CLASS NUMBER OF (v, n, M)-EXTENSIONS

Osama Alkam and Mehpare Bilhan

Abstract

An analogue of cyclotomic number fields for function fields over the finite field \mathbb{F}_{q} was investigated by L. Carlitz in 1935 and has been studied recently by D. Hayes, M. Rosen, S. Galovich and others. For each nonzero polynomial M in $\mathbb{E}_{q}[T]$, we denote by $k\left(\Lambda_{M}\right)$ the cyclotomic function field associated with M, where $k=\mathbb{F}_{q}(T)$. Replacing T by $1 / T$ in k and considering the cyclotomic function field F_{v} that corresponds to $(1 / T)^{v+1}$ gets us an extension of k, denoted by L_{v}, which is the fixed field of F_{v} modulo \mathbb{F}_{q}^{*}. We define a (v, n, M) -extension to be the composite $N=k_{n} k\left(\Lambda_{m}\right) L_{v}$ where k_{n} is the constant field of degree n over k. In this paper we give analytic class number formulas for (v, n, M) -extensions when M has a nonzero constant term.

1. Introduction

Let \mathbb{F}_{q} be the finite field with $q=p^{\boldsymbol{r}}$ elements, where p is a prime number, and let $k=\mathbb{F}_{q}(T)$ be the rational function field. To each nonzero polynomial $M(T)$ in $R_{T}=\mathbb{F}_{q}[T]$ one can associate a field extension $k\left(\Lambda_{M}\right)$, called the $M^{\text {th }}$ cyclotomic function field. It has properties analogous to the classical number fields. Such extensions were investigated by Carlitz [2] and have been studied in recent years by Hayes, Rosen, Galovich, Goss and others. Hayes (in [4]) developed the theory of cyclotomic function fields in a modern language and constructed the maximal Abelian extension of k. We shall briefly review the relevant portions of Carlitz' and Hayes' theory. Let \bar{k} be the algebraic closure of k and \bar{k}^{+}be its underlying additive group. The Frobenius automorphsim Φ defined by $\Phi(u)=u^{q}$ and the multiplication map μ_{T} defined by $\mu_{T}(T)=T u$ are \mathbb{F}_{q}-endomorphisms of \bar{k}^{+}. The substitution of $\Phi+\mu_{T}$ for T in every polynomial $M(T) \in R_{T}$ introduces a ring homomorphism from R_{T} into End $\left(\vec{k}^{+}\right)$ which defines an R_{T}-module action on \bar{k}. The action of a polynomial $M(T) \in R_{T}$ on $u \in \bar{k}$ is denoted by \boldsymbol{u}^{M} and given by

$$
u^{M}=M\left(\Phi+\mu_{t}\right)(u)
$$

[^0][^1]This action preserves the \boldsymbol{F}_{q}-algebra structure of \bar{k}, since $u^{\beta}=\beta u$ for $\beta \in \mathbf{F}_{q}$. Carlitz and Hayes established the following results.
(1) If $\operatorname{deg} M=d$, then $u^{M}=\sum_{i=0}^{d}\left[\begin{array}{c}M \\ i\end{array}\right] u^{\boldsymbol{q}^{i}}$, where $\left[\begin{array}{c}M \\ i\end{array}\right]$ is a polynomial in R_{T} of degree $(d-i) q^{i}$. Moreover $\left[\begin{array}{c}M \\ 0\end{array}\right]=M$ and $\left[\begin{array}{c}M \\ d\end{array}\right]$ is the leading coefficient of M.
(2) u^{M} is a separable polynomial in u of degree q^{d}. If Λ_{M} denotes the set of roots of the polynomial u^{M} in \bar{k} then Λ_{M} is an R_{T}-submodule of \bar{k} which is cyclic and isomorphic to $R_{T} /\langle M\rangle$.
(3) The field $k\left(\Lambda_{M}\right)$, which is obtained by adjoining the elements of Λ_{M} to k, is a simple, Abelian extension of k with a Galois group isomorphic to $\left(R_{T} /\langle M\rangle\right)^{*}$. By $\Phi(M)$ we denote the order of the group $\left(R_{T} /\langle M\rangle\right)^{*}$.
(4) If $M \neq 0$ then the infinite prime divisor P_{∞} of k splits into $\Phi(M) /(q-1)$ prime divisors of $k\left(\Lambda_{M}\right)$ with ramification index $e_{\infty}=q-1$ and residue degree $f_{\infty}=1$.
Because of the presence of constant fields and wild ramification of the infinite prime P_{∞}, the above $M^{\text {th }}$ cyclotomic function fields $k\left(\Lambda_{M}\right)$ are not sufficient to generate the maximal Abelian extension of k. To remedy this difficulty, Hayes constructed the fields F_{v} by applying Carlitz' theory with the generator $1 / T$ instead of T and $(1 / T)^{v+1}$ instead of M and considered the fixed field L_{v} of F_{v} under \mathbb{F}_{q}^{*}. Then the maximal Abelian extension A of k appears as the composite $E K_{T} L_{\infty}$, where E is the composite of all constant field extensions of k, K_{T} is the composite of all cyclotomic function fields and L_{∞} is the composite of all fields L_{v}. Thus we deduce an analogue of the KroneckerWeber Theorem for rational function fields: Every finite Abelian extension K of k is contained in a composite of the type $N=k_{n} k\left(\Lambda_{M}\right) L_{v}$, where k_{n} is a constant field extension of degree n, M is a nonzero polynomial in R_{T} and v is a nonnegative integer. We call such extensions (v, n, M)-extensions.

In [3], Galovich and Rosen gave an analytic class number formula for the field $k\left(\Lambda_{M}\right)$ when $M=P^{a}$ for some prime polynomial $P \in \mathbb{F}_{q}[T]$. In this paper we give an analytic class number formula for (v, n, M) -extensions for any nonnegative integer v, positive integer n and any polynomial M in $\mathbb{F}_{q}[T]$ with a nonzero constant term.

Let $N=k_{n} k\left(\Lambda_{M}\right) L_{v}$ be such an extension. Then since $k \subseteq L_{v}$ and Λ_{M} is a cyclic R_{T}-module, say $\Lambda_{M}=\langle\lambda\rangle, N=\mathbb{F}_{q^{n}} L_{v}(\lambda)$. Hence the fields N and $L_{v}(\lambda)$ have the same genus. Moreover, the class number of N is divisible by the class number of $L_{v}(\lambda)$. We shall give explicit class number formulas for both $L_{v}(\lambda)$ and N. We begin by studying the decomposition of the infinite prime divisor P_{∞} of k in $L_{v}(\lambda)$. Let $G_{L}=\operatorname{Gal}\left(L_{v}(\lambda) / k\right)$. Then G_{L} is isomorphic to the direct sum of $G_{M}=\operatorname{Gal}(k(\lambda) / k) \cong$ $\left(R_{T} /\langle M\rangle\right)^{*}$ and $G_{v}=\operatorname{Gal}\left(L_{v} / k\right)[4]$.

If $\sigma \in \operatorname{Gal}\left(L_{v}(\lambda) / L_{v}\right)$ then $\sigma_{\text {res.to } . k(\lambda)} \in G_{M}$. Notice that $\sigma_{1_{\text {ree.vo. } k(\lambda)}}=$ $\sigma_{2_{\text {res.to } . k(\lambda)}}$ implies that $\sigma_{1}=\sigma_{2}$ since $\sigma_{1_{\text {res.to. } L_{v}}}=\sigma_{2_{\text {res.to. } L_{v}}}=$ identity automorphsim. Moreover $\left|\operatorname{Gal}\left(L_{v}(\lambda) / L_{v}\right)\right|=\left|G_{M}\right|=\Phi(M)$. Hence $\operatorname{Gal}\left(L_{v}(\lambda) / L_{v}\right) \cong$ $G_{M} \cong\left(R_{T} /\langle M\rangle\right)^{*}$.

Consider the following diagrams of field extensions and prime divisors

with \mathfrak{R} being a prime divisor of $L_{v}(\lambda)$ lying over the prime divisors \mathfrak{I} and ℓ of the fields L_{v} and $k(\lambda)$ respectively, and P being a prime divisior of k lying under both \mathfrak{J} and ℓ.

Restricting automorphisms in $\operatorname{Gal}\left(L_{v}(\lambda) / L_{v}\right)$ to $k(\lambda)$ makes an isomorphism between the decomposition groups $D(\Re / \mathfrak{I})$ and $D(\ell / P)$. It is an isomorphism between the intertia groups $I(\Re / \mathfrak{I})$ and $I(\ell / P)$ as well. Thus $e(\ell / P)$ and $f(\Re / \mathfrak{J})$ equal $f(\ell / P)$. Therefore we can easily see the following.

Proposition 1. Let \mathfrak{R} be a prime divisor of $L_{v}(\lambda)$ lying over the infinite prime divisor P_{∞} of k. Then
(i) $e\left(\Re / P_{\infty}\right)=(q-1) q^{v}$
(ii) $f\left(\Re / P_{\infty}\right)=1$
(iii) $g\left(\Re / P_{\infty}\right)=\Phi(M) /(q-1)$
(iv) $N \Re=q$.

Since the only finite prime divisors of k that ramify in $k(\lambda)$ are the divisors of M and no finite prime divisor of k ramifies in L_{v}, the only prime diviors of k that ramify in $L_{v}(\lambda)$ are the prime polynomials that divide M.

2. Analytic class number formulas

In this section we develop class number formulas for the fields $L_{v}(\lambda)$ and N by studying their L-functions and zeta functions. For the rest of this section the constant term of the polynomial M is assumed to be nonzero.

The field $L_{v}(\lambda)$. Let χ be a character of $G_{L}=\operatorname{Gal}\left(L_{v}(\lambda) / k\right)$. Then the L-functions of $L_{v}(\lambda) / k$ are given by

$$
L\left(s, \chi, L_{v}(\lambda) / k\right)=\prod_{\varphi}\left(1-\frac{\chi(\varphi)}{N \varphi^{s}}\right)^{-1}, \quad \operatorname{Re}(s)>1
$$

where φ runs over all prime divsors of k, and

$$
L^{*}\left(s, \chi, L_{v}(\lambda) / k\right)=\prod_{P}\left(1-\frac{\chi(P)}{N P^{s}}\right)^{-1}, \quad \operatorname{Re}(s)>1
$$

where P runs over all finite prime divisors of k. Thus

$$
\begin{aligned}
L^{*}\left(s, \chi_{0}, L_{v}(\lambda) / k\right) & =\prod_{P}\left(1-\frac{1}{q^{s \operatorname{deg} P}}\right)^{-1} \\
& =\zeta\left(s, R_{T}\right) \\
& =\left(1-q^{1-s}\right)^{-1}
\end{aligned}
$$

If $\chi \neq \chi_{0}$ is a character in \widehat{G}_{L} then

$$
L^{*}\left(s, \chi, L_{v}(\lambda) / k\right)=\prod_{\substack{Q \in \mathbf{F}_{q}[T], \text { prime } \\ Q \nmid M}}\left(1-\frac{\chi(Q)}{N Q^{s}}\right)^{-1}, \quad \operatorname{Re}(s)>1
$$

By $\chi(Q)$ we mean the value of the character χ at the Frobenius substitution of $L_{v}(\lambda) / k$ at Q. Therefore

$$
\chi(Q)=\chi\left(Q+\langle M\rangle, \bar{Q}+\left\langle\left(\frac{1}{T}\right)^{v+1}\right\rangle\right), \quad \text { where } \bar{Q}=\frac{Q}{T^{\operatorname{deg} Q}}
$$

Hence

$$
L^{*}\left(s, \chi, L_{v}(\lambda) / k\right)=\sum_{\substack{A \in \mathbf{F}_{q}[T], \text { monic } \\(A, M)=1}} \frac{\chi\left(A+\langle M\rangle, \bar{A}+\left\langle(1 / T)^{v+1}\right\rangle\right)}{N A^{s}}, \quad \operatorname{Re}(s)>1
$$

where $\bar{A}=A / T^{\operatorname{deg} A}$.
Since $N A=q^{\operatorname{deg} A}$ for each monic polynomial A in $\mathbb{F}_{q}[T]$, we can write

$$
L^{*}\left(s, \chi, L_{v}(\lambda) / k\right)=\sum_{i=0}^{\infty} \frac{S_{i}(\chi)}{q^{s i}}, \quad \operatorname{Re}(s)>1
$$

where

$$
S_{i}(\chi)=\sum_{\substack{A \in \mathbf{F}_{\mathbf{q}}[T], \text { monic } \\(A, M)=1 \\ \operatorname{deg} A=i}} \chi\left(A+\langle M\rangle, \bar{A}+\left\langle\left(\frac{1}{T}\right)^{v+1}\right\rangle\right)
$$

Theorem 1. Let M be a polynomial in $\mathbf{F}_{q}[T]$ with a nonzero constant term. If $\operatorname{deg} M=m \geqslant 1$ and $\chi \neq \chi_{0}$ in \widehat{G}_{L} then $S_{i}(\chi)=0$ for all $i \geqslant m+v+2$.

Proof: Let $i \geqslant m+v+2$ and $S_{i}=\left\{\left(A+\langle M\rangle, \bar{A}+\left\langle(1 / T)^{v+1}\right\rangle\right): A \in\right.$ $\mathbb{F}_{q}[T]$, monic of degree i with $\left.(A, M)=1\right\}$. Define $\theta: S_{i} \rightarrow G_{L}=\operatorname{Gal}\left(L_{v}(\lambda) / k\right)$ to be the map which sends $\left(A+\langle M\rangle, \bar{A}+\left\langle(1 / T)^{v+1}\right\rangle\right)$ to $\left(R_{A}+\langle M\rangle, \bar{A}+\left\langle(1 / T)^{v+1}\right\rangle\right)$ where R_{A} is the unique polynomial in $\mathbb{F}_{q}[T]$ such that $A=M^{*} Q_{A}+R_{A}, \operatorname{deg} R_{A}<$ $\operatorname{deg} M$. Clearly Θ is well-defined. We show that Θ is onto.

Suppose that $R=\sum_{j=0}^{i} r_{j} T^{j}$ (with $r_{j}=0$ when $j>\operatorname{deg} R$), $M=\sum_{j=0}^{m} d_{j} T^{j}$, and $h=\sum_{j=0}^{v} a_{j}(1 / T)^{v-j}$ with $a_{v}=1$ and allowing to have some of the a_{j} 's to equal zero. Then, with the convention that $r_{j}=0$ for all j such that $\operatorname{deg} R<j<v$, when $\operatorname{deg} R<v$ the system

$$
\left[\begin{array}{ccccc}
d_{0} & 0 & 0 & \ldots & 0 \\
d_{1} & d_{0} & 0 & \ldots & 0 \\
d_{2} & d_{1} & d_{0} & \ldots & 0 \\
\vdots & \vdots & \vdots & & \vdots \\
d_{v} & d_{v-1} & d_{v-2} & \ldots & d_{0}
\end{array}\right]\left[\begin{array}{c}
x_{0} \\
x_{1} \\
x_{2} \\
\vdots \\
x_{v}
\end{array}\right] \quad\left[\begin{array}{c}
a_{0}-r_{0} \\
a_{1}-r_{1} \\
a_{2}-r_{2} \\
\vdots \\
1-r_{v}
\end{array}\right]
$$

has a unique solution since the constant term d_{0} of M is nonzero. Let $x_{0}=q_{0}, x_{1}=$ $q_{1}, \ldots, x_{v}=q_{v}$ be the solution of that system and consider $Q=\sum_{j=0}^{i-m} q_{j} T^{j}$ with $q_{v+1}, q_{v+2}, \ldots, q_{i-m-1}$ chosen arbitrarily and $q_{i-m}=d_{m}^{-1}$. (Thus we have $q^{i-m-v-2}$ distinct choices for Q.) Take $A=M^{*} Q+R$. Then since $(R, M)=1$, we have $(A, M)=1$. Moreover A is monic, $\operatorname{deg} A=i$ and

$$
\Theta\left(A+\langle M\rangle, \bar{A}+\left\langle\left(\frac{1}{T}\right)^{v+1}\right\rangle\right)=\left(R+\langle M\rangle, h+\left\langle\left(\frac{1}{T}\right)^{v+1}\right\rangle\right)
$$

This shows that Θ is onto.
Now each $g \in G_{L}$ corresponds to $q^{i-m-v-2}$ distinct choices of A. Moreover, if $A_{1}=M^{*} Q_{1}+R_{1}, A_{2}=M^{*} Q_{2}+R_{2}$ then

$$
\left(A_{1}+\langle M\rangle, \overline{A_{1}}+\left\langle\left(\frac{1}{T}\right)^{v+1}\right\rangle\right)=\left(A_{2}+\langle M\rangle, \overline{A_{2}}+\left\langle\left(\frac{1}{T}\right)^{v+1}\right\rangle\right) .
$$

Therefore

$$
\begin{aligned}
S_{i}(\chi) & =\sum_{\substack{A \in \mathbf{P}_{\mathbf{l}}(T), \text { monic } \\
(A, M)=1 \\
\text { deg } A=i}} \chi\left(A+\langle M\rangle, \bar{A}+\left\langle\left(\frac{1}{T}\right)^{v+1}\right\rangle\right) \\
& =q^{i-m-v-2} \sum_{g \in G_{L}} \chi(g) \\
& =0 .
\end{aligned}
$$

This completes the proof of the theorem.
The previous Theorem tells us that the L-function $L^{*}\left(s, \chi, L_{v}(\lambda) / k\right)$ is a polynomial in q^{-s} with degree at most $m+v+1$ whenever $\chi \neq \chi_{0}$. We may consider \mathbb{F}_{q}^{*} to be a subgroup of $\operatorname{Gal}(k(\lambda) / k)$ via identifying each $a \in \mathbf{F}_{q}^{*}$ with $\sigma_{a} \in \operatorname{Gal}(k(\lambda) / k)$ which maps λ to $a \lambda$. If we let $S=\left\{\left(\sigma_{a}, \tau\right): a \in \mathbb{F}_{q}^{*}, \tau \in G_{v}=\operatorname{Gal}\left(L_{v} / k\right)\right\}$ then S is a subgroup of $G_{L}=\operatorname{Gal}\left(L_{v}(\lambda) / k\right)$. Moreover, $|S|=(q-1) q^{v}$. The subgroup S is the decomposition group of the point at infinity.

Definition 1: A character χ of $\operatorname{Gal}(k(\lambda) / k)$ is said to be real if $\chi(a)=1$ for all $a \in \mathbb{F}_{q}^{*}$, while a character χ of $\operatorname{Gal}\left(L_{v}(\lambda) / k\right)$ is said to be real if $\chi(s)=1$ for all $s \in S$. Clearly there are $(\Phi(M) /(q-1))-1$ nontrivial real characters of each Galois group. Moreover, for any nontrivial real character χ of $\operatorname{Gal}(k(\lambda) / k), L^{*}(0, \chi, k(\lambda) / k)=0[3]$.

Theorem 2. For any nontrivial real character χ of $\operatorname{Gal}\left(L_{v}(\lambda) / k\right)$, $L^{*}\left(0, \chi, L_{v}(\lambda) / k\right)=0$.

Proof: Any nontrivial real character χ of $\mathrm{Gal}\left(L_{v}(\lambda) / k\right)$ can be viewed as a character of $\operatorname{Gal}(k(\lambda) / k)$ via defining $\chi(g)=\chi\left(\sigma, 1_{G_{v}}\right)$. Moreover, $L^{*}\left(s, \chi, L_{v}(\lambda) / k\right)=$ $L^{*}(s, \chi, k(\lambda) / k)$. Hence $L^{*}\left(0, \chi, L_{v}(\lambda) / k\right)=0$ and the Theorem is proved.

In light of the previous results, we may proceed to derive a class number formula for the field $L_{v}(\lambda)$. By Theorem 1 and Proposition 1 we may write the zeta function of $L_{v}(\lambda)$ as follows

$$
\begin{aligned}
\zeta\left(s, L_{v}(\lambda)\right) & =\left(1-q^{-s}\right)^{-\Phi(M) /(q-1)} \prod_{\substack{\chi \in \widehat{G}_{L}}} L^{*}\left(s, \chi, L_{v}(\lambda) / k\right) \\
& =\left(1-q^{-s}\right)^{-\Phi(M) /(q-1)}\left(1-q^{1-s}\right)^{-1} \prod_{\substack{\chi \in \widehat{G}_{L} \\
\chi \neq \chi_{0}}} L^{*}\left(s, \chi, L_{v}(\lambda) / k\right) .
\end{aligned}
$$

It is well known that

$$
\zeta\left(s, L_{v}(\lambda)\right)=F\left(q^{-s}, L_{v}(\lambda)\right) /\left(1-q^{-s}\right)\left(1-q^{1-s}\right)
$$

where $F\left(q^{-s}, L_{v}(\lambda)\right.$) is a polynomial in $\mathbb{Z}\left[q^{-s}\right]$ of degree $2 g$ (where g is the genus of $L_{v}(\lambda)$). Moreover, the class number of $L_{v}(\lambda)$ is $F\left(1, L_{v}(\lambda)\right)$ [5]. Thus

$$
\begin{aligned}
F\left(q^{-s}, L_{v}(\lambda)\right) & =\left(1-q^{-s}\right)^{(-\Phi(M) /(q-1))-1} \prod_{\substack{x \in \widehat{G}_{L} \\
\chi \neq \chi_{0}}} L^{*}\left(s, \chi, L_{v}(\lambda) / k\right) \\
& =\left(\prod_{\substack{x \in \widehat{G}_{L}, \text { real } \\
\chi \neq \chi_{0}}} \frac{L^{*}\left(s, \chi, L_{v}(\lambda) / k\right)}{1-q^{-s}}\right)\left(\prod_{\substack{x \in \widehat{G}_{L} \\
\chi \text { nonreal }}} L^{*}\left(s, \chi, L_{v}(\lambda) / k\right)\right) \\
& =\left(\prod_{\substack{x \in \widehat{G}_{L, \text { real }} \\
\chi \neq x_{0}}} \frac{\sum_{i=0}^{m+v+1} S_{i}(\chi) / q^{s i}}{1-q^{-s}}\right)\left(\prod_{\substack{\chi \in \widehat{G}_{L} \\
\chi \text { nonreal }}} \sum_{i=0}^{m+v+1} \frac{S_{i}(\chi)}{q^{s i}}\right)
\end{aligned}
$$

By Theorem $2, L^{*}\left(0, \chi, L_{v}(\lambda) / k\right)=0$ for each nontrivial character χ in \widehat{G}_{L}. Using L'Hopital's rule to evaluate the limit of the above equation's right-hand side as s tends to 0 , we derive the following class number formula:

$$
h\left(L_{v}(\lambda)\right)=F\left(1, L_{v}(\lambda)\right)=\left(\prod_{\substack{x \in \widehat{G}_{\mathrm{L}, \text {, real }} \\ \chi \neq x_{0}}} \sum_{i=1}^{m+v+1}-i S_{i}(\chi)\right)\left(\prod_{x \in \widehat{G}_{\mathrm{L}}, \text { nonreal }} \sum_{i=0}^{m+v+1} S_{i}(\chi)\right)
$$

The Field $L_{v}(\lambda) \mathbb{F}_{q^{n}}$. Let $G_{N}=\operatorname{Gal}(N / k), G_{v}=\operatorname{Gal}\left(L_{v} / k\right)$ and $G_{M}=\operatorname{Gal}(k(\lambda) / k)$. Then G_{N} essentially equals the direct sum of the groups G_{M}, G_{v} and the cyclic group \mathbb{Z}_{n} [4]. We shall study the L-functions $L^{*}(s, \chi, N / k)$ for any nontrivial character χ of G_{N}. Let $\chi \neq \chi_{0}$ be a character in \widehat{G}_{N}. Then we have one of two cases:

CASE I. The restriction of χ to $G_{M} \oplus G_{v}=\operatorname{Gal}\left(L_{v}(\lambda) / k\right)$ is the trivial character. In this case we define the character Ψ on $\operatorname{Gal}\left(k \mathbb{F}_{q^{n}}\right)$ by $\Psi(a)=\chi\left(\left(1_{G_{M}}, 1_{G_{v}}, a\right)\right)$. We identify the restriction of χ to $G_{M} \oplus G_{v}$ with the character $\chi_{\text {res }}$ of $G_{M} \oplus G_{v}$ which is defined by $\chi_{\text {res }}((\sigma, \tau))=\chi((\sigma, \tau, 0))$. Notice that $\chi((\sigma, \tau, a))=\Psi(a)$ for each $(\sigma, \tau, a) \in G_{N}$ and that Ψ is nontrivial since $\chi_{\text {res }}$ is the trivial character. Moreover, Ψ can be viewed as a character of G_{N} via putting $\Psi((\sigma, \tau, a))=\Psi(a)$. Hence $L^{*}(s, \Psi, N / k)=L^{*}\left(s, \Psi, k \mathbf{F}_{q^{n}} / k\right)$. That is, $L^{*}(s, \chi, N / k)=L^{*}\left(s, \Psi, k \mathbb{F}_{q^{n}} / k\right)$. Thus our problem of studying $L^{*}(s, \chi, N / k)$ is reduced to studying $L^{*}\left(s, \Psi, k \mathbb{F}_{q^{n}} / k\right)$ which equals $\sum_{f \in \mathbf{F}_{q}[T], \text { monic }} \Psi(f) / q^{s \operatorname{deg} f}, \operatorname{Re}(s)>1$, where (see [1])

$$
\Psi(f)=\Psi\left(\left[\frac{k F_{q^{n}} / k}{f}\right]\right)=\Psi(\operatorname{deg} f(\bmod n)) .
$$

Let $r_{d_{f}}$ be the unique integer such that $\operatorname{deg} f=c^{*} n+r_{d_{f}}, 0 \leqslant r_{d_{f}}<n$. Then $\Psi(f)=\Psi\left(r_{d_{f}}\right)$ and

$$
L^{*}\left(s, \Psi, k \mathbf{F}_{q^{n}} / k\right)=\sum_{f \in \mathbf{F}_{q}[T], \text { monic }} \frac{\Psi\left(r_{d_{j}}\right)}{q^{s} \operatorname{deg} f}, \quad \operatorname{Re}(s)>1
$$

where $d_{f}=\operatorname{deg} f$.
We can write $L^{*}\left(s, \Psi, k \mathbb{F}_{q^{n}} / k\right)$ as $\sum_{i=0}^{\infty} S_{i}(\Psi) / q^{s i}, \operatorname{Re}(s)>1$, where $S_{i}(\Psi)=$ $\sum_{f \in \mathbb{F}_{q}[T], \text { monic }} \Psi\left(r_{i}\right)$.

Since we have q^{i} possible monic polynomials in $\mathbb{F}_{q}[T]$ of degree $i, S_{i}(\Psi)=q^{i} \Psi\left(r_{i}\right)$. Therefore

$$
\begin{array}{rlrl}
L^{*}\left(s, \Psi, k \mathbb{F}_{q^{n}} / k\right) & =\sum_{i=0}^{\infty} \frac{q^{i} \Psi\left(r_{i}\right)}{q^{s i}}, & & \operatorname{Re}(s)>1 \\
& =\sum_{i=0}^{\infty} \frac{\Psi\left(r_{i}\right)}{q^{i(s-1)}}, & & \operatorname{Re}(s)>1 \\
& =\sum_{i=0}^{\infty} \frac{\Psi(i)}{q^{i(s-1)}}, & & \operatorname{Re}(s)>1 \\
& =\sum_{i=0}^{\infty} \frac{\Psi(1)^{i}}{q^{i(s-1)}}, & & \operatorname{Re}(s)>1 \\
& =\frac{1}{1-\Psi(1) q^{1-s}}
\end{array}
$$

Whence, if χ is a nontrivial character of G_{N} which is trivial on $G_{M} \oplus G_{v}$ and Ψ_{χ} is the character of \mathbb{Z}_{n} defined by $\Psi_{\chi}(i)=\chi\left(\left(1_{G_{M}}, 1_{G_{v}}, i\right)\right)$ then

$$
L^{*}(s, \chi, N / k)=\frac{1}{1-\Psi_{\chi}(1) q^{1-s}} .
$$

CASE II. The restriction of χ to $G_{M} \oplus G_{v}$ is not the trivial character.
Again we let $\chi_{\text {res }}$ be the restriction of χ to $G_{M} \oplus G_{v}$, that is, $\chi_{\mathrm{res}}((\sigma, \tau))=$ $\chi((\sigma, \tau, 0))$. Then

$$
L^{*}(s, \chi, N / k)=\sum_{\substack{A \in \mathbb{F}_{q}[T], \text { monic } \\(A, M)=1}} \frac{\chi\left(\left(A+\langle M\rangle, \bar{A}+\left\langle(1 / T)^{v+1}\right\rangle, r_{d_{A}}\right)\right)}{q^{s d_{A}}}, \quad \operatorname{Re}(s)>1
$$

where $d_{A}=\operatorname{deg} A, \bar{A}=A / T^{d_{A}}$ and $r_{d_{A}}$ is the unique integer such that $d_{A}=c^{*} n+$ $r_{d_{A}}, 0 \leqslant \tau_{d_{A}}<n$, [1]. If

$$
S_{i}(\chi)=\sum_{\substack{A \in \mathbf{F}_{q}[T], \text { monic } \\(A, M)=1, d_{A}=i}} x\left(\left(A+\langle M\rangle, \bar{A}+\left\langle\left(\frac{1}{T}\right)^{v+1}\right\rangle, r_{d_{A}}\right)\right)
$$

then

$$
L^{*}(s, \chi, N / k)=\sum_{i=0}^{\infty} \frac{S_{i}(\chi)}{q^{s i}}, \quad \operatorname{Re}(s)>1
$$

For each i,

$$
S_{i}(\chi)=\sum_{\substack{A \in \mathbf{F}_{q}\left(T, \text { monic } \\(A, M)=1, d_{A}=i\right.}} \chi\left(\left(1_{G_{M}}, 1_{G_{v}}, r_{i}\right)\right) \chi\left(\left(A+\langle M\rangle, \bar{A}+\left\langle\left(\frac{1}{T}\right)^{v+1}\right\rangle, 0\right)\right) .
$$

Since $\chi\left(\left(1_{G_{M}}, 1_{G_{v}}, r_{i}\right)\right)$ is independent of the choice of A as long as $\operatorname{deg} A=i$, we have

$$
S_{i}(\chi)=\chi\left(\left(1_{G_{M}}, 1_{G_{v}}, r_{i}\right)\right) \sum_{\substack{\left.A \in \mathbf{F}_{g}(T]\right), \text { monic } \\(A, M)=1, d_{A}=i}} \chi\left(\left(A+\langle M\rangle, \bar{A}+\left\langle\left(\frac{1}{T}\right)^{v+1}\right\rangle, 0\right)\right)=0
$$

because $\chi_{\text {res }}$ is nontrivial on $G_{M} \oplus G_{v}$. Therefore $S_{i}(\chi)=0$ for all $i \geqslant d_{M}+v+2$. Whence

$$
L^{*}(s, \chi, N / k)=\sum_{i=0}^{d_{M}+v+1} \frac{S_{i}(\chi)}{q^{s i}}
$$

To summarise we write

$$
L^{*}(s, \chi, N / k)= \begin{cases}\frac{1}{1-\Psi_{\chi}(1) q^{1-s}}, & \text { if } \chi_{\text {res }} \text { is trivial on } G_{M} \oplus G_{v} \\ \sum_{i=0}^{d_{M}+v+1} \frac{S_{i}(\chi)}{q^{i s}}, & \text { otherwise. }\end{cases}
$$

Definition 2: A character χ of $G_{N}=\operatorname{Gal}(N / k)$ is said to be real in \widehat{G}_{N} if $\chi\left(\left(\sigma_{a}, \tau, m\right)\right)=1$ for any $a \in \mathbf{F}_{q}^{*}, \tau \in G_{v}$ and $m \in \mathbb{Z}_{n}$.

Clearly we have $(\Phi(M) /(q-1))-1$ nontrivial real characters in \widehat{G}_{N}.
Theorem 3. Let χ be a nontrivial real character in \widehat{G}_{N}. Then $L^{*}(0, \chi, N / k)$ $=0$.

Proof: The character $\chi_{\text {res }}$ is a nontrivial real character of $G_{M} \oplus G_{v}$. Hence

$$
L^{*}(s, \chi, N / k)=\sum_{i=0}^{d_{M}+v+1} \frac{S_{i}(\chi)}{q^{s i}}
$$

where

$$
S_{i}(\chi)=\chi\left(\left(1_{G_{M}}, 1_{G_{v}}, r_{i}\right)\right) \sum_{\substack{A \in \mathbf{F}_{q}[T], \text { monic } \\(A, M)=1, d_{A}=i}} \chi_{\mathrm{res}}\left(\left(A+\langle M\rangle, \bar{A}+\left\langle\left(\frac{1}{T}\right)^{v+1}\right\rangle\right)\right)
$$

Since χ is real, $\chi\left(\left(1_{G_{M}}, 1_{G_{v}}, r_{i}\right)\right)=1$. Thus $S_{i}(\chi)=S_{i}\left(\chi_{\text {res }}\right)$. Therefore $L^{*}(s, \chi, N / k)$ $=L^{*}\left(s, \chi_{\mathrm{res}}, L_{v}(\lambda) / k\right)$. The Theorem then follows from Theorem 2.

Having studied the L-functions $L^{*}(s, \chi, N / k)$, one can give a class number formula for N via exploring the zeta function $\zeta(s, N)$. Let ℓ be a prime divisor of N lying over the infinite prime divisor P_{∞} of k and let \mathfrak{p} be a prime divisor of $L_{v}(\lambda)$ lying under ℓ and over P_{∞}. Then we deduce (from the theory of constant field extensions) that $g(\ell, \mathfrak{p})=\left(d_{L_{v}(\lambda)}(\mathfrak{p}), n\right)=(1, n)=1$. Thus, every prime divisor of $L_{v}(\lambda)$ which lies over the infinite prime divisor of k has a unique extension to a prime divisor of N. Moreover, as is well known from the theory of constant field extensions, no prime divisor of $L_{v}(\lambda)$ is ramified in N. Thus $e(\ell / p)=1$. Hence $f(\ell / p)=n$. Therefore $N \ell=N p^{f(\ell / p)}=q^{n}$. So

$$
\zeta(s, N)=\left(1-q^{-n s}\right)^{-\Phi(M) /(q-1)}\left(1-q^{1-s}\right) \prod_{\substack{x \in \widehat{G}_{N} \\ \chi \neq \chi_{0}}} L^{*}(s, \chi, N / k)
$$

Since the field of constants of N is $\mathbb{F}_{q^{n}}$ we get

$$
\zeta(s, N)=\frac{F\left(q^{-n s}, N\right)}{\left(1-q^{-n s}\right)\left(1-q^{n(1-s)}\right)}
$$

where $F\left(q^{-n s}, N\right) \in \mathbb{Z}\left[q^{-n s}\right]$ and $F(1, N)=h(N)$; the class number of N. Thus

$$
\begin{aligned}
& F\left(q^{-n s}, N\right) \\
& =\left(1-q^{-n s}\right)^{(-\Phi(M) /(q-1))+1}\left(1-q^{n(1-s)}\right)\left(1-q^{1-s}\right)^{-1} \prod_{\substack{x \in \widehat{G}_{N} \\
\chi \neq x_{0}}} L^{*}(s, \chi, N / k) \\
& =\left(1-q^{n(1-s)}\right)\left(1-q^{1-s}\right)^{-1}\left(\prod_{\substack{\chi \in \widehat{G}_{N}, \text { real } \\
\chi \neq \chi_{0}}} \frac{L^{*}(s, \chi, N / k)}{1-q^{-n s}}\right)\left(\prod_{\chi \in \widehat{G}_{N}, \text { nonreal }} L^{*}(s, \chi, N / k)\right) \\
& =\left(1-q^{n(1-s)}\right)\left(1-q^{1-s}\right)^{-1}\left(\prod_{\substack{x \in \widehat{G}_{N}, \text { real } \\
\chi \neq x 0}} \frac{\sum_{i=0}^{d_{M}+v+1} S_{i}(\chi) / q^{i s}}{1-q^{-n s}}\right) \\
& \left(\prod_{\substack{\chi \in \widehat{G}_{N}, \text { nonreal } \\
\chi \text { res nontrivial }}} \sum_{i=0}^{d_{M}+v+1} \frac{S_{i}(\chi)}{q^{i s}}\right)\left(\prod_{\substack{\chi \in \widehat{G}_{N}, \text { nonreal } \\
\chi_{\text {res }} \text { trivial }}} \frac{1}{1-\Psi_{\chi}(1) q^{(1-s)}}\right)
\end{aligned}
$$

$$
\left(\prod_{i=0}^{n-1} \frac{1}{1-\omega_{i} q^{(1-s)}}\right)
$$

where $\omega_{0}, \omega_{1}, \ldots, \omega_{n-1}$ are the nth roots of unity,

$$
=\left(\prod_{\substack{\chi \in \widehat{G}_{N, \text { real }} \\ \chi \neq \chi_{0}}} \frac{\sum_{i=0}^{d_{M}+v+1} S_{i}(\chi) / q^{i s}}{1-q^{-n s}}\right)\left(\prod_{\substack{\chi \in \widehat{G}_{N}, \text { nonreal } \\ \chi \text { xres nontrivial }}} \sum_{i=0}^{d_{M}+v+1} \frac{S_{i}(\chi)}{q^{i s}}\right) .
$$

By Theorem $3, L^{*}(0, \chi, N / k)=0$ for all nontrivial real characters $\chi \in \widehat{G}_{N}$. If we evaluate the limit of the right hand-side as s tends to 0 we get the following formula for the class number $h(N)$:

$$
h(N)=\left(\prod_{\substack{x \in \widehat{G}_{N, \text {,real }} \\ \chi \neq \chi_{0}}} \frac{1}{n} \sum_{i=1}^{d_{M}+v+1}-i S_{i}(\chi)\right)\left(\prod_{\substack{x \in \widehat{G}_{N}, \text { nonreal } \\ \chi \text { res nontrivial }}} \sum_{i=0}^{d_{M}+v+1} S_{i}(\chi)\right) .
$$

3. Examples

When we specialise our results to $N=\mathbb{F}_{q^{n}} L_{v}(\lambda)$ with $n=1$ and $v=0$ we get $N=k(\lambda)$ and

$$
h(N)=\left(\prod_{\substack{x \in \widehat{G}_{N} \text { real } \\ \chi \neq x_{0}}}\left(\sum_{i=1}^{m+1}-i S_{i}(\chi)\right)\right)\left(\prod_{\chi \in \widehat{G}_{N}, \text { nonreal }}\left(\sum_{i=0}^{m+1} S_{i}(\chi)\right)\right),
$$

where $m=\operatorname{deg} M$ and $S_{i}(\chi)=\sum_{\substack{A \in \mathbf{F}_{q} q[T], \text { monic } \\ \text { deg } A=i}} \chi(a+\langle M\rangle)$.
That is exactly the result obtained by Galovich and Rosen [3]. In the following examples we apply the class number formula mentioned above for the special cases when $\mathbb{F}_{q}=\mathbb{Z}_{2}, \mathbb{F}_{q}=\mathbb{Z}_{3}$ and for specific prime polynomials $M(T) \in \mathbb{F}_{q}[T]$.

Example 1.

Let $k=\mathbb{Z}_{2}(T)$ and $M(T)=T^{3}+T+1$. Then $[N: k]=\Phi(M)=2^{3}-1=7$. Thus $G_{N} \cong\left(\mathbb{Z}_{2}[T] /\left\langle T^{3}+T+1\right\rangle\right)^{*}$ is cyclic of order 7 . Hence the character group \widehat{G}_{N} is cyclic of the same order. The element $[T]$ in $\left(\mathbb{Z}_{2}[T] /\left\langle T^{3}+T+1\right\rangle\right)^{*}$ could be identified with a generator for G_{N}. Let χ be a generator for the group \widehat{G}_{N} and assume that $\chi([T])=\zeta$, then ζ is a primitive $7^{\text {th }}$ root of unity. Since $\mathbb{F}_{q}^{*}=\mathbb{Z}_{2}^{*}=\langle 1\rangle$, any character of G_{N} is real. Moreover $S_{4}(\psi)=S_{3}(\psi)=0$ for each $\psi \in \widehat{G}_{N}$. Therefore

$$
\begin{aligned}
h(N) & =\prod_{\substack{\psi \neq \chi_{0} \\
\psi \in \hat{G}_{N}}}\left(\sum_{i=1}^{2}\left(-i S_{i}(\psi)\right)\right) \\
& =\prod_{n=1}^{6}\left(\sum_{i=1}^{2}\left(-i S_{i}\left(\chi^{n}\right)\right)\right) .
\end{aligned}
$$

Now

$$
\begin{aligned}
S_{1}\left(\chi^{n}\right) & =\chi^{n}([T])+\chi^{n}\left([T]^{3}\right) \\
& =\zeta+\zeta^{3 n}
\end{aligned}
$$

and

$$
\begin{aligned}
S_{2}\left(\chi^{n}\right) & =\chi^{n}\left([T]^{6}\right)+\chi^{n}\left([T]^{5}\right)+\chi^{n}\left([T]^{4}\right)+\chi^{n}\left([T]^{2}\right) \\
& =\zeta^{6 n}+\zeta^{5 n}+\zeta^{4 n}+\zeta^{2 n} .
\end{aligned}
$$

The number ζ could be any primitive $7^{\text {th }}$ root of unity, in particular $e^{2 \pi i / 7}$. Substituting this value of ζ in the class number formula yields $h(N)=71$.

Example 2. In this example we consider $k=\mathbb{Z}_{3}(T)$ and $M(T)=T^{2}+1$. Clearly $G_{N}=\left(\mathbb{Z}_{2}[T] /\left\langle T^{2}+1\right\rangle\right)^{*}$ is cyclic of order $\Phi(M)=3^{2}-1=8$. The element $[T+1]$ is a generator for G_{N}. Let χ be a generator for \widehat{G}_{N}. Then $\chi([T+1])$ is a primitive $8^{\text {th }}$ root of unity, let us say $\chi([T+1])=\zeta=e^{\pi i / 4}$. A character χ^{n} is real if and only if $n \in\{0,2,4,6\}$. Therefore

$$
h(N)=\left(\prod_{n=1}^{3} \sum_{i=1}^{3}-i S_{i}\left(\chi^{2 n}\right)\right)\left(\prod_{n=0}^{3} \sum_{i=0}^{3} S_{i}\left(\chi^{2 n+1}\right)\right) .
$$

If we compute $S_{i}\left(\chi^{m}\right)$ we find that $S_{2}\left(\chi^{m}\right)=S_{3}\left(\chi^{m}\right)=0$ for any m such that $1 \leqslant m \leqslant 7$, and that

$$
S_{0}\left(\chi^{m}\right)=\sum_{\substack{B \in \mathbb{Z}_{3}[T], \text { monic } \\ \operatorname{deg} B=0}} \chi^{m}([B])
$$

$$
\begin{aligned}
& =\chi^{m}([1])+\chi^{m}([2]) \\
& =\chi^{m}([1])+\chi^{m}\left([T+1]^{4}\right) \\
& =1+\zeta^{4 m} \\
& =1+e^{m \pi i}
\end{aligned}
$$

Thus $S_{0}\left(\chi^{m}\right)=0$ when m is odd.
Similarly we find that $S_{1}\left(\chi^{m}\right)=\zeta^{6 m}+\zeta^{m}+\zeta^{7 m}=e^{3 m \pi i / 2}+e^{m \pi i / 4}+e^{-m \pi i / 4}$. Substitution of these values in the class number formula gives that $h(N)=9$.

General Treatment. Having treated very special cases in the examples above, one may wonder about the more general case when $\mathbb{F}_{q}=\mathbb{Z}_{p}$ and $M(T)$ is any prime polynomial in $\mathbb{Z}_{p}[T]$. Let $k=\mathbb{Z}_{p}(T)$ and let $M(T)$ be any prime polynomial in $\mathbb{Z}_{p}[T]$ of degree d. The extension $k\left(\Lambda_{M}\right) / k$ is of degree $\Phi(M)=p^{d}-1$ and the Galois group $G=\operatorname{Gal}\left(k\left(\Lambda_{M}\right) / k\right)$ is isomorphic to $\left(\mathbb{Z}_{p}[T] / M(T)\right)^{*}$ which is cyclic. We identify a generator of G with a generator $[A]$ of $\left(\mathbb{Z}_{p}[T] / M(T)\right)^{*}$. The character group \widehat{G} is cyclic as well. Moreover, if $\chi \neq \chi_{0}$ is a generator of \hat{G} then $\chi([A])$ is a primitive ($p^{d}-1$) st root of unity, say $\chi([A])=\zeta=e^{2 \pi i /\left(p^{d}-1\right)}$. Let H be the subgroup of \widehat{G} consisting of all real characters, that is $H=\left\{\psi \in \widehat{G}: \Psi([a])=1\right.$ for each $\left.a \in \mathbb{Z}_{p}^{*}\right\}$, then $|H|=|\widehat{G}| /\left|\mathbb{Z}_{p}^{*}\right|=\left(p^{d}-1\right) /(p-1)$ and H is cyclic generated by χ^{p-1}. Thus $H=\left\{\chi^{m(p-1)}: 0 \leqslant m \leqslant p^{d} /(p-1)\right\}$. If $\hbar=\left\{1,2, \ldots, p^{d}-2\right\}$ and $\hbar_{d}=\{m(p-1) \mid$ $\left.1 \leqslant m \leqslant\left(p^{d}-1\right) /(p-1)-1\right\}$, then a nontrivial character ψ is real if and only if $\psi=\chi^{n}$ for some $n \in \hbar_{d}$. The class number $h\left(k\left(\Lambda_{M}\right)\right)$ of the field $k\left(\Lambda_{M}\right)$ is given by

$$
h\left(k\left(\Lambda_{M}\right)\right)=\left(\prod_{\substack{\psi \neq x_{0} \\ \psi \in H}} \sum_{i=1}^{d+1}-i S_{i}(\psi)\right)\left(\prod_{\psi \notin H} \sum_{i=0}^{d+1} S_{i}(\psi)\right),
$$

where

$$
S_{i}(\psi)=\sum_{\substack{B \in \mathcal{Z}_{\mathrm{p}}[\text { [T],monic } \\ \operatorname{deg} B=i}} \psi([B]) .
$$

Since G is cyclic, for any $B \in \mathbb{Z}_{p}[T]$ of degree i with $0 \leqslant i \leqslant d-1$ there is a unique nonnegative integer $n_{[B]}$ with $0 \leqslant n_{[B]} \leqslant p^{d}-1$ such that $[B]=([A])^{n_{[B]}}$. Thus,

$$
\begin{aligned}
S_{i}\left(\chi^{m}\right) & =\sum_{\substack{B \in \mathbb{Z}_{p}[T], \text { monic } \\
\operatorname{deg} B=i}} \chi^{m}\left([A]^{n}[B]\right) \\
& =\sum_{\substack{B \in \mathbf{Z}_{p}[T], \text { monic } \\
\operatorname{deg} B=i}} \zeta^{m \pi[B]}
\end{aligned}
$$

Hence

$$
\begin{aligned}
h\left(k\left(\Lambda_{M}\right)\right)= & \left(\prod_{n=1}^{\left(\left(p^{d}-1\right) /(p-1)\right)-1} \sum_{i=1}^{d+1}-i S\left(\chi^{n(p-1)}\right)\right)\left(\prod_{n \notin n_{d}} \sum_{i=0}^{d+1} S_{i}\left(\chi^{n}\right)\right) \\
= & \left(\prod_{n=1}^{\left(\left(p^{d}-1\right) /(p-1)\right)-1} \sum_{i=1}^{d+1}-i \sum_{\substack{B \in Z_{p}[T], \text { monic } \\
\operatorname{deg} B=i}} \zeta^{n(p-1) n_{[B]}}\right) \\
& \left(\prod_{n \in K_{d}} \sum_{i=0}^{d+1} \sum_{\substack{B \in Z_{p}[T], \text { monic } \\
\operatorname{deg} B=i}} \zeta^{n n[B]}\right) .
\end{aligned}
$$

Replacing ζ by $e^{2 \pi i /\left(p^{d}-1\right)}, n_{[B]}$'s by their values and evaluating the expression above gets us the sought class number.

References

[1] M. Bilhan, 'Arithmetic progressions of polynomials over a finite field', in Number theory and its applications (Ankara 1996), Lecture Notes in Pure and Applied Mathematics 204 (Dekker, New York, 1999), pp. 1-21.
[2] L. Carlitz, 'On certain functions connected with polynomials in a Galois field', Duke Math J. 1 (1935), 137-168.
[3] S. Galovich and M. Rosen, 'The class number of cyclotomic function fields', J. Number Theory 13 (1981), 363-375.
[4] D.R. Hayes, 'Explicit class field theory for rational functional fields', Trans. Amer. Math. Soc. 189 (1974), 77-91.
[5] A. Weil, Basic number theory (Springer-Verlag, Berlin, Heidelberg, New York, 1973).

Department of Mathematics
College of Science
University of Petra
Amman
Jordan

[^2]
[^0]: Received 27th January, 2000

[^1]: Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/01
 SA2.00+0.00.

[^2]: Department of Mathematics
 Faculty of Science and Arts Middle East Technical University
 Ankara
 Turkey

