CLASS NUMBER OF (v, n, M)-EXTENSIONS

OSAMA ALKAM AND MEHPARE BILHAN

An analogue of cyclotomic number fields for function fields over the finite field \mathbb{F}_q was investigated by L. Carlitz in 1935 and has been studied recently by D. Hayes, M. Rosen, S. Galovich and others. For each nonzero polynomial M in $\mathbb{F}_q[T]$, we denote by $k(\Lambda_M)$ the cyclotomic function field associated with M, where $k = \mathbb{F}_q(T)$. Replacing T by 1/T in k and considering the cyclotomic function field F_v that corresponds to $(1/T)^{v+1}$ gets us an extension of k, denoted by L_v , which is the fixed field of F_v modulo \mathbb{F}_q^* . We define a (v, n, M)-extension to be the composite $N = k_n k(\Lambda_m) L_v$ where k_n is the constant field of degree n over k. In this paper we give analytic class number formulas for (v, n, M)-extensions when M has a nonzero constant term.

1. INTRODUCTION

Let \mathbb{F}_q be the finite field with $q = p^r$ elements, where p is a prime number, and let $k = \mathbb{F}_q(T)$ be the rational function field. To each nonzero polynomial M(T) in $R_T = \mathbb{F}_q[T]$ one can associate a field extension $k(\Lambda_M)$, called the M^{th} cyclotomic function field. It has properties analogous to the classical number fields. Such extensions were investigated by Carlitz [2] and have been studied in recent years by Hayes, Rosen, Galovich, Goss and others. Hayes (in [4]) developed the theory of cyclotomic function fields in a modern language and constructed the maximal Abelian extension of k. We shall briefly review the relevant portions of Carlitz' and Hayes' theory. Let \overline{k} be the algebraic closure of k and \overline{k}^+ be its underlying additive group. The Frobenius automorphsim Φ defined by $\Phi(u) = u^q$ and the multiplication map μ_T defined by $\mu_T(T) = Tu$ are \mathbb{F}_q -endomorphisms of \overline{k}^+ . The substitution of $\Phi + \mu_T$ for T in every polynomial $M(T) \in R_T$ introduces a ring homomorphism from R_T into $\text{End}(\overline{k}^+)$ which defines an R_T -module action on \overline{k} . The action of a polynomial $M(T) \in R_T$ on $u \in \overline{k}$ is denoted by u^M and given by

$$u^M = M(\Phi + \mu_t)(u).$$

Received 27th January, 2000

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/01 \$A2.00+0.00.

This action preserves the \mathbb{F}_q -algebra structure of \overline{k} , since $u^{\beta} = \beta u$ for $\beta \in \mathbb{F}_q$. Carlitz and Hayes established the following results.

- (1) If deg M = d, then $u^M = \sum_{i=0}^d \begin{bmatrix} M \\ i \end{bmatrix} u^{q^i}$, where $\begin{bmatrix} M \\ i \end{bmatrix}$ is a polynomial in R_T of degree $(d-i)q^i$. Moreover $\begin{bmatrix} M \\ 0 \end{bmatrix} = M$ and $\begin{bmatrix} M \\ d \end{bmatrix}$ is the leading coefficient of M.
- (2) u^M is a separable polynomial in u of degree q^d . If Λ_M denotes the set of roots of the polynomial u^M in \overline{k} then Λ_M is an R_T -submodule of \overline{k} which is cyclic and isomorphic to $R_T/\langle M \rangle$.
- (3) The field $k(\Lambda_M)$, which is obtained by adjoining the elements of Λ_M to k, is a simple, Abelian extension of k with a Galois group isomorphic to $(R_T/\langle M \rangle)^*$. By $\Phi(M)$ we denote the order of the group $(R_T/\langle M \rangle)^*$.
- (4) If $M \neq 0$ then the infinite prime divisor P_{∞} of k splits into $\Phi(M)/(q-1)$ prime divisors of $k(\Lambda_M)$ with ramification index $e_{\infty} = q-1$ and residue degree $f_{\infty} = 1$.

Because of the presence of constant fields and wild ramification of the infinite prime P_{∞} , the above M^{th} cyclotomic function fields $k(\Lambda_M)$ are not sufficient to generate the maximal Abelian extension of k. To remedy this difficulty, Hayes constructed the fields F_v by applying Carlitz' theory with the generator 1/T instead of T and $(1/T)^{v+1}$ instead of M and considered the fixed field L_v of F_v under \mathbb{F}_q^* . Then the maximal Abelian extension A of k appears as the composite EK_TL_{∞} , where E is the composite of all constant field extensions of k, K_T is the composite of all cyclotomic function fields and L_{∞} is the composite of all fields L_v . Thus we deduce an analogue of the Kronecker-Weber Theorem for rational function fields: Every finite Abelian extension K of k is contained in a composite of the type $N = k_n k(\Lambda_M)L_v$, where k_n is a constant field extensions (v, n, M)-extensions.

In [3], Galovich and Rosen gave an analytic class number formula for the field $k(\Lambda_M)$ when $M = P^a$ for some prime polynomial $P \in \mathbb{F}_q[T]$. In this paper we give an analytic class number formula for (v, n, M)-extensions for any nonnegative integer v, positive integer n and any polynomial M in $\mathbb{F}_q[T]$ with a nonzero constant term.

Let $N = k_n k(\Lambda_M) L_v$ be such an extension. Then since $k \subseteq L_v$ and Λ_M is a cyclic R_T -module, say $\Lambda_M = \langle \lambda \rangle$, $N = \mathbb{F}_{q^n} L_v(\lambda)$. Hence the fields N and $L_v(\lambda)$ have the same genus. Moreover, the class number of N is divisible by the class number of $L_v(\lambda)$. We shall give explicit class number formulas for both $L_v(\lambda)$ and N. We begin by studying the decomposition of the infinite prime divisor P_∞ of k in $L_v(\lambda)$. Let $G_L = \operatorname{Gal}(L_v(\lambda)/k)$. Then G_L is isomorphic to the direct sum of $G_M = \operatorname{Gal}(k(\lambda)/k) \cong (R_T/\langle M \rangle)^*$ and $G_v = \operatorname{Gal}(L_v/k)$ [4].

If $\sigma \in \operatorname{Gal}(L_v(\lambda)/L_v)$ then $\sigma_{\operatorname{res.to.k}(\lambda)} \in G_M$. Notice that $\sigma_{1_{\operatorname{res.to.k}(\lambda)}} = \sigma_{2_{\operatorname{res.to.k}(\lambda)}}$ implies that $\sigma_1 = \sigma_2$ since $\sigma_{1_{\operatorname{res.to.L}v}} = \sigma_{2_{\operatorname{res.to.L}v}} = \operatorname{identity}$ automorphsim. Moreover $\left|\operatorname{Gal}(L_v(\lambda)/L_v)\right| = |G_M| = \Phi(M)$. Hence $\operatorname{Gal}(L_v(\lambda)/L_v) \cong G_M \cong (R_T/\langle M \rangle)^*$.

Consider the following diagrams of field extensions and prime divisors

with \mathfrak{R} being a prime divisor of $L_v(\lambda)$ lying over the prime divisors \mathfrak{I} and ℓ of the fields L_v and $k(\lambda)$ respectively, and P being a prime divisior of k lying under both \mathfrak{I} and ℓ .

Restricting automorphisms in $\operatorname{Gal}(L_{\nu}(\lambda)/L_{\nu})$ to $k(\lambda)$ makes an isomorphism between the decomposition groups $D(\mathfrak{R}/\mathfrak{I})$ and $D(\ell/P)$. It is an isomorphism between the intertia groups $I(\mathfrak{R}/\mathfrak{I})$ and $I(\ell/P)$ as well. Thus $e(\ell/P)$ and $f(\mathfrak{R}/\mathfrak{I})$ equal $f(\ell/P)$. Therefore we can easily see the following.

PROPOSITION 1. Let \mathfrak{R} be a prime divisor of $L_v(\lambda)$ lying over the infinite prime divisor P_{∞} of k. Then

(i) $e(\mathfrak{R}/P_{\infty}) = (q-1)q^{v}$

(ii)
$$f(\mathfrak{R}/P_{\infty}) = 1$$

(iii)
$$g(\mathfrak{R}/P_{\infty}) = \Phi(M)/(q-1)$$

(iv) $N\mathfrak{R} = q$.

Since the only finite prime divisors of k that ramify in $k(\lambda)$ are the divisors of M and no finite prime divisor of k ramifies in L_v , the only prime diviors of k that ramify in $L_v(\lambda)$ are the prime polynomials that divide M.

2. Analytic class number formulas

In this section we develop class number formulas for the fields $L_v(\lambda)$ and N by studying their L-functions and zeta functions. For the rest of this section the constant term of the polynomial M is assumed to be nonzero.

THE FIELD $L_v(\lambda)$. Let χ be a character of $G_L = \text{Gal}(L_v(\lambda)/k)$. Then the L-functions of $L_v(\lambda)/k$ are given by

$$L(s, \chi, L_v(\lambda)/k) = \prod_{\varphi} \left(1 - \frac{\chi(\varphi)}{N\varphi^s}\right)^{-1}, \quad \text{Re}(s) > 1$$

where φ runs over all prime divsors of k, and

$$L^*(s,\chi,L_v(\lambda)/k) = \prod_P \left(1 - \frac{\chi(P)}{NP^s}\right)^{-1}, \qquad \operatorname{Re}(s) > 1$$

where P runs over all finite prime divisors of k. Thus

$$L^*(s, \chi_0, L_v(\lambda)/k) = \prod_P \left(1 - \frac{1}{q^{s \deg P}}\right)^{-1}$$

= $\zeta(s, R_T)$
= $(1 - q^{1-s})^{-1}$.

If $\chi \neq \chi_0$ is a character in \widehat{G}_L then

$$L^*(s,\chi,L_v(\lambda)/k) = \prod_{\substack{Q \in \mathbf{F}_q[T], \text{prime} \\ Q \nmid M}} \left(1 - \frac{\chi(Q)}{NQ^s}\right)^{-1}, \quad \text{Re}(s) > 1.$$

By $\chi(Q)$ we mean the value of the character χ at the Frobenius substitution of $L_{v}(\lambda)/k$ at Q. Therefore

$$\chi(Q) = \chi \left(Q + \langle M \rangle, \ \overline{Q} + \left\langle \left(\frac{1}{T} \right)^{\nu+1} \right\rangle \right), \quad \text{where } \overline{Q} = \frac{Q}{T^{\deg Q}}$$

Hence

$$L^*(s,\chi,L_v(\lambda)/k) = \sum_{\substack{A \in \mathbf{F}_q[T], \text{monic} \\ (A,M)=1}} \frac{\chi\left(A + \langle M \rangle, \overline{A} + \langle (1/T)^{v+1} \rangle\right)}{NA^s}, \quad \text{Re}(s) > 1$$

where $\overline{A} = A/T^{\deg A}$.

Since $NA = q^{\deg A}$ for each monic polynomial A in $\mathbb{F}_q[T]$, we can write

$$L^*(s,\chi,L_v(\lambda)/k) = \sum_{i=0}^{\infty} \frac{S_i(\chi)}{q^{s_i}}, \qquad \operatorname{Re}(s) > 1$$

where

$$S_{i}(\chi) = \sum_{\substack{A \in \mathbb{F}_{q}[T], \text{monic} \\ (A,M)=1 \\ \deg A=i}} \chi \left(A + \langle M \rangle, \ \overline{A} + \left\langle \left(\frac{1}{T}\right)^{\nu+1} \right\rangle \right).$$

[5]

THEOREM 1. Let M be a polynomial in $\mathbf{F}_q[T]$ with a nonzero constant term. If deg $M = m \ge 1$ and $\chi \ne \chi_0$ in \widehat{G}_L then $S_i(\chi) = 0$ for all $i \ge m + v + 2$.

PROOF: Let $i \ge m + v + 2$ and $S_i = \left\{ \left(A + \langle M \rangle, \ \overline{A} + \langle (1/T)^{v+1} \rangle \right) : A \in \mathbb{F}_q[T], \text{ monic of degree } i \text{ with } (A, M) = 1 \right\}$. Define $\Theta : S_i \to G_L = \operatorname{Gal}(L_v(\lambda)/k)$ to be the map which sends $\left(A + \langle M \rangle, \ \overline{A} + \langle (1/T)^{v+1} \rangle \right)$ to $\left(R_A + \langle M \rangle, \ \overline{A} + \langle (1/T)^{v+1} \rangle \right)$ where R_A is the unique polynomial in $\mathbb{F}_q[T]$ such that $A = M^*Q_A + R_A$, $\operatorname{deg} R_A < \operatorname{deg} M$. Clearly Θ is well-defined. We show that Θ is onto.

Suppose that $R = \sum_{j=0}^{i} r_j T^j$ (with $r_j = 0$ when $j > \deg R$), $M = \sum_{j=0}^{m} d_j T^j$, and $h = \sum_{j=0}^{v} a_j (1/T)^{v-j}$ with $a_v = 1$ and allowing to have some of the a_j 's to equal zero. Then, with the convention that $r_j = 0$ for all j such that $\deg R < j < v$, when $\deg R < v$ the system

L du	d_{v-1}	d_{v-2}	•••	d_0	J	$\lfloor x_v \rfloor$	$\lfloor 1 - r_v \rfloor$
:	:	÷		÷			
d2	d_1	d_0	•••	0		$ x_2 $	$a_2 - r_2$
d_1	d_0	0	•••	0		$ x_1 $	a_1-r_1
$\lceil d_0 \rceil$	0	0	•••	0	٦	$\begin{bmatrix} x_0 \end{bmatrix}$	$\begin{bmatrix} a_0 - r_0 \end{bmatrix}$

has a unique solution since the constant term d_0 of M is nonzero. Let $x_0 = q_0$, $x_1 = q_1, \ldots, x_v = q_v$ be the solution of that system and consider $Q = \sum_{j=0}^{i-m} q_j T^j$ with $q_{v+1}, q_{v+2}, \ldots, q_{i-m-1}$ chosen arbitrarily and $q_{i-m} = d_m^{-1}$. (Thus we have $q^{i-m-v-2}$ distinct choices for Q.) Take $A = M^*Q + R$. Then since (R, M) = 1, we have (A, M) = 1. Moreover A is monic, deg A = i and

$$\Theta\left(A+\langle M\rangle,\ \overline{A}+\left\langle \left(\frac{1}{T}\right)^{\nu+1}\right\rangle\right)=\left(R+\langle M\rangle,\ h+\left\langle \left(\frac{1}{T}\right)^{\nu+1}\right\rangle\right)$$

This shows that Θ is onto.

Now each $g \in G_L$ corresponds to $q^{i-m-v-2}$ distinct choices of A. Moreover, if $A_1 = M^*Q_1 + R_1$, $A_2 = M^*Q_2 + R_2$ then

$$\left(A_1 + \langle M \rangle, \ \overline{A_1} + \left\langle \left(\frac{1}{T}\right)^{\nu+1} \right\rangle \right) = \left(A_2 + \langle M \rangle, \ \overline{A_2} + \left\langle \left(\frac{1}{T}\right)^{\nu+1} \right\rangle \right).$$

Therefore

$$S_{i}(\chi) = \sum_{\substack{A \in \mathbf{F}_{q}[T], \text{monic} \\ (A,M)=1 \\ \deg A = i}} \chi \left(A + \langle M \rangle, \ \overline{A} + \left\langle \left(\frac{1}{T}\right)^{\nu+1} \right\rangle \right)$$
$$= q^{i-m-\nu-2} \sum_{g \in G_{L}} \chi(g)$$
$$= 0.$$

This completes the proof of the theorem.

The previous Theorem tells us that the L-function $L^*(s, \chi, L_v(\lambda)/k)$ is a polynomial in q^{-s} with degree at most m + v + 1 whenever $\chi \neq \chi_0$. We may consider \mathbb{F}_q^* to be a subgroup of $\operatorname{Gal}(k(\lambda)/k)$ via identifying each $a \in \mathbb{F}_q^*$ with $\sigma_a \in \operatorname{Gal}(k(\lambda)/k)$ which maps λ to $a\lambda$. If we let $S = \{(\sigma_a, \tau) : a \in \mathbb{F}_q^*, \tau \in G_v = \operatorname{Gal}(L_v/k)\}$ then S is a subgroup of $G_L = \operatorname{Gal}(L_v(\lambda)/k)$. Moreover, $|S| = (q-1)q^v$. The subgroup S is the decomposition group of the point at infinity.

DEFINITION 1: A character χ of $\operatorname{Gal}(k(\lambda)/k)$ is said to be real if $\chi(a) = 1$ for all $a \in \mathbb{F}_q^*$, while a character χ of $\operatorname{Gal}(L_v(\lambda)/k)$ is said to be real if $\chi(s) = 1$ for all $s \in S$. Clearly there are $(\Phi(M)/(q-1)) - 1$ nontrivial real characters of each Galois group. Moreover, for any nontrivial real character χ of $\operatorname{Gal}(k(\lambda)/k)$, $L^*(0, \chi, k(\lambda)/k) = 0$ [3].

THEOREM 2. For any nontrivial real character χ of $\operatorname{Gal}(L_v(\lambda)/k)$, $L^*(0, \chi, L_v(\lambda)/k) = 0$.

PROOF: Any nontrivial real character χ of $\operatorname{Gal}(L_v(\lambda)/k)$ can be viewed as a character of $\operatorname{Gal}(k(\lambda)/k)$ via defining $\chi(g) = \chi(\sigma, 1_{G_v})$. Moreover, $L^*(s, \chi, L_v(\lambda)/k) = L^*(s, \chi, k(\lambda)/k)$. Hence $L^*(0, \chi, L_v(\lambda)/k) = 0$ and the Theorem is proved.

In light of the previous results, we may proceed to derive a class number formula for the field $L_{v}(\lambda)$. By Theorem 1 and Proposition 1 we may write the zeta function of $L_{v}(\lambda)$ as follows

$$\begin{aligned} \zeta(s, L_{v}(\lambda)) &= (1 - q^{-s})^{-\Phi(M)/(q-1)} \prod_{\chi \in \widehat{G}_{L}} L^{*}(s, \chi, L_{v}(\lambda)/k) \\ &= (1 - q^{-s})^{-\Phi(M)/(q-1)} (1 - q^{1-s})^{-1} \prod_{\substack{\chi \in \widehat{G}_{L} \\ \chi \neq \chi_{0}}} L^{*}(s, \chi, L_{v}(\lambda)/k) \end{aligned}$$

It is well known that

$$\zeta(s, L_{\nu}(\lambda)) = F(q^{-s}, L_{\nu}(\lambda))/(1-q^{-s})(1-q^{1-s})$$

Π

where $F(q^{-s}, L_v(\lambda))$ is a polynomial in $\mathbb{Z}[q^{-s}]$ of degree 2g (where g is the genus of $L_v(\lambda)$). Moreover, the class number of $L_v(\lambda)$ is $F(1, L_v(\lambda))$ [5]. Thus

$$F(q^{-s}, L_{v}(\lambda)) = (1 - q^{-s})^{(-\Phi(M)/(q-1))-1} \prod_{\substack{\chi \in \widehat{G}_{L} \\ \chi \neq \chi_{0}}} L^{*}(s, \chi, L_{v}(\lambda)/k)$$
$$= \left(\prod_{\substack{\chi \in \widehat{G}_{L}, \text{real} \\ \chi \neq \chi_{0}}} \frac{L^{*}(s, \chi, L_{v}(\lambda)/k)}{1 - q^{-s}}\right) \left(\prod_{\substack{\chi \in \widehat{G}_{L} \\ \chi \text{ nonreal}}} L^{*}(s, \chi, L_{v}(\lambda)/k)\right)$$
$$= \left(\prod_{\substack{\chi \in \widehat{G}_{L}, \text{real} \\ \chi \neq \chi_{0}}} \frac{\sum_{i=0}^{m+v+1} S_{i}(\chi)/q^{si}}{1 - q^{-s}}\right) \left(\prod_{\substack{\chi \in \widehat{G}_{L} \\ \chi \text{ nonreal}}} \sum_{i=0}^{m+v+1} \frac{S_{i}(\chi)}{q^{si}}\right).$$

By Theorem 2, $L^*(0, \chi, L_v(\lambda)/k) = 0$ for each nontrivial character χ in \widehat{G}_L . Using L'Hopital's rule to evaluate the limit of the above equation's right-hand side as s tends to 0, we derive the following class number formula:

$$h(L_{\nu}(\lambda)) = F(1, L_{\nu}(\lambda)) = \left(\prod_{\substack{\chi \in \widehat{G}_{L}, \text{real} \\ \chi \neq \chi_{0}}} \sum_{i=1}^{m+\nu+1} -iS_{i}(\chi)\right) \left(\prod_{\chi \in \widehat{G}_{L}, \text{nonreal}} \sum_{i=0}^{m+\nu+1} S_{i}(\chi)\right).$$

THE FIELD $L_v(\lambda)\mathbb{F}_{q^n}$. Let $G_N = \operatorname{Gal}(N/k)$, $G_v = \operatorname{Gal}(L_v/k)$ and $G_M = \operatorname{Gal}(k(\lambda)/k)$. Then G_N essentially equals the direct sum of the groups G_M , G_v and the cyclic group \mathbb{Z}_n [4]. We shall study the *L*-functions $L^*(s, \chi, N/k)$ for any nontrivial character χ of G_N . Let $\chi \neq \chi_0$ be a character in \widehat{G}_N . Then we have one of two cases:

CASE I. The restriction of χ to $G_M \oplus G_v = \operatorname{Gal}(L_v(\lambda)/k)$ is the trivial character. In this case we define the character Ψ on $\operatorname{Gal}(k\mathbb{F}_{q^n})$ by $\Psi(a) = \chi((1_{G_M}, 1_{G_v}, a))$. We identify the restriction of χ to $G_M \oplus G_v$ with the character χ_{res} of $G_M \oplus G_v$ which is defined by $\chi_{\text{res}}((\sigma, \tau)) = \chi((\sigma, \tau, 0))$. Notice that $\chi((\sigma, \tau, a)) = \Psi(a)$ for each $(\sigma, \tau, a) \in G_N$ and that Ψ is nontrivial since χ_{res} is the trivial character. Moreover, Ψ can be viewed as a character of G_N via putting $\Psi((\sigma, \tau, a)) = \Psi(a)$. Hence $L^*(s, \Psi, N/k) = L^*(s, \Psi, k\mathbb{F}_{q^n}/k)$. That is, $L^*(s, \chi, N/k) = L^*(s, \Psi, k\mathbb{F}_{q^n}/k)$. Thus our problem of studying $L^*(s, \chi, N/k)$ is reduced to studying $L^*(s, \Psi, k\mathbb{F}_{q^n}/k)$ which equals $\sum_{f \in \mathbb{F}_q[T], \text{monic}} \Psi(f)/q^{s \deg f}$, $\operatorname{Re}(s) > 1$, where (see [1])

$$\Psi(f) = \Psi\left(\left[\frac{k\mathbf{F}_{q^n}/k}{f}\right]\right) = \Psi\left(\deg f \pmod{n}\right).$$

Let r_{d_f} be the unique integer such that deg $f = c^*n + r_{d_f}$, $0 \leq r_{d_f} < n$. Then $\Psi(f) = \Psi(r_{d_f})$ and

$$L^*(s, \Psi, k\mathbf{F}_{q^n}/k) = \sum_{f \in \mathbf{F}_q[T], \text{monic}} \frac{\Psi(r_{d_j})}{q^{s \deg f}}, \qquad \text{Re}(s) > 1$$

where $d_f = \deg f$.

We can write $L^*(s, \Psi, k\mathbb{F}_{q^n}/k)$ as $\sum_{i=0}^{\infty} S_i(\Psi)/q^{si}$, $\operatorname{Re}(s) > 1$, where $S_i(\Psi) = \sum_{f \in \mathbb{F}_q[T], \text{monic}} \Psi(r_i)$.

Since we have q^i possible monic polynomials in $\mathbb{F}_q[T]$ of degree i, $S_i(\Psi) = q^i \Psi(r_i)$. Therefore

$$\begin{split} L^*(s,\Psi,k\mathbb{F}_{q^n}/k) &= \sum_{i=0}^\infty \frac{q^i\Psi(r_i)}{q^{si}}, & \operatorname{Re}(s) > 1\\ &= \sum_{i=0}^\infty \frac{\Psi(r_i)}{q^{i(s-1)}}, & \operatorname{Re}(s) > 1\\ &= \sum_{i=0}^\infty \frac{\Psi(i)}{q^{i(s-1)}}, & \operatorname{Re}(s) > 1\\ &= \sum_{i=0}^\infty \frac{\Psi(1)^i}{q^{i(s-1)}}, & \operatorname{Re}(s) > 1\\ &= \frac{1}{1-\Psi(1)q^{1-s}}. \end{split}$$

Whence, if χ is a nontrivial character of G_N which is trivial on $G_M \oplus G_v$ and Ψ_{χ} is the character of \mathbb{Z}_n defined by $\Psi_{\chi}(i) = \chi((\mathbf{1}_{G_M}, \mathbf{1}_{G_v}, i))$ then

$$L^*(s,\chi,N/k) = \frac{1}{1 - \Psi_{\chi}(1)q^{1-s}}.$$

CASE II. The restriction of χ to $G_M \oplus G_v$ is not the trivial character.

Again we let χ_{res} be the restriction of χ to $G_M \oplus G_v$, that is, $\chi_{res}((\sigma, \tau)) = \chi((\sigma, \tau, 0))$. Then

$$L^*(s,\chi,N/k) = \sum_{\substack{A \in \mathbb{F}_q[T], \text{monic} \\ (A,M)=1}} \frac{\chi\left(\left(A + \langle M \rangle, \overline{A} + \langle (1/T)^{v+1} \rangle, \tau_{d_A}\right)\right)}{q^{sd_A}}, \qquad \text{Re}(s) > 1,$$

where $d_A = \deg A$, $\overline{A} = A/T^{d_A}$ and r_{d_A} is the unique integer such that $d_A = c^*n + r_{d_A}$, $0 \leq r_{d_A} < n$, [1]. If

$$S_{i}(\chi) = \sum_{\substack{A \in \mathbf{F}_{q}[T], \text{monic} \\ (A,M)=1, \ d_{A}=i}} \chi\left(\left(A + \langle M \rangle, \overline{A} + \left\langle \left(\frac{1}{T}\right)^{\nu+1} \rangle, r_{d_{A}}\right)\right)\right)$$

then

$$L^*(s,\chi,N/k) = \sum_{i=0}^{\infty} \frac{S_i(\chi)}{q^{si}}, \qquad \operatorname{Re}(s) > 1.$$

For each i,

$$S_{i}(\chi) = \sum_{\substack{A \in \mathbb{F}_{q}[T], \text{monic} \\ (A,M)=1, \ d_{A}=i}} \chi((1_{G_{M}}, 1_{G_{v}}, r_{i}))\chi(\left(A + \langle M \rangle, \overline{A} + \langle \left(\frac{1}{T}\right)^{\nu+1} \rangle, 0\right)).$$

Since $\chi((1_{G_M}, 1_{G_v}, r_i))$ is independent of the choice of A as long as deg A = i, we have

$$S_{i}(\chi) = \chi\left(\left(1_{G_{M}}, 1_{G_{v}}, r_{i}\right)\right) \sum_{\substack{A \in \mathbb{F}_{q}[T], \text{monic}\\(A, M) = 1, \ d_{A} = i}} \chi\left(\left(A + \langle M \rangle, \overline{A} + \left\langle\left(\frac{1}{T}\right)^{\nu+1}\right\rangle, 0\right)\right) = 0$$

because χ_{res} is nontrivial on $G_M \oplus G_v$. Therefore $S_i(\chi) = 0$ for all $i \ge d_M + v + 2$. Whence

$$L^*(s,\chi,N/k) = \sum_{i=0}^{d_M+v+1} \frac{S_i(\chi)}{q^{s_i}}.$$

To summarise we write

$$L^*(s,\chi,N/k) = \begin{cases} \frac{1}{1-\Psi_{\chi}(1)q^{1-s}}, & \text{if } \chi_{\text{res}} \text{ is trivial on } G_M \oplus G_{\chi} \\ \frac{d_M+\nu+1}{\sum_{i=0}^{d} \frac{S_i(\chi)}{q^{is}}}, & \text{otherwise.} \end{cases}$$

DEFINITION 2: A character χ of $G_N = \text{Gal}(N/k)$ is said to be real in \widehat{G}_N if $\chi((\sigma_a, \tau, m)) = 1$ for any $a \in \mathbf{F}_q^*, \tau \in G_v$ and $m \in \mathbb{Z}_n$.

Clearly we have $(\Phi(M)/(q-1)) - 1$ nontrivial real characters in \widehat{G}_N .

THEOREM 3. Let χ be a nontrivial real character in \widehat{G}_N . Then $L^*(0, \chi, N/k) = 0$.

PROOF: The character χ_{res} is a nontrivial real character of $G_M \oplus G_v$. Hence

$$L^{*}(s,\chi,N/k) = \sum_{i=0}^{d_{M}+\nu+1} \frac{S_{i}(\chi)}{q^{s_{i}}}$$

where

$$S_{i}(\chi) = \chi\left(\left(1_{G_{M}}, 1_{G_{v}}, r_{i}\right)\right) \sum_{\substack{A \in \mathbb{F}_{q}[T], \text{monic}\\(A, M) = 1, \ d_{A} = i}} \chi_{\text{res}}\left(\left(A + \langle M \rangle, \overline{A} + \left\langle\left(\frac{1}{T}\right)^{v+1}\right\rangle\right)\right)\right).$$

Since χ is real, $\chi((1_{G_M}, 1_{G_v}, r_i)) = 1$. Thus $S_i(\chi) = S_i(\chi_{res})$. Therefore $L^*(s, \chi, N/k) = L^*(s, \chi_{res}, L_v(\lambda)/k)$. The Theorem then follows from Theorem 2.

Having studied the *L*-functions $L^*(s, \chi, N/k)$, one can give a class number formula for *N* via exploring the zeta function $\zeta(s, N)$. Let ℓ be a prime divisor of *N* lying over the infinite prime divisor P_{∞} of *k* and let \mathfrak{p} be a prime divisor of $L_v(\lambda)$ lying under ℓ and over P_{∞} . Then we deduce (from the theory of constant field extensions) that $g(\ell, \mathfrak{p}) = (d_{L_v(\lambda)}(\mathfrak{p}), n) = (1, n) = 1$. Thus, every prime divisor of $L_v(\lambda)$ which lies over the infinite prime divisor of *k* has a unique extension to a prime divisor of *N*. Moreover, as is well known from the theory of constant field extensions, no prime divisor of $L_v(\lambda)$ is ramified in *N*. Thus $e(\ell/\mathfrak{p}) = 1$. Hence $f(\ell/\mathfrak{p}) = n$. Therefore $N\ell = N\mathfrak{p}^{f(\ell/\mathfrak{p})} = q^n$. So

$$\zeta(s,N) = (1-q^{-ns})^{-\Phi(M)/(q-1)} (1-q^{1-s}) \prod_{\substack{\chi \in \widehat{G}_N \\ \chi \neq \chi_0}} L^*(s,\chi,N/k).$$

Since the field of constants of N is \mathbb{F}_{q^n} we get

$$\zeta(s,N) = \frac{F(q^{-ns},N)}{(1-q^{-ns})(1-q^{n(1-s)})}$$

where $F(q^{-ns}, N) \in \mathbb{Z}[q^{-ns}]$ and F(1, N) = h(N); the class number of N. Thus $F(q^{-ns}, N) = (1 - q^{-ns})^{(-\Phi(M)/(q-1))+1} (1 - q^{n(1-s)}) (1 - q^{1-s})^{-1} \prod_{\substack{\chi \in \widehat{G}_N \\ \chi \neq \chi_0}} L^*(s, \chi, N/k)$ $= (1 - q^{n(1-s)}) (1 - q^{1-s})^{-1} \left(\prod_{\substack{\chi \in \widehat{G}_N, \text{real} \\ \chi \neq \chi_0}} \frac{L^*(s, \chi, N/k)}{1 - q^{-ns}} \right) \left(\prod_{\substack{\chi \in \widehat{G}_N, \text{nonreal} \\ \chi \neq \chi_0}} L^*(s, \chi, N/k) \right)$ $= (1 - q^{n(1-s)}) (1 - q^{1-s})^{-1} \left(\prod_{\substack{\chi \in \widehat{G}_N, \text{real} \\ \chi \neq \chi_0}} \frac{\sum_{i=0}^{d_M + v + 1} S_i(\chi)/q^{is}}{1 - q^{-ns}} \right)$ $\left(\prod_{\substack{\chi \in \widehat{G}_N, \text{nonreal} \\ \chi \neq g}} \sum_{i=0}^{d_M + v + 1} \frac{S_i(\chi)}{q^{is}} \right) \left(\prod_{\substack{\chi \in \widehat{G}_N, \text{nonreal} \\ \chi \text{res trivial}}} \frac{1}{1 - \Psi_\chi(1)q^{(1-s)}} \right)$

https://doi.org/10.1017/S0004972700019080 Published online by Cambridge University Press

where $\omega_0, \omega_1, \ldots, \omega_{n-1}$ are the *n*th roots of unity,

$$= \Big(\prod_{\substack{\chi \in \widehat{G}_N, \text{real} \\ \chi \neq \chi_0}} \frac{\sum_{i=0}^{d_M+v+1} S_i(\chi)/q^{is}}{1-q^{-ns}} \Big) \Big(\prod_{\substack{\chi \in \widehat{G}_N, \text{nonreal} \\ \chi_{\text{res nontrivial}}}} \sum_{i=0}^{d_M+v+1} \frac{S_i(\chi)}{q^{is}} \Big).$$

By Theorem 3, $L^*(0, \chi, N/k) = 0$ for all nontrivial real characters $\chi \in \widehat{G}_N$. If we evaluate the limit of the right hand-side as s tends to 0 we get the following formula for the class number h(N):

$$h(N) = \left(\prod_{\substack{\chi \in \widehat{G}_N, \text{real} \\ \chi \neq \chi_0}} \frac{1}{n} \sum_{i=1}^{d_M + \nu + 1} - iS_i(\chi) \right) \left(\prod_{\substack{\chi \in \widehat{G}_N, \text{nonreal} \\ \chi_{\text{res nontrivial}}}} \sum_{i=0}^{d_M + \nu + 1} S_i(\chi) \right).$$

3. EXAMPLES

When we specialise our results to $N = \mathbb{F}_{q^n} L_v(\lambda)$ with n = 1 and v = 0 we get $N = k(\lambda)$ and

$$h(N) = \left(\prod_{\substack{\chi \in \widehat{G}_N \text{ real} \\ \chi \neq \chi_0}} \left(\sum_{i=1}^{m+1} -iS_i(\chi)\right)\right) \left(\prod_{\chi \in \widehat{G}_N, \text{nonreal}} \left(\sum_{i=0}^{m+1} S_i(\chi)\right)\right),$$

where $m = \deg M$ and $S_i(\chi) = \sum_{\substack{A \in \mathbb{F}_q[T], \text{monic} \\ \deg A = i}} \chi(a + \langle M \rangle).$

That is exactly the result obtained by Galovich and Rosen [3]. In the following examples we apply the class number formula mentioned above for the special cases when $\mathbb{F}_q = \mathbb{Z}_2$, $\mathbb{F}_q = \mathbb{Z}_3$ and for specific prime polynomials $M(T) \in \mathbb{F}_q[T]$.

EXAMPLE 1.

Let $k = \mathbb{Z}_2(T)$ and $M(T) = T^3 + T + 1$. Then $[N:k] = \Phi(M) = 2^3 - 1 = 7$. Thus $G_N \cong (\mathbb{Z}_2[T]/\langle T^3 + T + 1 \rangle)^*$ is cyclic of order 7. Hence the character group \widehat{G}_N is cyclic of the same order. The element [T] in $(\mathbb{Z}_2[T]/\langle T^3 + T + 1 \rangle)^*$ could be identified with a generator for G_N . Let χ be a generator for the group \widehat{G}_N and assume that $\chi([T]) = \zeta$, then ζ is a primitive 7th root of unity. Since $\mathbb{F}_q^* = \mathbb{Z}_2^* = \langle 1 \rangle$, any character of G_N is real. Moreover $S_4(\psi) = S_3(\psi) = 0$ for each $\psi \in \widehat{G}_N$. Therefore

$$h(N) = \prod_{\substack{\psi \neq \chi_0 \\ \psi \in \widehat{G}_N}} \left(\sum_{i=1}^2 (-iS_i(\psi)) \right)$$
$$= \prod_{n=1}^6 \left(\sum_{i=1}^2 (-iS_i(\chi^n)) \right).$$

Now

$$S_1(\chi^n) = \chi^n([T]) + \chi^n([T]^3)$$
$$= \zeta + \zeta^{3n}$$

 and

$$S_2(\chi^n) = \chi^n([T]^6) + \chi^n([T]^5) + \chi^n([T]^4) + \chi^n([T]^2)$$

= $\zeta^{6n} + \zeta^{5n} + \zeta^{4n} + \zeta^{2n}.$

The number ζ could be any primitive 7th root of unity, in particular $e^{2\pi i/7}$. Substituting this value of ζ in the class number formula yields h(N) = 71.

EXAMPLE 2. In this example we consider $k = \mathbb{Z}_3(T)$ and $M(T) = T^2 + 1$. Clearly $G_N = (\mathbb{Z}_2[T]/\langle T^2 + 1 \rangle)^*$ is cyclic of order $\Phi(M) = 3^2 - 1 = 8$. The element [T+1] is a generator for G_N . Let χ be a generator for \widehat{G}_N . Then $\chi([T+1])$ is a primitive 8^{th} root of unity, let us say $\chi([T+1]) = \zeta = e^{\pi i/4}$. A character χ^n is real if and only if $n \in \{0, 2, 4, 6\}$. Therefore

$$h(N) = \left(\prod_{n=1}^{3} \sum_{i=1}^{3} -iS_i(\chi^{2n})\right) \left(\prod_{n=0}^{3} \sum_{i=0}^{3} S_i(\chi^{2n+1})\right).$$

If we compute $S_i(\chi^m)$ we find that $S_2(\chi^m) = S_3(\chi^m) = 0$ for any *m* such that $1 \leq m \leq 7$, and that

$$S_0(\chi^m) = \sum_{\substack{B \in \mathbb{Z}_3[T], \text{monic} \\ \deg B = 0}} \chi^m([B])$$

$$= \chi^{m} ([1]) + \chi^{m} ([2])$$

= $\chi^{m} ([1]) + \chi^{m} ([T+1]^{4})$
= $1 + \zeta^{4m}$
= $1 + e^{m\pi i}$.

Thus $S_0(\chi^m) = 0$ when m is odd.

Similarly we find that $S_1(\chi^m) = \zeta^{6m} + \zeta^m + \zeta^{7m} = e^{3m\pi i/2} + e^{m\pi i/4} + e^{-m\pi i/4}$. Substitution of these values in the class number formula gives that h(N) = 9.

GENERAL TREATMENT. Having treated very special cases in the examples above, one may wonder about the more general case when $\mathbf{F}_q = \mathbb{Z}_p$ and M(T) is any prime polynomial in $\mathbb{Z}_p[T]$. Let $k = \mathbb{Z}_p(T)$ and let M(T) be any prime polynomial in $\mathbb{Z}_p[T]$ of degree d. The extension $k(\Lambda_M)/k$ is of degree $\Phi(M) = p^d - 1$ and the Galois group $G = \operatorname{Gal}(k(\Lambda_M)/k)$ is isomorphic to $(\mathbb{Z}_p[T]/M(T))^*$ which is cyclic. We identify a generator of G with a generator [A] of $(\mathbb{Z}_p[T]/M(T))^*$. The character group \widehat{G} is cyclic as well. Moreover, if $\chi \neq \chi_0$ is a generator of \widehat{G} then $\chi([A])$ is a primitive $(p^d - 1)$ st root of unity, say $\chi([A]) = \zeta = e^{2\pi i/(p^d-1)}$. Let H be the subgroup of \widehat{G} consisting of all real characters, that is $H = \{\psi \in \widehat{G} : \Psi([a]) = 1$ for each $a \in \mathbb{Z}_p^*\}$, then $|H| = |\widehat{G}|/|\mathbb{Z}_p^*| = (p^d - 1)/(p - 1)$ and H is cyclic generated by χ^{p-1} . Thus $H = \{\chi^{m(p-1)} : 0 \leq m \leq p^d/(p-1)\}$. If $\hbar = \{1, 2, \ldots, p^d - 2\}$ and $\hbar_d = \{m(p-1) \mid 1 \leq m \leq (p^d - 1)/(p - 1) - 1\}$, then a nontrivial character ψ is real if and only if $\psi = \chi^n$ for some $n \in \hbar_d$. The class number $h(k(\Lambda_M))$ of the field $k(\Lambda_M)$ is given by

$$h(k(\Lambda_M)) = \left(\prod_{\substack{\psi \neq \chi_0 \\ \psi \in H}} \sum_{i=1}^{d+1} -iS_i(\psi)\right) \left(\prod_{\psi \notin H} \sum_{i=0}^{d+1} S_i(\psi)\right),$$

where

$$S_i(\psi) = \sum_{\substack{B \in \mathbb{Z}_p[T], \text{monic} \\ \deg B = i}} \psi([B]).$$

Since G is cyclic, for any $B \in \mathbb{Z}_p[T]$ of degree *i* with $0 \leq i \leq d-1$ there is a unique nonnegative integer $n_{[B]}$ with $0 \leq n_{[B]} \leq p^d - 1$ such that $[B] = ([A])^{n_{[B]}}$. Thus,

$$S_{i}(\chi^{m}) = \sum_{\substack{B \in \mathbb{Z}_{p}[T], \text{monic} \\ \deg B = i}} \chi^{m} ([A]^{n_{[B]}})$$
$$= \sum_{\substack{B \in \mathbb{Z}_{p}[T], \text{monic} \\ \deg B = i}} \zeta^{mn_{[B]}}$$

Hence

$$h(k(\Lambda_{M})) = \left(\prod_{n=1}^{((p^{d}-1)/(p-1))-1} \sum_{i=1}^{d+1} -iS(\chi^{n(p-1)}) \right) \left(\prod_{\substack{n \notin h_{d} \ i=0}} \sum_{i=0}^{d+1} S_{i}(\chi^{n}) \right)$$
$$= \left(\prod_{n=1}^{((p^{d}-1)/(p-1))-1} \sum_{i=1}^{d+1} -i \sum_{\substack{B \in \mathbb{Z}_{p}[T], \text{monic} \\ \deg B = i}} \zeta^{n(p-1)n_{[B]}} \right)$$
$$\left(\prod_{\substack{n \notin h_{d} \ i=0}} \sum_{\substack{B \in \mathbb{Z}_{p}[T], \text{monic} \\ \deg B = i}} \zeta^{nn_{[B]}} \right)$$

Replacing ζ by $e^{2\pi i/(p^d-1)}$, $n_{[B]}$'s by their values and evaluating the expression above gets us the sought class number.

References

- M. Bilhan, 'Arithmetic progressions of polynomials over a finite field', in Number theory and its applications (Ankara 1996), Lecture Notes in Pure and Applied Mathematics 204 (Dekker, New York, 1999), pp. 1-21.
- [2] L. Carlitz, 'On certain functions connected with polynomials in a Galois field', Duke Math J. 1 (1935), 137-168.
- [3] S. Galovich and M. Rosen, 'The class number of cyclotomic function fields', J. Number Theory 13 (1981), 363-375.
- [4] D.R. Hayes, 'Explicit class field theory for rational functional fields', Trans. Amer. Math. Soc. 189 (1974), 77-91.
- [5] A. Weil, Basic number theory (Springer-Verlag, Berlin, Heidelberg, New York, 1973).

Department of Mathematics College of Science University of Petra Amman Jordan Department of Mathematics Faculty of Science and Arts Middle East Technical University Ankara Turkey