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Abstract

In this paper we show that fractional Brownian motion with H < 1
2 can arise as a limit of a

simple class of traffic processes that we call ‘scheduled traffic models’. To our knowledge,
this paper provides the first simple traffic model leading to fractional Brownnian motion
with H < 1

2 . We also discuss some immediate implications of this result for queues fed
by scheduled traffic, including a heavy-traffic limit theorem.
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1. Introduction

There is an extensive literature justifying the use of fractional Brownian motion (and, more
generally, fractional Lévy motion) as a mathematical description of the complex aggregate
traffic that is carried by data networks; see, for example, Kurtz (1996), Gurin et al. (1999),
Mikosh et al. (2002), Pipiras et al. (2004), Kaj (2005), and Kaj and Taqqu (2008). One can
support the use of such models either on the basis of statistical analysis, or on the basis of
limit theorems that establish that such processes arise naturally as asymptotic descriptions of
physically realistic models which characterize network traffic at less aggregated scales (say that
of packets in the network). For example, Mikosh et al. (2002) showed that fractional Brownian
motion can arise as a limit of a superposition of ‘on–off’ source models with appropriately
heavy-tailed inputs. However, one common characteristic of these limit theorems is that the
limit processes that arise always exhibit a nonnegative autocorrelation structure. In particular,
the fractional Brownian motions that arise as such limits have associated Hurst parameters
H ≥ 1

2 .
In this paper we propose a simple traffic model that has the property that, when appropriately

rescaled, convergence to a fractional Brownian motion (FBM) with H < 1
2 ensues. Our main

result (Theorem 1) provides a queueing level/point process level interpretation of such FBMs.
The model that we consider is one that we call a ‘scheduled traffic’ model; its origin goes back
at least as far as Cox and Smith (1961), in which such a point process is termed a ‘regular
arrival process with unpunctuality’. Customers are scheduled to arrive to the system at regular
(say unit) intervals. So, customer j is scheduled to arrive at time j . However, because of
random effects experienced along the path traveled to the system, customer j ’s actual arrival
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Fractional Brownian motion with H < 1/2 as a limit of scheduled traffic 711

time is j + ξj . As a consequence, the number Nn of arrivals to the system in (0, n] is given by

Nn =
∞∑

j=−∞
1(ξj + j ∈ (0, n]),

where the customer index set is taken, for convenience, to be doubly infinite. Customers with ξj

negative arrive ‘early’ and customers with ‘perturbations’ξj that are positive arrive ‘late’. Such
traffic can be relevant, for instance, in modeling a doctor’s office where patients are initially
scheduled at regular intervals; the perturbations account for their early or late arrivals. In this
paper we restrict our attention to nonnegative perturbations. We (reasonably) assume that the
sequence of perturbations (ξj : − ∞ < j < ∞) is a family of independent and identically
distributed (i.i.d.) random variables (RVs). Under this assumption, (Nn : n ≥ 0) has stationary
increments (in discrete time), in the sense that Nn+m − Nm

d= Nn − N0 for n, m ≥ 0 (where
‘

d=’ denotes equality in distribution), and E N1 = 1.

We show elsewhere that there exists an RV � such that Nn − n ⇒ � as n → ∞ if (and only
if) E |ξ1| < ∞ (where ‘⇒’ denotes weak convergence on D[0, ∞)). In order that we obtain
a functional limit theorem for (Nn : n ≥ 0) in which the limit process is an FBM, we will
therefore consider heavy-tailed perturbations with E |ξ1| = ∞. In particular, we will assume
that the perturbations are nonnegative and satisfy

P(ξ0 > x) ∼ cx−α (1)

as x → ∞ for 0 < c < ∞ and 0 < α < 1. In the case of the aircraft landing process, the delays
can possibly be quite significant. In the presence of (1) we establish a Donsker-type functional
limit theorem for the above scheduled traffic model in which the limit process is an FBM with
H = (1 − α)/2; see Section 2 for a full description of the result. Thus, such a scheduled
traffic process exhibits a negative dependency structure. This is intuitively reasonable, as a
scheduled traffic process has the characteristic that if one observes more arrivals than normal
in one interval, this likely has occurred because either future customers have arrived early or
because previously scheduled customers arrived late (thereby reducing the number of arrivals
to either past or future intervals). We also note that H ↓ 0 as α ↑ 1 (so that the level of
negative dependence increases as the perturbations exhibit smaller fluctuations) and H ↑ 1

2
(the Brownian motion case) as α ↓ 0 (so that the perturbations are ‘more random’). We end
this section by giving another interpretation of the quantity Nn formulated above. Suppose that
customer j arrives to an infinite server queue at time j . The service requirements are i.i.d.; the
service requirement for customer j is the j th perturbation in the current model. The RV Nn

can now be interpreted as the departure process for this infinite-server queue (i.e. Nn is the total
number of departures in [0, n]), so our Theorem 1 is a Donsker-type theorem for the departure
process from a D/G/∞ queue with the service time distribution having infinite mean.

This paper is organized as follows. In Section 2 we state and prove the main result of
the paper (our functional limit theorem for scheduled traffic), while in Section 3 we describe
the implications in the queueing context. Specifically, we study the workload process for a
single-server queue fed by scheduled traffic in the ‘heavy-traffic’ setting.

2. The main result

For t ≥ 0, let Xn = (Xn(t) : t ≥ 0) be defined via

Xn(t) = N
nt� − 
nt�
n(1−α)/2

.
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Also, for H ∈ (0, 1), let BH = (BH (t) : t ≥ 0) be a mean-zero Gaussian process with
covariance function given by

cov(BH (s), BH (t)) = 1
2 (|s|2H + |t |2H − |t − s|2H )

for s, t ≥ 0. The process BH is a continuous path process with stationary increments for
which BH (0) = 0, and is the FBM (with zero mean and unit variance parameter) having Hurst
parameter H .

Theorem 1. Suppose that (ξj : − ∞ < j < ∞) is an i.i.d. sequence of positive RVs
satisfying (1). Then

Xn ⇒
√

2c(1 − α)−1BH

as n → ∞, where H = (1 − α)/2.

As is common in proving such results, we split the proof into two parts: the proof of the
convergence of finite-dimensional distributions and verification of tightness.

Proposition 1. Under the conditions of Theorem 1,

Xn
fdd−−→

√
2c(1 − α)−1BH

as n → ∞, where ‘
fdd−−→’ denotes weak convergence of finite-dimensional distributions.

Proof. For notational simplicity, we prove convergence of finite-dimensional distributions
for only two time epochs; the general case is essentially identical. We start by observing that,
for t ≥ 0,

Xn(t) = n−H

(
nt�∑
j=1

1(j + ξj ∈ (0, 
nt�]) − 
nt� +
∑
j≤0

1(j + ξj ∈ (0, 
nt�])
)

= n−H

(
−


nt�∑
j=1

1(j + ξj > 
nt�) +
∑
j≤0

1(j + ξj ∈ (0, 
nt�])
)

.

For 0 ≤ t1 < t2 and θ1, θ2 ∈ R, set n1 = 
nt1�, n2 = 
nt2�, θ̃1 = n−H θ1, and θ̃2 = n−H θ2.
Then

θ1Xn(t1) + θ2Xn(t2) = −(θ̃1 + θ̃2)

n1∑
j=1

1(ξj + j > n2) − θ̃1

n1∑
j=1

1(ξj + j ∈ (n1, n2])

− θ̃2

n2∑
j=n1+1

1(ξj + j > n2) + (θ̃1 + θ̃2)
∑
j≤0

1(ξj + j ∈ (0, n1])

+ θ̃2

∑
j≤0

1(ξj + j ∈ (n1, n2]).

Let

F̄ (j) := P(ξ0 > j) for j ≥ 0.
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The i.i.d. structure of the ξj s establishes that the log-moment generating function of (Xn(t1),

Xn(t2)) (evaluated at (θ1, θ2)) is given by

n1∑
j=1

log(1 + (e−θ̃1−θ̃2 − 1)F̄ (n2 − j) + (e−θ̃1 − 1)(F̄ (n1 − j) − F̄ (n2 − j)))

+
n2∑

j=n1+1

log(1 + (e−θ̃2 − 1)F̄ (n2 − j))

+
∑
j≤0

log(1 + (eθ̃1+θ̃2 − 1)(F̄ (−j) − F̄ (n1 − j)) + (eθ̃2 − 1)(F̄ (n1 − j) − F̄ (n2 − j))).

Because θ̃i → 0 as n → ∞ and log(1 + x) = x(1 + o(1)) as x → 0, it follows that

log E exp(θ1Xn(t1) + θ2Xn(t2))

=
(

(e−θ̃1−θ̃2 − e−θ̃1)

n1∑
j=1

F̄ (n2 − j) + (e−θ̃1 − 1)

n1∑
j=1

F̄ (n1 − j)

+ (e−θ̃2 − 1)

n2∑
j=n1+1

F̄ (n2 − j) + (eθ̃1+θ̃2 − 1)

∞∑
j=0

(F̄ (j) − F̄ (n1 + j))

+ (eθ̃2 − 1)

∞∑
j=0

(F̄ (n1 + j) − F̄ (n2 + j))

)
(1 + o(1))

as n → ∞. For 0 ≤ k1 ≤ k2 and r ≥ k2 − k1,

r∑
j=0

(F̄ (k1 + j) − F̄ (k2 + j)) =
k2−1∑
j=k1

F̄ (j) −
k2+r∑

j=k1+r+1

F̄ (j).

Because
∑k2+r

j=k1+r+1 F̄ (j) ≤ (k2 − k1)F̄ (k1 + r + 1) → 0 as r → ∞, clearly,

∞∑
j=0

(F̄ (k1 + j) − F̄ (k2 + j)) =
k2−1∑
j=k1

F̄ (j).

Consequently,

log E exp(θ1Xn(t1) + θ2Xn(t2))

=
(

(e−θ̃1−θ̃2 − e−θ̃1)

n2−1∑
j=n2−n1

F̄ (j) + (e−θ̃1 − 1)

n1−1∑
j=0

F̄ (j)

+ (e−θ̃2 − 1)

n2−n1−1∑
j=0

F̄ (j) + (eθ̃1+θ̃2 − 1)

n1−1∑
j=0

F̄ (j)

+ (eθ̃2 − 1)

n2−1∑
j=n1

F̄ (j)

)
(1 + o(1))
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= 1

2

(
[(θ1 + θ2)

2 − θ2
1 + O(n−H )]n−2H

n2−1∑
j=n2−n1

F̄ (j)

+ [θ2
1 + O(n−H )]n−2H

n1−1∑
j=0

F̄ (j) + [θ2
2 + O(n−H )]n−2H

n2−n1−1∑
j=0

F̄ (j)

+ [(θ1 + θ2)
2 + O(n−H )]n−2H

n1−1∑
j=0

F̄ (j)

+ [θ2
2 + O(n−H )]n−2H

n2−1∑
j=n1

F̄ (j)

)
(1 + o(1))

as n → ∞.
Choose δ ∈ (0, 1 − α), and observe that, for t > 0,

n−2H


nt�∑
j=0

F̄ (j) = nα−1

nδ�∑
j=0

F̄ (j) + nα−1

nt�∑

j=
nδ�+1

cj−α(1 + o(1))

= o(1) + c


nt�∑
j=
nδ�+1

(
1

n

)(
j

n

)−α

(1 + o(1))

= o(1) + c

∫ t

nδ−1
x−α dx(1 + o(1))

= ct1−α

1 − α
+ o(1)

as n → ∞. Thus, we find that

log E exp(θ1Xn(t1) + θ2Xn(t2))

→ c

2(1 − α)
([θ2

2 + 2θ1θ2](t2H
2 − (t2 − t1)

2H ) + θ2
1 t2H

1

+ θ2
2 (t2 − t1)

2H + [θ2
1 + θ2

2 + 2θ1θ2]t2H
1 + θ2

2 (t2H
2 − t2H

1 ))

= c

1 − α
(θ2

1 t2H
1 + θ2

2 t2H
2 + θ1θ2(t

2H
2 + t2H

1 − |t2 − t1|2H ))

as n → ∞, which is precisely the joint log-moment generating function of the Gaussian
finite-dimensional distribution of the limit process.

Proposition 2. The sequence (Xn : n ≥ 0) is tight in D[0, ∞).

Proof. Note that because we established convergence of the moment generating functions in
Proposition 1, it follows that (|Xn(t)|p : n ≥ 0) is uniformly integrable for all t ≥ 0 and p > 0.
Hence, in view of Proposition 1, all the requisite conditions of Theorem 2.1 of Taqqu (1975)
are satisfied, so that ((Xn(u) : 0 ≤ u ≤ t) : n ≥ 0) is tight in D[0, t] for each t ≥ 0.

Propositions 1 and 2 together prove Theorem 1.

Remark 1. A very similar proof holds for a time-stationary scheduled arrival process formu-
lated in continuous time. In particular, let N(t) be the number of scheduled arrivals in (0, t],
so

N(t) =
∞∑

j=−∞
1(jh + Uh + ξj ∈ (0, t]),
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where customers are scheduled to arrive at times in hZ and U is a uniform [0,1] RV independent
of (ξj : j ∈ Z); the uniform RV U is introduced in order to induce time stationarity. If the
distribution of ξ0 satisfies (1) then

N(nt) − nt/h

nH
⇒

√
2c

1 − α
BH

(
t

h

)

as n → ∞ in D[0, ∞).

3. Implications for queues

We now briefly describe the implications of our limit theorem for a queue that is fed by a
scheduled arrival process with i.i.d. heavy-tailed perturbations (ξn : n ∈ Z) satisfying (1). In
particular, we consider such a queue in ‘heavy traffic’, in an environment in which the service
times are deterministic. (We view this deterministic assumption as being realistic in this setting,
given that a service provider would likely attempt only to schedule arrivals when the service
times were of highly predictable duration.)

Specifically, we consider a family of queues, indexed by ρ ∈ (0, 1), in which the number
of arrivals in (0, t] to the ρth system is given by N(ρt), where N satisfies the conditions of
Theorem 1. If the ρth system starts off idle and the service times have unit duration, then the
workload process (Wρ(t) : t ≥ 0) for the ρth system is given by

Wρ(t) = N(ρt) − t − min
0≤s≤t

[N(ρs) − s].
Clearly, the utilization (or traffic intensity) of system ρ is ρ. Heavy traffic is therefore obtained
by letting ρ ↑ 1.

Theorem 2. Under the same conditions as for Theorem 1,

(1 − ρ)(1−α)/(1+α)Wρ

( ·
(1 − ρ)2/(1+α)

)
⇒ σBH (·) − e(·) − min

0≤s≤e(·)[σBH (s) − s]

as ρ ↑ 1 in D[0, ∞), where H = (1 − α)/2, σ 2 = 2c/(1 − α), and e(t) = t for t ≥ 0.

Proof. Note that

(1 − ρ)(1−α)/(1+α)Wρ

(
t

(1 − ρ)2/(1+α)

)

= (1 − ρ)H/(1−H)Wρ

(
t

(1 − ρ)1/(1−H)

)

= (1 − ρ)H/(1−H)

[
N

(
ρt

(1 − ρ)1/(1−H)

)
− t

(1 − ρ)1/(1−H)

− min
0≤s≤t

(
N

(
ρs

(1 − ρ)1/(1−H)

)
− s

(1 − ρ)1/(1−H)

)]

= ρH

(
(1 − ρ)1/(1−H)

ρ

)H

×
[
N

(
ρt

(1 − ρ)1/(1−H)

)
− ρt

(1 − ρ)1/(1−H)
− (1 − ρ)−H/(1−H)t

− min
0≤s≤t

(
N

(
ρs

(1 − ρ)1/(1−H)

)
− ρs

(1 − ρ)1/(1−H)
− (1 − ρ)−H/(1−H)s

)]
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= ρH

[(
(1 − ρ)1/(1−H)

ρ

)H (
N

(
ρt

(1 − ρ)1/(1−H)

)
− ρt

(1 − ρ)1/(1−H)

)

− t − (ρ−H − 1)t

− min
0≤s≤t

((
(1 − ρ)1/(1−H)

ρ

)H (
N

(
ρs

(1 − ρ)1/(1−H)

)
− ρs

(1 − ρ)1/(1−H)

)

− s − (ρ−H − 1)s

)]
.

But, Theorem 1 implies that

(
(1 − ρ)1/(1−H)

ρ

)H (
N

(
ρ ·

(1 − ρ)1/(1−H)

)
− ρe(·)

(1 − ρ)1/(1−H)

)
⇒ σBH (·)

in D[0, ∞) as ρ ↑ 1. Since (ρ−H − 1)e(·) → 0 uniformly on compact time intervals, as
ρ ↑ 1, the continuous mapping principle (see, for example, Billingsley (1999, p. 20)) implies
the theorem.

Theorem 2 suggests the approximation

W(t)
d≈ (1 − ρ)(α−1)/(α+1)Z((1 − ρ)2/(1+α)t)

when ρ := E(N1−N0) is close to 1, where ‘
d≈’denotes ‘has approximately the same distribution

as’ (and has no rigorous meaning, other than that associated with Theorem 2 itself) and Z =
(Z(t) : t ≥ 0) is the regulated FBM given by Z(t) = σBH (t) − t − min0≤s≤t [σBH (s) − s].
One implication is that, when ρ is close to 1, the rough magnitude of W(·) is of the order
(1 − ρ)(α−1)/(α+1) (where (α − 1)/(α + 1) ∈ (−2, 0)) and the time scale over which W(·)
fluctuates (in a relative sense) is of the order (1 − ρ)−2/(1+α). In particular, when α is close to
1 (so that N is almost deterministic), the magnitude of W is small and the fluctuations of W

occur over time scales of the order (1 − ρ)−1.
On the other hand, if the service times (Vn : n ∈ Z) associated with the scheduled arrival

sequence are i.i.d. with unit mean and positive finite variance, then the corresponding heavy-
traffic limit theorem for the workload process

Wρ(t) =
N(ρt)∑
i=1

Vi − t − min

(N(ρs)∑
i=1

Vi − s

)

is easily shown to be

(1 − ρ)Wρ

( ·
(1 − ρ)2

)
⇒ ηB(·) − e(·) − min

0≤s≤e(·)(ηB(s) − s) (2)

as ρ ↑ 1 in D[0, ∞), where B = (B(t) : t ≥ 0) is standard Brownian motion with B(0) = 0
and η2 = var V1. This limit theorem is identical to that obtained for a D/G/1 queue in heavy
traffic, so in this asymptotic regime with positive variance service times, scheduled traffic
behaves similarly to a deterministic arrival sequence. Furthermore, in this positive variance
setting, the fluctuations of a scheduled queue in heavy traffic are larger (of the order (1 −ρ)−1)
and occur over longer time scales (of the order (1 − ρ)−2) than in the context of deterministic
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service times (which are, as noted earlier, of the orders (1−ρ)−(1−α)/(1+α) and (1−ρ)−2/(1+α),
respectively).

A great deal is known about the behavior of the limiting regulated FBM process Z, and how
its behavior contrasts with that of the regulated Brownian motion appearing in (2).

• As for the reflected Brownian motion in (2), Z(t) ⇒ Z(∞) as t → ∞. However,
in contrast to the Brownian case, Z(∞) has superexponential tails (so that the tails are
lighter than the exponential tails that arise in the conventional heavy-traffic setting of (2)).
In particular,

P(Z(∞) > x) ∼ H2H

√
πD1/2H A(2−H)/(2H)

B1/22(1−H)/(2H)σ (1−H)/H
x(1−H)2/H 
̄(A σ−1x1−H )

as x → ∞, where 
̄ is the tail of the standard normal distribution,

A =
(

H

1 − H

)−H 1

1 − H
, B =

(
H

1 − H

)−(H+2)

H, D =
(

H

1 − H

)−2H

,

and H2H is the so-called Pickands constant; see Hüsler and Piterbarg (1999) for details.

• The convergence to equilibrium of Z(t) to Z(∞) occurs roughly at a rate exp(−θ∗t2−2H )

(in ‘logarithmic scale’), where θ∗ involves solving a variational problem. This is faster
than the roughly exponential rate to equilibrium associated with (2); see Mandjes et al.
(2009) for details.

• The dynamics of the process Z, conditioned on an unusually long busy period of
duration t , forces the process Z to make a large positive excursion (reaching a level
of order t) during the busy period, whereas regulated Brownian motion (under the same
conditioning) tends to exhibit much smaller positive fluctuations; see Mandjes et al.
(2006) for details.

All these results point to the intuition that a scheduled arrival process (with deterministic service
times) behaves much more predictably than does a queue fed by (for example) renewal input.
This is in strong contrast to queues that can be approximated by regulated FBM with H > 1

2 ,
which generally have much worse behavior than conventional queues (i.e. equilibrium distribu-
tions with fatter than exponential tails, subexponential rates of convergence to equilibrium, etc.).

References

Billingsley, P. (1999). Convergence of Probability Measures, 2nd edn. John Wiley, New York.
Cox, D. R. and Smith, W. L. (1961). Queues. John Wiley, New York.
Gurin, C. A. et al. (1999). Empirical testing of the infinite source Poisson data traffic model. Tech. Rep. 1257, School

of Operations Research and Information Engineering, Cornell University.
Hüsler, J. and Piterbarg, V. (1999). Extremes of a certain class of Gaussian processes. Stoch. Process. Appl. 83,

257–271.
Kaj, I. (2005). Limiting fractal random processes in heavy tailed systems. In Fractals in Engineering, New Trends in

Theory and Applications, eds J. Lévy-Lehel and E. Lutton, Springer, London, pp. 199–218.
Kaj, I. and Taqqu, M. S. (2008). Convergence to fractional Brownian motion and to the telecom process: the integral

representation approach. In In and Out of Equilibrium 2 (Progress Prob. 60), eds M. E. Vares and V. Sidoravicius,
Birkhäuser, Basel, pp. 383–427.

Kurtz, T. G. (1996). Limit theorems for workload input models. In Stochastic Networks: Theory and Applications,
eds S. Zachary, F. P. Kelly and I. Ziedins, Clarendon Press, Oxford, pp. 119–140.

Mandjes, M., Norros, I. and Glynn, P. (2009). On convergence to stationarity of fractional Brownian storage. Ann.
Appl. Prob. 18, 1385–1403.

https://doi.org/10.1239/jap/1346955328 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1346955328


718 V. F. ARAMAN AND P. W. GLYNN

Mandjes, M., Mannersalo, P., Norros, I. and van Uitert, M. (2006). Large deviations of infinite intersections of
events in Gaussian processes. Stoch. Process. Appl. 116, 1269–1293.

Mikosch, T., Resnick, S., Rootzén, H. and Stegeman, A. (2002). Is network traffic approximated by stable Lévy
motion or fractional Brownian motion? Ann. Appl. Prob. 12, 23–68.

Pipiras, V., Taqqu, M. S. and Levy, J. B. (2004). Slow, fast and arbitrary growth conditions for renewal-reward
processes when both the renewals and the rewards are heavy-tailed. Bernoulli 10, 121–163.

Taqqu, M. S. (1975). Weak convergence to fractional Brownian motion and to the Rosenblatt process. Z. Wahrschein-
lichkeitsth. 31, 287–302.

https://doi.org/10.1239/jap/1346955328 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1346955328

	1 Introduction
	2 The main result
	3 Implications for queues
	References

