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The Bolyai- Liobatschewsky Non-Euclidean Geometry:
an BElementary Interpretation of this Geometry, and some
Results which follow from this Interpretation.

By Professor H. 8. Carsraw, Sc.D.

(Received December 1909. Read 11th March 1910.)

§1. Introductory.

Much has been written in recent years on the foundations of
geometry, chiefly in Germany and Italy, and the relations of the
various Non-Euclidean geometries to the Euclidean system are now
more generally known among mathematicians. But most of these
writings involve a knowledge of more advanced mathematics, while
it has been found difficult to represent even the simplest Non-
Euclidean geometry—that of Bolyai-Lobatschewsky—in an elemen-
tary manner.

As is well known, the discovery of this system was due to the
long continued, but necessarily unsuccessful, attempts to prove the
Euclidean hypothesis (Axiom 12) on which Euclid’s Theory of
Parallels rests. (Throughout this paper this hypothesis will
usually be referred to as Euclid’s Parallel Postulate, because its
original place was almost certainly among the Postulates, and it
ranks with them as one of the assumptions of the system.)
Towards the beginning of last century, Gauss, Lobatschewsky and
Bolyai showed that all such efforts must be unsuccessful, for they
established the logical possibility of a geometry,* the foundations of

* For information upon the History of the Theory of Parallels, see
specially—

Engel und Stickel—Theorie der Parallellinien von Euklid bis Qauss
(Leipzig, 1895) ; and Bonola — La Geometria Non- Buclidea— Esposizione storico-
eritica del suo sviluppo (Bologna, 1906). Also Gauss, Werke Bd. VIIL

Historical references will also be found in—

Withers— Euclid’s Parallel Postulate (Chicago, 1905) ; Russell—-An Essay
on the Foundations of Geometry (Cambridge, 1897); Klein— Nichteuklidische
Geometrie (Gottingen, 1893), and elsewhere.
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which are exactly the same as those of the Euclidean geometry, except
that instead of the hypothesis that only one parallel can be drawn to
a straight line through a point outside it—a hypothesis equivalent
to Euclid’s Parallel Postulate—they assumed that two such parallels
could be drawn. If this Non-Euclidean geometry forms a logical
system and does not lead to any contradictions, then the axioms
upon which it is built are not contradictory. If this be the case, it
would be impossible to prove Euclid’s Parallel Postulate from the
other assumptions made by him, since this would involve the denial
of the Parallel Postulate of Bolyai and Lobatschewsky.

Various demonstrations have been given of the logical possibility
of this and the other Non-Euclidean geometries. Some are
analytical, and depend upon the fact that the analytical expression
of these geometries gives rise to a set of consistent equations.
Others are geometrical, involving a knowledge of projective
geometry, or the geometry of the surfaces of constant curvature.*

It is the object of this paper to give a simple proof of this result,
to understand which a knowledge only of elementary geometry will
be required. This proof is based upon the properties of the system of
spheres all orthogonal to a fixed sphere. It will be found that the
Non-Euclidean geometry can be interpreted in the geometry of
this system of spheres. Some of its well-known theorems will be
obtained from the elementary properties of the system, and it will
be shown that if any contradiction were to arise in the Non-
Euclidean geometry, such a contradiction would also necessarily
appear in the geometry of the system of spheres, and therefore in
the Euclidean geometry.f

* C. Bonola, loc. cit., §94.

t The idea of representing the Non-Euclidean plane on the Euclidean
half-plane, so that semicircles cutting the axis of z at right angles take the
place of straight lines, is due primarily to Klein and Poincaré. An analytical
treatment on these lines will be found in Liebmanu's Nichteuklidische
Qeometrie (Leipzig, 1905). The system of spheres orthogonal to a fixed
sphere, which includes the system of spheres orthogonal to a plane as a special
case, is adopted by Wellstein in Weber- Wellstein's Bncyclopddie der Elementar-
Mathematik, Vol. IL., §§8-11 (Leipzig, 1905). This paper was suggested by
Wellstein’s discussion, of which it may be regarded as an extension.
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§2. The system of circles passing through a fixed point.

We shall examine first of all the representation of ordinary
Euclidean geometry contained in the geometry of the system of
spheres all passing through a fixed point. In plane geometry
this reduces to the system of circles through a fixed point, and we
shall begin with this case.

Since the system of circles through a point O is the inverse
of the system of straight lines lying in a plane, to every circle there
corresponds a straight line, and the circles intersect at the same
angle as the corresponding lines. The properties of the set of circles
could be established from the knowledge of the geometry of the
straight lines, and every proposition concerning points and straight
lines in the one geometry could at once be interpreted as a pro-
position concerning points and circles in the other.

There is another way in which the geometry of these circles can
be established independently. We proceed to describe this method,
and we shall see later that from this representation of the Euclidean
geometry, we shall be able to pass easily to a corresponding repre-
sentation of the Non-Euclidean Geometry.

§3. Ideal Lines.

It will be convenient to speak of the plane of the straight lines
and the plane of the circles as two separate planes. We have seen
that to every straight line in the plane of the straight lines there
corresponds a circle in the plane of the circles. We shall call
these circles tdeal lines. The ideal points will be the same as
ordinary points, except that the point O will be excluded from the
domain of the ideal points.

On this understanding we can say that any two different ideal
points A, B determine the ideal line AB, just as any two different
points A, B determine the straight line AB.

As the angle between the circles in the one plane is equal to
the angle between the corresponding straight lines in the other,
we define the angle between two tdeal lines as the angle between the
corresponding straight lines. Thus we can speak of ideal lines
being perpendicular to each other or cutting at any angle.

$4. Ideal Parallel Lines.
Let BC (Fig. 1) be any straight line, and A a point not lying
upon it.

8 Vol. 28
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Let AM be the perpendicular to BC, and AM,;, AM,,... different
positions of the line AM as it revolves from the perpendicular
position through two right angles.

A

/

Y] MM M M, My &
Fig. 1.

The lines begin by cutting BC on the one side of M, and there
is one line separating these lines which intersect BC on the one
side from those which intersect it on the other. This line is the
parallel through A to BC.

In the corresponding figure for the ideal lines (Fig. 2) we have
the ideal line through A perpendicular to the ideal line BC: and
the circle, which passes through A and touches the circle OBC at O,
separates the circles through A which cut BC on the one side of M
from those which cut it on the other.

e
My

M

Fig. 2.
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We are thus led to define parallel ideal lines as follows :—

The ideal line through any point parallel to a given ideal line is
the circle of the system which touches at O the circle coinciding with
the given ideal line, and passes through the given point.

Thus any two circles of the system which touch each other at
O will be ideal parallel lines. Two ideal lines, which are each
parallel to a third ideal line, are parallel to each other, ete.

§5. Ideal Lengths.

Since Euclid’s Parallel Postulate is equivalent to the assumption
that one, and only one, straight line can be drawn through a point
parallel to another straight line, and since this postulate is obviously
satisfied by the ideal lines, Euclid’s Theory of Parallels will be
true in the geometry of these lines.

But such a geometry will require a measurement of length. We
must now define what is meant by the tideal length of an ideal
segment. In other words, we must define the ideal distance
between two points. It is clear that, if the two geometries are to be
identical, two ideal segments must be regarded as of equal length
when the corresponding rectilinear segments are equal. We
define the ideal lengths of an ideal segment as the length of the
rectilinear segment to which it corresponds.

It will be seen that the ideal distance between two points A, B
is such that if C is any other point on the segment

“ distance” AB = “distance ” AC + “distance” CB.
The other requisite for distance is that it should be unaltered by
displacement, and when we come to define /deal Displacement we
shall have to make sure that this condition is also satisfied.

It is clear that on this understanding the ideal length of an
ideal line is infinite. If we take *“equal ” steps along the ideal line
BC from the foot of the perpendicular (Fig. 2), the actual lengths
of the arcs MM, M\M,,..., if their ideal lengths are equal,
become gradually smaller and smaller, as we proceed along the line
towards O. It will take an infinite number of such steps to reach
O, just as it will take an infinite number of steps along BC from
M (Fig. 1) to reach the point at which BC is met by the parallel
through A. We have already seen that the domain of ideal points
contains all the points of the plane except O. This was required
so that the ideal line might always be determined by two different
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points. It is also needed for the idea of “between-ness.” On the
straight line AB we can say that C lies between A and B if we
pass through C as we proceed along AB from A to B. On the ideal
line AB (Fig. 3) the points C, and C, would both lie between A and

A
Fig. 3.

B, unless the point O were excluded. In other words, this
convention must be made so that the axioms of order* may appear
in the geometry of the ideal points and lines.

On this understanding, and speaking still only of plane geometry,
we can say that two ideal lines are parallel when they do not meet,
however far they are produced.

To obtain an expression for the ideal length of an ideal segment,
we may take the radius of inversion % as unity.

Consider the ideal segment AB and the rectilinear segment a3 to
which it corresponds.

* Cf. Hilbert, Grundlagen der Geometrie, §3; (Leipzig, 1899). English
Translation, The Foundations of Geometry, p. 5; (Chicago, 1902),

https://doi.org/10.1017/50013091500034854 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500034854

101

Then we have (Fig. 4) from similar triangles,

Fig. 4.

B _OB

AB 0A
_OB.0OB
" OA.OB

__F
T OA.OB

Thus we may say that the ideal length of the segment AB i3 equal

0 AB
OA.OF

We shall now show that the ideal length of an ideal segment is

unaltered by inversion with regard to any circle of the system.

Let OD be any circle of the system, and let C be its centre

(Fig. 5).

Then inversion with regard to this circle changes an ideal line

into an ideal line.

Let the ideal segment AB invert into the ideal segment A'B.
These two ideal lines intersect at. the point D, where the circle of

inversion meets AB
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A

C
Fig. 5.
Then
the ideal length of AD AD A'D
the ideal length of A’'D~ OA.OD/ OA”.OD

AD 0OA’
T A'D' OA
But from the triangles CAD, CA’D and OAC, OA'C we find
AD CA CA OA

Thus the ideal length of AD is equal to the ideal length of A'D.
Similarly we find BD and B'D have the same ideal length, and
therefore AB and A’B’ have the same ideal length.

§6. Ideal Displacements.

The length of a segment must be unaltered by displacement.
This leads us to consider the definition of ideal displacement. In
his geometry Euclid uses the principle of displacement (e.g. let the
triangle ABC be superposed upon the triangle A'B'C’, so that A
may coincide with A’, etc.). In constructing this analogous
geometry we shall use a corresponding principle. Any displacement
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in Euclidean geometry may be produced by repeated applications of
reflection : that is, by taking the image of the figure in a line (or
in a plane in the case of solid geometry).

For example, to translate the segment AB (Fig. 6) into another

| | | 1 |
A B (0] B A’

Fig. 6.

position on the same line, we may reflect the figure first about a
line perpendicular to and bisecting BB, and then another reflection
about the middle point of B'A’ would bring the corresponding
ends into their former positions relative to each other.

Also to move the segment AB into the position A'B’ (Fig. 7) we

J

Fig. 7.

can first take the image of ABin the line bisecting the angle between
AB and A’B/, and then translate the segment along A'B’ to its final
position.

We proceed to show that inversion with respect to any circle of the
system 18 equivalent to reflection of the ideal points and lines in the
ideal line which coincides with the circle of inversion.
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Let C (Fig. 8) be the centre of any circle of the system, and let
A’ be the inverse of the point A with regard to this circle. Then
the circle OA A’ is orthogonal to the circle of inversion. In other
words, such inversion changes any point A into a point A’ on the

A

¢

Fig. 8.

ideal line through A perpendicular to the circle of inversion. Also,
the ideal line AA’ is “bisected ” by that circle at M, since the ideal
segment AM inverts into the segment A'M, and ideal lengths are
unaltered by such inversion.

Again let AB be any ideal segment, and by inversion with
regard to any circle of this system let it take up the position A'B
(Fig. 5).

We have seen that the ideal length of the segment is unaltered,
and it is clear that the two segments when produced meet on the
circle of inversion, and make equal angles with it. Also, the ideal
lines AA’ and BB’ are perpendicular to, and bisected by, the ideal
line with which the circle of inversion coincides.
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Such an inversion is therefore the same as reflection, and trans-
lation will occur as a special case of the above, when the circle of
inversion is orthogonal to the given ideal line.

We thus define ideal reflection in an ideal line as inversion with
this line as the circle of inversion.

It is unnecessary to say more about ideal displacements than
that they will be the result of ideal reflections.

With these definitions it is now possible to “translate” every
proposition in the ordinary plane geometry into a corresponding
proposition in this ideal geometry. We have only to use the words
ideal points, lines, parallels, etc., instead of the ordinary points,
lines, parallels, etc. The argument employed in proving a theorem,
or the construction used in solving a problem, will be applicable
word for word in the one geometry as well as the other, since the
elements involved satisfy the same laws. This may be called the
“ Dictionary Method,” and is frequently met with in any discussion
on Non-Euclidean geometry.*

§7. Eaxtension to Solid Geometry. The system of spheres passing
through a fixed point.

These methods may be extended to solid geometry. In this
case the inversion of the system of points, lines, and planes with
regard to a sphere gives rise to the system of points, circles inter-
secting in the centre of inversion, and spheres also intersecting
there. The geometry of this system of spheres could be derived
from that of the system of points, lines, and planes by interpreting
each proposition in terms of the inverse figures. For our purpose
it is better to regard it as derived from the former by the invention
of the terms ideal point, ideal lines, ideal planes, ideal lengths, and
ideal displacements.

The ideal point is the same as the ordinary point, but the point
O is excluded from the domain of ideal points.

The tdeal line through two ideal points is the circle of the
system which passes through these two points.

The ideal plane through three ideal points, not on an ideal line,
is the sphere of the system through these three points.

* Ci. Bonola, loo. cit., pp. 134, 155, 159, ete.
Poincaré, La Science et P Hypothése, p. 56.
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Thus the plane geometry discussed in the preceding articles is
a special case of this plane geometry.

Ideal parallel lines are defined as before. The line through A
parallel to BC is the circle of the system, lying on the sphere
through O, A, B, and C, which touches the circle given by the
ideal line BC at O and passes through A.

It is clear that an ideal line is determined by two points, as
a straight line is determined by two points. The ideal plane is
determined by three points, not on an ideal line, as an ordinary
plane is determined by three points, not on a straight line. If
two points of an ideal line lie on an ideal plane, all the points of
the line do so: just as if two points of a straight line lie on a plane,
all its points do so. The intersection of two ideal planes is an
ideal line, just as the intersection of two ordinary planes is a
straight line.

The measurement of angles in the two spaces is the same.

For the measurement of length we adopt the same definition of
ideal length as in the case of two dimensions. The ideal length of
an ideal segment is the length of the rectilinear segment to which
it corresponds.

To these definitions it only remains to add that of ideal dis-
placement. As in the two dimensional cases, this is reached by
means of ideal reflection. It can easily be shown that inversion
with regard to any sphere of the system 1is equivalent to reflection of
the ideal points, lines, and planes in the ideal plane coinciding with
that sphere.

This ideal geometry is therefore identical with the ordinary
Euclidean geometry. Its elements satisfy the same laws: every
proposition valid in the one is also valid in the other: and from
the theorems of the Euclidean geometry, those of the ideal geometry
can be inferred.

In the articles that follow we shall establish an ideal geometry
whose elements satigfy the axioms wpon which the Non-Euclidean
geometry of Bolyai-Lobatschewsky is based ; that s, the set of
axioms is the same, except that a mew parallel axiom takes the
place of the Euclidean hypothesis. The points, lines, and planes
of this geometry will be figures of the Euclidean geometry: and
from the known properties of these figures, we could state what
the corresponding theorems of this Non-Euclidean geometry would

https://doi.org/10.1017/50013091500034854 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500034854

107

be. Also from some of these Euclidean constructions, certain
of the Non-Euclidean constructions could be obtained. This
process would be the converse of that referred to in dealing
with the ideal geometry of the preceding article. The theorems
of the ideal gcometry have there been obtained from the
corresponding theorems in Euclid. We could in the same way
obtain the theorems of the proposed ideal geometry from
those of the Non-Euclidean geometry. If the Non-Euclidean
geometry were to lead to any inconsistency, this would also arise in
the ideal geometry. However, every step in the latter can be stated
in the Euclidean fashion, and the contradiction would thus be
bound to occur also in the Euclidean geometry. Since the latter
is known to be a logically accurate system, it follows that this
Non-Euclidean geometry is also logically accurate.

The Geometry of the System of Circles orthogonal to a Fixed Circle.

§8. Ideal Points, Ideal Lines, and Ideal Parallels.

In the ideal geometry discussed in the previous articles, the
ideal point was the same as the ordinary point, and the ideal lines
and planes had so far the characteristics of straight lines and
planes that they were lines and surfaces respectively. Geometries
can be constructed in which the ideal points, lines, and planes are
quite removed from ordinary points, lines, and planes, so that the
ideal points no longer have the characteristic of being indivisible,
and theideal lines no longer boast only length, etc. What is required
in each geometry is that the entities concerned satisfy the axioms
which form the foundations of geometry. If they satisfy the
axioms of Euclidean geometry, the arguments which lead to the
theorems of that geometry will give corresponding theorems in the
ideal geometry: and if they satisfy the axioms of any of the
Non-Euclidean geometries, the arguments, which lead to theorems
in that Non-Euclidean geometry, will lead equally to theorems in
the corresponding ideal geometry.

We proceed to discuss the geometry of the system of circles
orthogonal to a fixed circle.

Let this fundamental circle be of radius % and centre O.

Let A’, A" be any two inverse points, A’ being inside the circle.
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Every such pair of points 4’y 4” is an ideal point (4) of the ideal
geometry, with which we shall now deal.

If two of these pairs of points are given—that is, two ideal
points, A, B—(fig. 9.), these determine a circle which is orthogonal
to the fundamental circle.

Fig. 9.

Every such circle is an ideal line of this ideal geometry.

Hence any two different ideal points determine an ideal line.
In the case of the system of circles all passing through a fixed
point O, this point O was excluded from the domain of the ideal
points. In this system of circles, all orthogonal to the fundamental
circle, the coincident pairs of points lying on the circumference of
that circle are excluded from the domain of the ideal points.

We define the angle between two ideal lines as the angle between
the circles with which they cotneide.

‘We have now to consider in what way it will be proper to
define parallel ideal lines.

Let AM be the ideal line through A perpendicular to the ideal
line BC: in other words, the circle of the system passing through
A’A" and orthogonal to the circle through B'B'C’'C”. (Fig. 10.)
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Fig. 10.

Imagine AM to rotate about A so that these ideal lines through A
cut the ideal line BC at a gradually smaller angle. The circles
through A which touch the given circle BC at the points U, V,
where it meets the fundamental circle, are ideal lines of the system.
They separate the lines of the pencil of ideal lines through A which
cut the ideal line BC, from those which do not cut that line. All
the lines in the angle ¢, shaded in the figure, do not cut the line
BC: all these in the angle i, unshaded, cut this line.

This property is exactly what is assumed in the parallel
postulate upon which the Non-Euclidean geometry of Bolyai-
Lobatschewsky is based. We are therefore led to define the
parallel ideal lines of this plane ideal geometry as follows :—

The ideal lines through an ideal point parallel to a given ideal
line are the two circles of the system passing through the given point,
which touch the ctrcle with which the given line coincides at the
poinis where it meets the fundamental circle.

Thus we have, in this ideal geometry, two parallels through a
point to a given line—a right-handed parallel and a left-handed
parallel, and these separate the lines of the pencil which intersect
the given line from those which do not intersect it.
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§9. Some Theorems of this Non-Euclidean Geometry.

At this stage we can say that any of the theorems of the
Bolyai-Lobatschewsky Non-Euclidean geometry involving only
angle properties will hold in this idecal geometry, and wvice versa.
Those involving lengths we cannot yet discuss, as we have not
defined ideal lengths. TFor example, it is obvious that there are
triangles in which all the angles are zero. (Fig. 11.) The sides of

Fig. 11.

such triangles are parallel in pairs. Thus the sum of the angles of
an ideal triangle is certainly not always two right angles. We can
prove that this sum is always less than two right angles by a simple
application of inversion, as follows :—

Let C,, C,, C; be three circles of the system, forming an ideal
triangle. Invert these circles from the point of intersection I of
the circles C, and C, which lies inside the fundamental circle.
Then C, and C, become two straight lines C,’ and C, through I.
Also the fundamental circle C inverts into a circle C' cutting C,’
and C, at right angles, so that its centre is I. Again, the circle
C; inverts into a circle Cy, cutting C’ at right angles. Hence its
centre lies outside C'. We thus obtain a *triangle” of which the
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sum of the angles is less than two right angles, and since these
angles are equal to the angles of the ideal triangle, this result also
holds for the ideal triangle.

Finally, it can easily be shown that there is always one, and
only one, circle of the system cutting two non-intersecting circles
of the system at right angles. In other words, two non-intersect-
ing ideal lines have a common perpendicular,

All these results must be true in this Non-Euclidean geometry.

$10. Ideal Lengths and Ideal Displacements.

Before we can proceed to the discussion of the metrical
properties of this geometry we must define the ideal length of an
ideal segment. It is clear that this must be such that it will be
unaltered if we take the points A", B” as defining the segment
A, B, instead of the points A’, B’. It must make the complete line
of infinite length. It must satisfy the distributive law that
“distance” AB=‘distance ” AC + “distance” CB, if C is any
other point on the segment AB: and it must also remain unaltered
by ideal displacement.

We define the ideal lengths of any segment as follows : —

The ideal length of any segment AB is equal to

LAY BY
°°<A’U /BT )

where U and V are the points where the ideal line AB meets the
Sundamental circle. (Fig. 9.)

This expression obviously involves the an-harmonic ratio of
the points U, A, B, V, and its connection with Cayley’s definition
of distance by means of the Absolute is evident.

It will be seen that this definition satisfies the first three of the
conditions named above. It remains for us to examine what must
represent, displacement in the ideal geometry.

Let us consider what is the effect of inversion with regard to
a circle of the system upon the system of ideal points and lines.

Let (A, A”) be any ideal point A (Fig. 12). Let the circle of
inversion meet the fundamentsl circle in C, and let D be its centre.

Let A', A” invert into B/, B".
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Fig. 12.

Since the circle A’A”C touches the circle of inversion at C, its
inverse also touches that circle at C. But a circle passes through
A’, A", B', B”, and the radical axes of the three circles

AIAIIC, BlBIIC’ AIA/IBIB'I
are concurrent.

Hence B'B” passes through O and OB. OB"”=0C"

Therefore inversion with regard to any circle of the system
changes an ideal point into an ideal point.

But it is clear that the circle A’A”B'B” is orthogonal to the
fundamental circle, and also to the circle of inversion.

Thus the ideal line joining the ideal point A fo the ideal point B
into which it is changed by this inversion is perpendicular to the
ideal line coinciding with the circle of inversion.

‘We shall now prove that it is *“ bisected ” by that ideal line.

Let the circle through AB meet the circle of inversion at M and
the fundamental circle in U and V. It is clear that U, V are
inverse points with regard to the circle of inversion (Fig. 13).
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Fig. 13.
Then we have
BV C(CV
AU~ CA’
AV CV
BU” CB"

A'V BV cv? cv: M’V)2
AU 'BU CA'.CB CM?®* \M'U/’

Therefore

A’ 'V MV / B'V
AT/MU MU/ BU

Thus the ideal length of AM equal to the ideal length of BM.

Therefore we have the following result : —

Inversion with regard to any circle of the system changes any
tdeal point A into an ideal point B such that the ideal line AB is
perpendicular to, and * bisected ” by, the ideal line coinciding with
the circle of inversion.

In other words,

Inversion with regard to such a circle causes any tdeal point
to take the position of its image in the ideal lins with which the circle
of tnversion cotncides.

9 Vol. 28
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We proceed to examine what effect such inversion has upon an
ideal line.

Since a circle orthogonal to the fundamental circle inverts into
a circle also orthogonal to the fundamental circle, any ideal line
AB inverts into another ideal line ab passing through the point M
where AB meets the circle of inversion (Fig. 14). Also the points

C

Pig. 14,

U, V invert into the points %, v on the fundamental circle, and the
lines AB and ab are equally inclined to the circle of inversion.

It is easy to show that the ideal lengths of AM and BM are
equal to those of aM and &M respectively, and it follows that the
ideal length of the segment AB is unaltered by this inversion.
Also, we have seen that Aa and Bb are perpendicular to, and
bisected by, the ideal line coinciding with this circle.

We can thus state the following theorem :—

Inversion with regard to any circle of the system has the same

effect upon an ideal segment as reflection in the corresponding ideal
line,
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This discussion has therefore again led us to define ideal reflection
in an ideal line as the inversion of this system of ideal points and
lines with regard to the circle which coincides with this ideal line.

It is unnecessary to define ideal displacement as any displace-
ment can be obtained by a series of reflections and any ideal
displacement by a series of ideal reflections.

We notice that the definition of the ideal length of a segment
fixes the ideal unit of length. We may take this unit segment on
one of the diameters of the fundamental circle, since these lines are
also ideal lines of the system. Let it be the segment OP (Fig. 15).

Fig. 15.

Then we must have
oV /PV
log( ) =1;

ouU/ PU
. PU
that is, log(ﬁ) =1;
. PU
that is, PV

Thus the point P divides the diameter in the ratio e: 1.

The unit segment is thus fixed for any position in the domain
of the ideal points, since the segment OP can be ‘“moved ” so that
one of its ends coincides with any given ideal point.
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A different expression for the ideal length, viz.,

klog( 2V BV)
Og(AU BU

would simply mean an alteration in this unit, and taking logarithms
to the base a instead of ¢ would have the same effect.

§11. Some further Theorems in the Hyperbolic Geometry.

We are now in a position to establish some further theorems in
hyperbolic geometry, as the Bolyai-Lobatschewsky system is called.

In the first place we can state that similar triangles are
impossible in this geometry. Indeed Saccheri had shown before
its discovery™* that, if the existence of only two equiangular triangles,
which were not congruent, could be proved, then the Euclidean
geometry was alone possible.

We also see that parallel lines are asymptotic; that is, they
continually approach each other. This is clear from the figure for
ideal parallels and the definition of ideal length (Fig. 10).

Further, it is also obvious that as the point A moves away
along the perpendicular MA to the line BC (Fig. 10), the angle of

parallelism diminishes from %r— to zero in the limit.

E1

Again we can prove that the angle of parallelism, II(p), for the
segment p, is given by

ef= tan(n—,(f)).

Consider an ideal line and the parallel to it through a point A.

Let AM (Fig. 16) be the perpendicular to the given line MU
and AU the parallel.

* Cf. Engel und Stickel, loc. cit., p. 84. Bonola, loc. cit., p. 26.
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Let the figure be inverted from the point M”, the radius of
inversion being the tangent from M" to the fundamental circle.

il

M

Fig. 16,

Then we obtain a new figure (Fig. 17) in which the corres-
ponding ideal lengths are the same, since the circle of inversion is
a circle of the system. The lines AM and MU become straight
lines through the centre of the fundamental circle, which is the
inverse of the point M'. Also, the circle AU becomes the circle
a'u, touching the radius m'u at w, and cutting m'a at an angle
1I(p). These radii m'u, m'b are also ideal lines of the system.

Let the ideal length of AM be p.
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A
1_ 71“ i [ <
Pig. 17.
Then we have
—log A'B /M'B
p = OQ(A/C M:O )

a'b fm'b
(el

a'cl m'c

a’b
= IOg (;70— ).

But from the geometry of Fig. 17, remembering that a'u cuts
be at the angle II(p), we have

a'c= /c{l - tan(z— - E@—))},

4 2
I
wb=k{1+ tan( - - _;_”_)»
where k is the radius of the fundamental circle.
Therefore p=log cot( Eg)—))
and e P= tan( E@)
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Finally in this geometry, there will be three kinds of circles.
There will be (i) the circle with its centre at a finite distance;
(i1) the limiting curve, with its centre at infinity, or at a point
where two parallels meet ; and (iii) the equidistant curve, with its
centre at the imaginary point of intersection of two lines with a
common perpendicular. The first of these curves would be traced
out in the ideal geometry by one end of an ideal segment when it
is reflected in the lines passing through its other end ; that is, by
the rotation of this ideal segment about one of its ends. The
second occurs when the ideal segment is reflected in the successive
lines of the pencil of ideal lines all parallel to it in the same
direction; and the third, when the reflection takes place in the
system of lines which have all a common perpendicular with this
segment. That these correspond to the circle, the limiting curve
and the equidistant curve of the hyperbolic geometry, is easily
proved.

§12. The Impossibility of proving Euclid’s Parallel Postulate.

We could obtain more of the results of the hyperbolic geometry,
and find some of its constructions, by further examination of the
properties of this set of circles, but this is not our object. Our
argument was directed to proving that it is impossible for any
contradiction to arise in this Non-Euclidean geometry. If such
contradiction entered into this plane geometry, it would occur also
in the interpretation of the result in the ideal geometry. Thus the
contradiction would also be found in the Euclidean geometry. We
can therefore state that it is impossible that any logical inconsistency
could arise in the hyperbolic plane geometry. It could still be
argued that such a contradiction might be found in the hyperbolic
solid geometry. An answer to such an objection is forthcoming at
once. The geometry of the system of circles, all orthogonal to a
fixed circle, can be at once extended into a three dimensional
system. The ideal points are taken as the pairs of points inverse to a
fixed sphere, excluding the points on the surface of the sphere from
their domain. The ideal lines are the circles through two ideal
points. The ideal planes are the spheres through three ideal
points, not lying on an ideal line. The ordinary plane enters as a
particular case of these ideal planes, and so the plane geometry just
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discussed is a special case of a plane geometry of the system.
‘With suitable definitions of ideal lengths, ideal parallels, and ideal
displacements, we have a solid geometry exactly analogous to the
hyperbolic solid geometry. It follows that no logical inconsistency
could arise in the hyperbolic solid geometry, since, if such did
occur, it would also be found in the interpretation of the result in
this ideal geometry, and therefore it would enter into the Euclidean
geometry.

By this result our argument is complete. However far the
hyperbolic geometry were developed, no contradictory results could
be obtained. This system is thus logically possible, and the axioms
upon which it is founded are not contradictory. Hence it is
impossible to prove Euclid’s Parallel Postulate, since its proof would
involve the denial of the Parallel Postulate of Bolyai and
Lobatschewsky.

It should perhaps be pointed out that a more logical course to
pursue would have been to show, with Hilbert, that Euclidean
geometry is founded upon a certain set of axioms; and that the
various Non-Euclidean geometries are derived by dropping one or
other of these assumptions. It could then be shown that the first
system of ideal points, lines, and planes discussed in §§1-7 satisfies
the axioms on which the Euclidean geometry is based, and this
establishes the correspondence between these two systems. It could
also be shown that the second system of ideal points, lines, and
planes used from §8 onwards, satisfies the same set of axioms, with
the exception of the Buclidean Parallel Axiom for which the Bolyai-
Lobatschewsky axiom is substituted. This ideal geometry is
therefore equivalent to the hyperbolic geometry, and any incon-
sistency in the one would be found in the other.

However our object was to give a proof of the possibility of this
Non-Euclidean geometry, and the consequent independence of
Euclid’s Parallel Axiom from the other axioms, that could be
followed by any one who possessed only the ordinary knowledge
of geometry obtained from an elementary mathematical course.
For this reason no reference has been made to this part of Hilbert’s
work, and the principle of superposition has been introduced as in the
ordinary elementary geometry. That this principle involves the
axiom of free mobility, or a system of axioms of congruence, is
true ; but these matters are outside the plan of this discussion.

https://doi.org/10.1017/50013091500034854 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500034854

