the dual curve. The lines of the cone through V are also Unes of the ir.

PROOF: Most of the details have been shown before, but let us just see why the
properties (1), (2), (3) and (4) should hold. (It is dear that third implies the last.)
Now (1) holds because if a hyperplane h' of H' passed through two points of the base
curve, then these two points would be in the two lines of the plane corresponding to the
base hyperplane and any other hyperplane of H passing through h!. Next (2) holds
because we must have pencils of lines of TT passing through each point of the base line
b. That (3) should hold conies from the consideration of two points x and y of the
cone, not in the base, and on different lines of the cone through the vertex V. The line
xy intersects the base hyperplane in a point z of the corresponding chord of the base
curve that are on the lines Vx and Vy. There is a unique line of 7r passing through x
and y, which implies that there is a unique hyperplane of H' passing through z. (The
converse result follows from the same construction.) Through any point on the curve
there is also a unique hyperplane of H'. Q

In the finite case we can say even more.

THEOREM 4 . Let n be a plane of order q of type 1.2 with a cyclic group of
homologies G of order q — 1, wiere q is a prime-power. Then the rank r of any
representation preserving this group is even. (The group must have the vertex of the
cone as centre and the base curve as axis.) There is also a symplectic polarity y of the
base PG(r — l,q) which takes the curve (of q + 1 points) to its dual curve of tangent
hyperplanes. The plane n is self-dual, y induces a duality of n, say tr, of order 4 if q
is odd, and of order 2 (a polarity) if q is even. The group of dualities of ir generated
by G and <r is of order 2(q — 1). It is dihedral in the q even case. In the odd order
case it is isomorphic to the semi-direct product of G with the group of automorphisms
of G of order 2 generated by x i-» x"1 .

PROOF: Construct a r x ( g + l ) matrix Y', the i'th column of which gives the
coordinates for the tangent hyperplane at the i'th point of the base curve. Let Z :=
XY', where X is the (q + 1) x r matrix defined before from the base curve. Because
a point is incident with its tangent, this (q + 1) x (q + 1) matrix Z has a zero main
diagonal. Also Theorem 3, part (3) implies that Z has the property that for any pair
i ^ j of rows every non-zero element of GF(q) is given precisely once by a product
ZixZjt*11 where neither zn nor Zjt are zero. Prom this it follows quickly that the plane
n is equivalent to a pair of matrices X and Y' over F = GF(q), such that X is
(g + l ) x r , y ' is r x f j + l ) , and every 2 x 2 subdeterminant of XY' is non-zero. Let
i, j , and k now be integers representing distinct rows of Z. We have the following
equations (where F* := GF(q) \ {0}).
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(1) *ikzik-
1 n zitzit-

i= n / ;

(2) znzK-1 n sit***-^ n / ;

(3) zHzn-1 n ^ . r ^ n /•

Multiplying these together gives us

This implies that
ki + ZikZkjZji - 0.

By multiplying the rows of the matrix X by various non-zero constants, and by multi-
plying the columns of Y similarly, we may assume that the first column of Z contains
all — 1 's and that the first row of Z contains all 1 's (except for the zero in the top left
position, of course). Then substituting i = 1 in the above gives Zjk + Zkj = 0. This,
together with Zjj = 0, for all j , means that Z is skew-symmetric.

In order to show that the rank r of the representation is even we only need to note
that a skew-symmetric matrix always has even rank. The rank of Z is r which must
be even. Now let the rows of X be x;, (representing the points of the base curve); and
let the columns of Y be y , , (representing the hyperplanes of the dual curve). From
the skew-symmetric Z we have the equation Xj • y;- = — y* • xy, which implies that the
subspace of dimension r — 1 generated by the set of points

in PG(2r — l,q) is totally isotropic with respect to the polarity

p: (x ,y) >-> [y,x].

(Totally isotropic means that the subspace is fixed by p. Note that x;yi = 0, for all
i.) But it is easy to see that every totally isotropic subspace containing no points of
type (x,y) where either x or y is zero, is given by all points of type (x,Z)x), where
D is a non-singular skew-symmetric (r x r) matrix. This implies that D corresponds
to a symplectic polarity 7 of PG[r — l,g) which takes the base curve to its dual curve
of tangent hyperplanes.

The duality d of ir induced by 7 can best be described after we have an algebraic
formulation of the plane. Now the points of the cone are of the form (A,x,-), where
A £ GF(q) and i — l,...,q + l. The vertex is V := (1,0). These are the points of ir.
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The lines of n are given by all the hyperplanes of the form [—fi, y ; ] , where \i £ GF(q);
there is also the base hyperplane [1,0]. Incidence is given by inclusion. The duality of
•K is then given by

(A.xO-M-A.y i ] , (1,0) ~ [1,0], [fi,yi) •-» (/x,x<)-

It is easy to check that this is a duality and that the order is 4 if q is odd, while the
order is 2 if q is even. We leave the proof about the exact nature of the group of
dualities to the reader. (It is elementary.) u

The case of q odd is analogous to the case of the real projective plane. An exam-
ple of a group of dualities and homologies generated by one duality of order 4 and a
transitive group of homologies is the following. Consider a circle with centre O in the
Euclidean plane. The group of homologies of the plane with centre O and axis ZQQ is
just the group of expansions (or blow-ups) by a non-zero factor k. A duality of order 4
can be constructed from the circle by composing the polarity associated with the circle
with a rotation about the circle by 90°. The square of this duality is the expansion
by —1 . . . in other words it is a reflection about O. (I am grateful to someone at the
University of Kiel for this observation, and also to the hospitality shown during my visit
there in early 1992.)

Let us conclude this section with some observations about the theory of curves and
arcs. First, a rational curve in n-dimensional space usually has a well-defined invariant
"tangent" subspace of each dimension at each of its points. For example, the curve
described by the set of points Px := ( l , / i , - • • , / n ) , where the fi are polynomials in
x, has a tangent line at the point Px generated by Px and P'x := ( 0 , / j , . . . ,f'n); a
tangent plane generated by Px, Px, and P'x' :— ( 0 , / " , . . . , / £ ) ; and so on up to the
tangent hyperplane at x. (Some people use the word "osculating" to describe these
spaces.) In the case of twisted cubic curves in 3-d space, and in some other examples,
the mapping from point to tangent hyperplane is induced by a symplectic polarity, and
indeed we have seen that if the correct conditions are satisfied, a projective plane can
be constructed from the curve and its dual. It would be interesting to investigate these
relationships further.

A generalisation of the case of the twisted cubics using the above theorems is given
by any (q -\- l)-arc K of PG(3, q), q — 2h, h odd. Note that all these arcs are classified;
see [1]. There is an associated symplectic polarity 7 (and hyperbolic quadric) of such an
arc. Let us show that the collection of tangents { P 7 | P G K} satisfies the conditions
of Theorem 3. The arc can be given by

K := { ( l , * , * * , * ^ 1 ) I x e GF(q)U {00}},

where a — 2 ' , and (i, h) = 1; while the symplectic polarity is
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Using the fact that the group of homographies fixing the arc is sharply 3-transitive on
its q + 1 points we can assume that a general chord of the arc passes through (1,0,0,0)
and (0,0,0,1). Then a general tangent plane [z<r+1,x<7,a;,l] intersects this chord in
a point (l,0,0, a;<7+1) . The condition must be that x i-» xa+1 is a permutation of
GF(q). We must evaluate (o- + l,q — 1). To do this we use the well-known fact that
(2> - 1,2h - 1) = 2 k » - 1, and so (2> - 1,2h - l) = 1 <=> (j,h) = l; see [5]. Since
(a — 1, q — 1) — 1 because (i, h) = 1, we see that (<r + 1, q — 1) = (<r2 — 1, q — l) =
1 <=> (2i, /i) = 1 •$=> (2, h) — 1 <=> i is odd. We leave it as an exercise to show
that there are exactly (g2 + g) /2 lines of PG(3, q) that do not intersect any chord of
K, being the images of the chords under the polarity. Perhaps we could call these
"external lines". Suppose we wanted to construct a set of g + 1 planes Sj satisfying

(1) each plane of $j intersects K only at one point;
(2) each point on each chord of K is on precisely one plane of 9).

Then each pair of planes of fj would have to intersect in an external line of K. On
each of these lines there are two of the above tangent planes. It is not hard to see that
on each tangent plane there are four distinct subsets of points.

(1) a unique point of K;
(2) 2q points on precisely 2 tangent planes (on the hyperbolic quadric asso-

ciated with K);

(3) ( o ) points on 3 tangent planes;

points on 1 tangent plane, but not on K.

Thus any point, not on K, that is on only one tangent plane, is on a unique chord of K.
Using the polarity of K (dualising) we see that any plane (not a tangent plane) that
intersects K in only one point contains exactly one of the (g2 + g)/2 external lines.
From this we see that there are only two possibilities for Sj. Either it is the set oi q + 1
tangent planes; or f) is the set of all the planes passing through one of the external
lines (but this is a degenerate case). In both cases, however, the plane 7r constructed
is isomorphic to PG(2, q).

Note that the (g + l)-arcs in PG(3,g), where q = — 1 (mod 3), have also been
used in the construction of both Hering planes (for q odd), and Schaffer planes (for q
even). These are translation planes of order q2, on which SL(2,q) acts as a group of
collineations. See [6] for further details.

FURTHER PROBLEMS

Finally, let us present a list of problems, which may be a guide for a further
development of this theory.
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(1) Classify all the representations of given OA's and develop a theory (in the
same spirit as the theory of group representations). How should we define irreducible
representations in this theory? Are equivalent representations those which are related
by a collineation of the ambient projective space?

(2) Given an OA of prime-power or infinite order, what is its minimal rank?

(3) There are two methods which could be used to try to construct a representation
of an OA. One could choose a certain cone C, then construct the set of hyperplanes H;
or one could first choose the set H and find a maximal cone that satisfies the conditions
of Theorem 1. (This latter method has the advantage of always giving an OA.)

(4) It is known that there are many OA's with a large group of automorphisms:
for example, finite translation planes of order q give an OA with an elementary abelian
group. If this group (or a subgroup) induces a group of collineations fixing the repre-
sentation then it makes the construction of the C and H much easier. Then group
representation theory can also be used.

(5) Is there an easy way to tell if two representations give the same OA?

(6) Theorem 2 has some interest in the theory of Laguerre planes, because of the
association of embeddability in 3-dimensional space with the bundle theorem. It could
be interesting to investigate this connection further.

(7) It is easy to see that given a representation of an OA it is usually possible to
change the substitution on one of the generators (or rows of the matrix) so that the
rank it increased by one. However, this new representation is somehow degenerate. Can
this matter be clarified?

(8) In the case of fc-arcs (when r = s), and their corresponding MDS codes there is
a theory of orthogonal duality: from the matrix A of rank a that gives the k- OA(q, a)
one constructs the matrix A1- of all columns which are orthogonal to every column of A
— thus r(-A-L) = k — s and the dual orthogonal array has parameters k-OA(q,k — a).
Can this idea be extended to general representations?

(9) The representations of the OA corresponding to the affine plane over a field
could be very interesting to classify.

(10) Theorems 3 and 4 about projective planes with special groups can be easily
generalised to Laguerre planes. A Laguerre plane with a special circle and a "group of
homologies" fixing this circle and being isomorphic to the multiplicative group of a field
of the same order can be embedded in projective space as a cone C over a base curve
K. In this case, however, K has a 2-dimensional set H" of hyperplanes associated
with it. The main condition is that every plane on three distinct points of K has the
property that each of its points is on a unique hyperplane of H". Since the known
finite Laguerre planes have this type of group it would be also interesting to classify the
curves and associated sets of hyperplanes that have this property. Infinite constructions
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would also be of interest.
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