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CLASS NUMBER OF (v,n,M) -EXTENSIONS

OSAMA ALKAM AND MEHPARE BILHAN

An analogue of cyclotomic number fields for function fields over the finite field
F, was investigated by L. Carlitz in 1935 and has been studied recently by D.
Hayes, M. Rosen, S. Galovich and others. For each nonzero polynomial M in
F, [T], we denote by k(AM) the cyclotomic function field associated with M, where
k = F,(T). Replacing T by 1/T hi k and considering the cyclotomic function
field Fv that corresponds to (1/T)V+1 gets us an extension of k, denoted by Lv,
which is the fixed field of Fv modulo FJ. We define a (v,n,M)-extension to be
the composite N = knk(Am)Lv where kn is the constant field of degree n over
k. In this paper we give analytic class number formulas for (v,n,M)-extensions
when M has a nonzero constant term.

1. INTRODUCTION

Let F , be the finite field with q = pr elements, where p is a prime number, and
let k = ¥q(T) be the rational function field. To each nonzero polynomial M(T) in
RT = FJT] one can associate a field extension k(Att), called the Af** cyclotomic
function field. It has properties analogous to the classical number fields. Such exten-
sions were investigated by Carlitz [2] and have been studied in recent years by Hayes,
Rosen, Galovich, Goss and others. Hayes (in [4]) developed the theory of cyclotomic
function fields in a modern language and constructed the mayiTpal Abelian extension
of k. We shall briefly review the relevant portions of Carlitz' and Hayes' theory. Let fc
be the algebraic closure of k and A; be its underlying additive group. The Frobenius
automorphsim $ defined by $(u) = vfl and the multiplication map ft? defined by
HT{T) = Tu are Fg-endomorphisms of F1". The substitution of $ + /*r for T in every
polynomial M{T) 6 RT introduces a ring homomorpbism from RT into Endf« )

which defines an RT -module action on k. The action of a polynomial M(T) 6 RT on
u e k is denoted by uM and given by

uM = M ($ + nt)(u).
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22 O. Alkam and M. Bilhan [2]

This action preserves the F,-algebra structure of k, since up = pu for 0 € F , . Carlitz
and Hayes established the following results.

(1) If degAf = d, then uM = £ [ M l u*\ where \M

i=0 L * J L * .
RT of degree (d — i)g*. Moreover = M and
coefficient of M.

is a polynomial in

M l
is the leading

(2) uM is a separable polynomial in u of degree cp. If A M denotes the set
of roots of the polynomial uM in k then AM is an .Ry-submodule of k
which is cyclic and isomorphic to RT/(M) .

(3) The field k(AM), which is obtained by adjoining the elements of AM to
k, is a simple, Abelian extension of k with a Galois group isomorphic to
(RT/(M))*. By $(M) we denote the order of the group (RT/(M))*.

(4) If M ^ 0 then the infinite prime divisor P^ of Jk splits into $(M)/(q - 1)
prime divisors of fc(A*f) with ramification index eoo = 9 — 1 and residue
degree /oo = 1 •

Because of the presence of constant fields and wild ramification of the infinite prime
Poo, the above Mth cyclotomic function fields fc(Ajif) are not sufficient to generate the
maximal Abelian extension of k. To remedy this difficulty, Hayes constructed the fields
Fv by applying Carlitz' theory with the generator 1/T instead of T and ( l / r ) " + 1

instead of M and considered the fixed field Lv of Fv under F£. Then the maximal
Abelian extension A of k appears as the composite EKTLOO , where E is the composite
of all constant field extensions of k, KT is the composite of all cyclotomic function fields
and Loo is the composite of all fields Lv. Thus we deduce an analogue of the Kronecker-
Weber Theorem for rational function fields: Every finite Abelian extension K of k is
contained in a composite of the type N = fcnfc(AAf)Lv, where kn is a constant field
extension of degree n, M is a nonzero polynomial in RT and v is a nonnegative integer.
We call such extensions (v,n,M)-extensions.

In [3], Galovich and Rosen gave an analytic class number formula for the field
HAM) when M = Pa for some prime polynomial P € F,[T]. In this paper we give an
analytic class number formula for (v, n, M) -extensions for any nonnegative integer v,
positive integer n and any polynomial M in Fq[T] with a nonzero constant term.

Let N = knk(AM)Lv be such an extension. Then since k C Lv and AM is a
cyclic RT -module, say AM = (A), N = FqnLv(\). Hence the fields N and LV(X)
have the same genus. Moreover, the class number of N is divisible by the class number
of LV(X). We shall give explicit class number formulas for both LV(X) and N. We
begin by studying the decomposition of the infinite prime divisor Poo of fc in LV(X). Let
GL = Gal(Lv(X)/k). Then GL is isomorphic to the direct sum of GM = Gal(fc(A)/Jfc) £
(RT/{M)Y and Gv = Gal(Lv/Jfc) [4].
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[3] Class number of («, n,M)-extensions 23

If a € Gal(Lv(X)/Lv) then c^.toMX) € G**- N o t i c e t h a t

.. «,.*<*) implies that erx = ap since ff^.,,.^ = ^ . . . . i . = identity auto-

morphsim. Moreover |Gal(L.(A)/L»)| = |Gj»f| = $ ( M ) . Hence GaI(L,(A)/£») a

Consider the following diagrams of field extensions and prime divisors

\ / K >
k P

with 51 being a prime divisor of LV(X) lying over the prime divisors 3 and I of the
fields Lv and fc(A) respectively, and P being a prime divisior of fc lying under both 3
and £.

Restricting automorphisms in Gal(Lv(A)/I>,,) to k(X) makes an isomorphism be-
tween the decomposition groups D(UK/3) and D(£/P). It is an isomorphism between
the intertia groups 7(91/3) and I(l/P) as well. Thus e(£/P) and /(9t/3) equal
f{l/P). Therefore we can easily see the following.

PROPOSITION 1 . Let 9t be a prime divisor of LV(X) lying over the infinite
prime divisor P^ of k. Then

(i)
(ii)
(iii)
(iv)

Since the only finite prime divisors of k that ramify in fc(A) are the divisors of M
and no finite prime divisor of k ramifies in Lv, the only prime diviors of k that ramify
in £V(A) are the prime polynomials that divide M.

2. ANALYTIC CLASS NUMBER FORMULAS

In this section we develop class number formulas for the fields LV(X) and N by
studying their L-functions and zeta functions. For the rest of this section the constant
term of the polynomial M is assumed to be nonzero.

T H E FIELD LV(X) . Let x be a character of GL = Gal(iu(A)/Jk). Then the L-functions
of Lv(X)/k are given by

L(s,x,LvW/k)=l[(l-W) , R^)
V
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where <p runs over all prime divsors of k, and

\

where P runs over all finite prime divisors of A;. Thus

- l

If X ^ Xo is a character in GL then

L'{s,X,Lv{\)/k)=
<?eF,[r],prime

By x(Q) we mean the value of the character x at the Frobenius substitution of Lv(X)/k
at Q. Therefore

Hence

L*(s,X,Lv(\)/k)=
NAs

where A =
Since NA = qde&A for each monic polynomial A in F,[T], we can write

L* (s, X, Lv{X)/k) = f; £§£ , Re(s) > i
»=o

where

Si(x) = E
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THEOREM 1 . Let M be a polynomial in F4[T] with a nonzero constant term. If

degM = m ^ 1 and x^Xo m GL then Si(x) = 0 for all i^m + v + 2.

PROOF: Let t ^ m + v + 2 and St = { (A + (Af), A + <(1/T)"+1>) : A €

Fq[T), monic of degree i with (A,M) = l } . Define 6 : St -» GL = Gal(Lv(\)/k) to

be the map which sends ( A + ( M ) , 3 + <(l/r)v+1>) to (RA + (M), A + <(l/T)"+1))
where RA is the unique polynomial in F,[T] such that A = M*QA + RA, degB^ <
degM. Clearly 8 is well-defined. We show that 0 is onto.

» m
Suppose that R = £ TjTj (with Tj = 0 when j > degR), M = 53 dj-T', and

i=o j=o

°i> = 1 a11^ allowing to have some of the Oj's to equal zero./i = 53 aj{l/T)V~3

Then, with the convention that Tj = 0 for all j such that degiZ < j < v, when
deg.R < v the system

do
di

d2

0
do
di

0
0 .
do •

.. 0

.. 0

.. 0

.d,, dv-i dg-2 ••• do

X2

.Xv. - rv .

has a unique solution since the constant term â  of M is nonzero. Let xo = qo, x\ =

qi, ,xv = qv be the solution of that system and consider Q =

9u+2>--- ,9i-m-i chosen arbitrarily and qi-m = d^1. (Thus we have g*-"*-"-2

distinct choices for Q.) Take A = M*Q + R. Then since (i2,Af) = 1, we have
(A, M) = 1. Moreover A is monic, deg A = i and

This shows that © is onto.
Now each g & GL corresponds to g»-m-»-2 distinct choices of A. Moreover, if

Ai = M*Qi + Ru A2 = M*Q2 + R2 then
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Therefore

jleF,[T],monic
(AAf)

= 0.

This completes the proof of the theorem. D

The previous Theorem tells us that the ̂ -function L*{s,x,Lv(X)/k) is a polyno-
mial in q~s with degree at most m + t) + l whenever x # Xo- We may consider i^
to be a subgroup of Gal(fc(A)/fc) via identifying each o € ^ J with aa € Gal(A;(A)/A;)
which maps A to aX. If we let 5 = {(<ra,T) : a € FJ, r € Gv = Gal(Lv/k)} then 5
is a subgroup of GL = Ga\.(Lv(X)/k). Moreover, |5 | = (g — l)qv. The subgroup 5 is
the decomposition group of the point at infinity.

DEFINITION 1: A character x of Gal(*(A)/ft) is said to be real if x(o) = 1 for all
a € F£, while a character x of Gal(iv(A)//:) is said to be real if *(«) = 1 for all s € 5 .
Clearly there are ($(M)/(g — 1)) — 1 nontrivial real characters of each Galois group.
Moreover, for any nontrivial real character % of Gal(fc(A)/fc), £*(0, x> K^)/k) = ° [31-

THEOREM 2 . For any nontrivial real character x of Gal(Lv(X)/k),
L*(0,X,Lv(\)/k)=0.

PROOF: Any nontrivial real character x of Gal(Xv(A)/fc) can be viewed as a char-
acter of Gal(fc(A)/fc) via defining x(ff) = X(* ,1G. ) . Moreover, L*{s,x,Lv{X)/k) =
L* (s, x, k(\)/k). Hence L* (0, x, Lv(X)/k) = 0 and the Theorem is proved. D

In light of the previous results, we may proceed to derive a class number formula
for the field ^ (A) . By Theorem 1 and Proposition 1 we may write the zeta function
of Lv{\) as follows

L'(s,X,Lv(X)/k)

-<?l-sr1 n L-(s,x,Lv

It is well known that
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where F(g~5,X,,(A)) is a polynomial in Z>[q~*] of degree 2g (where g is the genus of
Lv(\)). Moreover, the class number of Lv(\) is F(l,Lv(\)) [5]. Thus

x^xo

-( n ll?J*m)( n

-( n £=r
i:^)( n "f

xi
XnonreaJ

By Theorem 2, Z,*(0,x,L,,(A)/fc) = 0 for each nontrivial character x m GL- Using
L'Hopital's rule to evaluate the limit of the above equation's right-hand side as 5 tends
to 0, we derive the following class number formula:

n»+ti+l x i m+v+l

n E -iSi(x))[ n
X€GL,ieal i = 1

 X6Gt,no
L

X#X0

THE FIELD Lv{X)¥qn . Let GN = Gal (N/k), Gv = Gal (Lv/k) and G w = Gal(ik(A)/A).
Then Gff essentially equals the direct sum of the groups GM, GV and the cyclic group
Zn [4]. We shall study the ^-functions i*(s ,x, N/k) for any nontrivial character x of

Let x # Xo be a character in GAT • Then we have one of two cases:

CASE I. The restriction of x t o
 GM ®GV = Gal(Lv(A)//:) is the trivial character.

In this case we define the character ^ on Gal(fcF,n) by *(a) = x{(^GM, 1G«,O))-

We identify the restriction of x t o GM © Gv with the character Xres of G*f © Gv

which is defined by Xres ((f, T)) = X((<T,T,0)). Notice that x(((r,T,a)) — *(°) f°r

each (CT, T, O) € Gff and that 'd' is nontrivial since Xres is the trivial character. More-
over, ^ can be viewed as a character of GN via putting \p((0-,T,a)) = \P(a). Hence
L'(s,V,N/k) = L'(s,9,k¥qn/k). That is, Lm(s,X,N/k) = L'(s,*,kFqn/k). Thus
our problem of studying L*(s,x,N/k) is reduced to studying L*(s,^,kWqn/k) which
equals £ * ( / ) / y d e s / , R e ( s ) > l , where (see [1])

(m o d »)
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Let Tdf be the unique integer such that deg / = c*n + r ^ , 0 ^ r<tf < n. Then

and

L'{s,%kFqn/k)=
/£F,[T],monic

where d/ = deg / .
oo

We can write L*(s,V,k¥qn/k) as £ Si(*)/?", Re(s) > 1, where Si{V)
o»=o

Since we have g* possible monic polynomials in F,[T] of degree i,
Therefore

L, Re(s)
t=0 *

i = 0

i=0
oo

»=0 *

1

Whence, if x is a nontrivial character of GN which is trivial on GM © Gv and
is the character of Zn defined by ^fx(i) = x((lGAf, l<3oii)) then

CASE II. The restriction of x to Gjif © Gv is not the trivial character.
Again we let Xres be the restriction of x t o GM © <?„, that is, Xres((o", T))

x((<r,T,0)). Then

x ( ( < > , ( ( / ) ) , d A ) )
L*(s,X,N/k)= Yl — 3 ^ - J L i Z ' Re(5)>l,
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where dA = degyl, ~A = A/TdA and raA is the unique integer such that d* = c*n +
UA, 0^rdA <n, [1]. If

Ae*q[T],monic
{A,M)=1, dA=i

then

f^^-, Re(5)>l.
t=0

For each i,

SiU) = £ x((lGM,lGv,ri))X(U+ (M), A+ {(^)V+1), o)Y

(^,AT)=1, dA=i

Since x((l<3M'^<'v'r*)) ^ independent of the choice of A as long as degyl = t, we
have

Si{x) = x((lGM,lGv,Ti)) J2 x(U+(M),A+ ( ( | ) V + 1 ) , o)) = 0
^€F,[T]^nonic V V 7 /

because Xres is nontrivial on GM © Gv. Therefore 5»(x) = 0 for all i > d.M + v + 2.
Whence

i=o

To summarise we write

{ - f f (1) >—' tf X r e s fa t r i v l

Z 2 t W , otherwise.
»=o 9

DEFINITION 2: A character x of GN = GaL(N/k) is said to be real in GN if
"a, T, m)) = 1 for any a € f j , T 6 G« and m € Z n .

Clearly we have ($(Af)/(g — 1)) — 1 nontrivial real characters in GAT .

THEOREM 3 . Let x be a nontrivial real character in Gjv- Tien L*(0,x,N/k)
= 0.

PROOF: The character Xres is a nontrivial real character of GM © <?„. Hence

IS{s,X,N/k) =
t=0
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where

AeF«fT],inonic
(A,Af)=l, dA=i

Since x is real, x{0-GM, lGv,ri)) = 1. Thus S*(x) = $(*>«,)• Therefore L'(s,x,N/k)

= L* (s, Xxes, Lv(\)/k). The Theorem then follows from Theorem 2. D

Having studied the Zr-functions L* (s, x> N/k), one can give a class number formula
for N via exploring the zeta function £(s,N). Let I be a prime divisor of N lying
over the infinite prime divisor PQQ of k and let p be a prime divisor of Lv(\) lying
under £ and over P^. Then we deduce (from the theory of constant field extensions)
that g(£,p) = (rfic(A)(p)»n) = (l ,n) = 1. Thus, every prime divisor of LV(X) which
lies over the infinite prime divisor of k has a unique extension to a prime divisor of
N. Moreover, as is well known from the theory of constant field extensions, no prime
divisor of LV(X) is ramified in N. Thus e{£/p) = 1. Hence f(£/p) = n . Therefore
N£ = NpWM = qn. So

Since the field of constants of N is ¥qn we get

where F(q~ns,N) € Z[g"ns] and F ( l , AT) = fc(iV); the class number of N. Thus

L'(s,X,N/k)

- , - ) - ( JI

x/ xw
Xres nontrivial xres trivial
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• ( n -
X#XO Xres nontrivial

X#X0 Xres nontrivial

where wo, wi, . . . , un-\ are the nth roots of unity,

-( n ^::^w')( .n
G l GX N

Xres nontrivial

By Theorem 3, L*(0,x,N/k) = 0 for all nontrivial real characters x € GN- If we
evaluate the limit of the right hand-side as 5 tends to 0 we get the following formula
for the class number h(N):

dM+v+l v . dM+v+l

)( *
0

=( n '- E -«ftw)( ̂ n
XeGw,real *~1 x6GAr,nonreal *

w x A
X#XO Xres nontrivial

3. EXAMPLES

When we specialise our results to N = WqnLv(\) with n = 1 and v = 0 we get
and

n
where m = degM and 5j(x) = 53 * ( a +

AgF4[7],monic
d 4 i

That is exactly the result obtained by Galovich and Rosen [3]. In the foDowing
examples we apply the class number formula mentioned above for the special cases when
F , = Z2, F, = Z3 and for specific prime polynomials M(T) € ¥q[T].
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EXAMPLE 1.

Let k = Z2(T) and M(T) = T3+T+l. Then [JV : k] = $ (M) = 2 3 - 1 = 7. Thus

GN = (Z2[T]/(T3 + T + 1))* is cyclic of order 7. Hence the character group GN is

cyclic of the same order. The element [T] in (Z2[T]/(r3 + T + l » * could be identified

with a generator for GN • Let x be a generator for the group GN and assume that

x{[T]) = C> ^ e n C is a primitive 7 t n root of unity. Since FJ = Z$ = (1), any character

of GN is real. Moreover S^tp) = S3(if>) = 0 for each ip € GN. Therefore

Now

and

S2(xn) = xn{[if) + xn{[T]5)

The number £ could be any primitive 7"1 root of unity, in particular e2*"*/7. Substi-
tuting this value of £ in the class number formula yields h(N) = 71.

EXAMPLE 2. In this example we consider k = Z3(r) and M(T) = T2 + 1. Clearly
GN = (Z2[T]/(T2 +1))* is cyclic of order $(Af) = 32 - 1 = 8. The element [T + 1]
is a generator for GN • Let x be a generator for GN • Then x([^ + 1]) is a primitive
8 t n root of unity, let us say x([^ + 1]) = C = e""i/4. A character xn is real if and only
if n e {0,2,4,6}. Therefore

=0 i=0

If we compute 5j(xm) we find that 52(x
ro) = 53(xm) = 0 for any m such that

1 ^ m ^ 7, and that

5o(xm)=
•B62s[T],monic

degB=0
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Thus So(xm) = 0 when m is odd.
Similarly we find that 5i(xm) = C6"1 + C" + C7m = e3l?Mr</2 + emiti^ + e~mvi/4.

Substitution of these values in the class number formula gives that h(N) = 9.

GENERAL TREATMENT. Having treated very special cases in the examples above, one

may wonder about the more general case when F9 = Zp and M(T) is any prime

polynomial in ZP[T]. Let k = ZP(T) and let M(T) be any prime polynomial in ZP[T]

of degree d. The extension k(Ani)/k is of degree $(M) = jpd — 1 and the Galois group

G = Gal(fc(AM)A) is isomorphic to (ZP[T]/M(T))* which is cyclic. We identify a

generator of G with a generator [A] of (ZP[T]/M(T)) *. The character group G is

cyclic as well. Moreover, if x # Xo is a generator of G then x([-^]) is a primitive

(pd - l)st root of unity, say x([A]) = C = e2vi/(pd~^. Let H be the subgroup of G

consisting of all real characters, that is H =iip e G : *([o]) = 1 for each a e Z * | ,

then \H\ = \G\/\ZP\ = (p* - l ) / ( p - 1) and H is cyclic generated by xp~x- Thus
H = {x"1^-1) : 0 ̂  m^pt/ip-i)}. If ft = {1,2, . . . , p * - 2 } and /*„ = { m ( p - 1) |
1 ^ m ^ (pd — l) / (p — 1) — l } , then a nontrivial character ij> is real if and only if
ip = Xn f°r some n€hd- The class number h(k(AM)) of the field fc(Ajif) is given by

d+l V / d+1

£) (f d+l V / d+1= (n £,-&&)) (n E A
where

AM =
B£Zp[T],monic

Since G is cyclic, for any B € ZP[T] of degree i with 0 ̂  t ^ d - 1 there is a unique
nonnegative integer n[B] with 0 ̂  n[B] ^ Pd - 1 such that [B] = ([.4])"1-81. Thus,

Si(xm) =
B£Zp[T],monic

deg B=i

BeZp[T],monic
degB=i
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Hence

n E -is(xn^)) (n E

- c :-• E
degB=t

(nf E
vngftd »=0 BgZp[T],ii

[ »=0 B€Zp[T],monic
deg B=i

Replacing C by eiT%f\p ~1/,n[B]'s by their values and evaluating the expression above
gets us the sought class number.
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