CENTRALIZING MAPPINGS OF PRIME RINGS

BY
JOSEPH H. MAYNE

Abstract

Let R be a prime ring and U be a nonzero ideal or quadratic Jordan ideal of R. If L is a nontrivial automorphism or derivation of R such that $u L(u)-L(u) u$ is in the center of R for every u in U, then the ring R is commutative.

If R is a ring, a mapping L of R to itself is called centralizing on a subset S of R if $x L(x)-L(x) x$ is in the center of R for every x in S. Posner [5] has shown that the existence of a nontrivial centralizing derivation on a prime ring forces the ring to be commutative. In [2] the author obtained the same result for a centralizing automorphism. Then in [3] these two results were generalized by showing that the ring is commutative if the automorphism or derivation centralizes and leaves invariant a nonzero ideal in the ring. In this paper the ideal invariance assumption is shown to be unnecessary. Thus the existence of a nontrivial automorphism or derivation which is centralizing on a nonzero ideal in a prime ring implies that the ring is commutative.

Then using the fact that every nonzero quadratic Jordan ideal contains a nonzero (associative) ideal [4], we find that the mapping need only be centralizing on a nonzero quadratic Jordan ideal. In the derivation case this extends a theorem of Awtar [1, Theorem 3] to prime rings of arbitrary characteristic. Awtar proved that if a prime ring of characteristic not equal to two has a nontrivial derivation which is centralizing on a nonzero Jordan ideal, then the ideal is contained in the center of the ring.

Recall that a ring R is prime if $a R b=0$ implies that $a=0$ or $b=0$. Furthermore, if I is a nonzero ideal in a prime ring with $a I b=0$, then $a=0$ or $b=0$. Let $[x, y]=x y-y x$ and note the important identity $[x, y z]=$ $y[x, z]+[x, y] z$. This identity shows that the mapping $I_{x}(y)=[x, y]$ is a derivation, the inner derivation determined by $x . I_{x}$ is zero if and only if x is in the center $Z=\{z \in R \mid[z, R]=0\}$.

Lemma 1. [5, Lemma 1]. If D is a nonzero derivation of a prime ring R, then the left and right annihilators of $D(R)$ are zero. In particular, $a[b, R]=0$ or $[b, R] a=0$ implies that $I_{b}=0(b$ is in $Z)$ or $a=0$.

Lemma 2. Let I be a nonzero right ideal in a prime ring R.
(a) If R has a derivation D which is zero on I, then D is zero on R.
(b) If R has a homomorphism T which is the identity on I, then T is the identity on R.

Proof. (a) If $D(I)=0$, then $0=D(I R)=D(I) R+I D(R)=I D(R)$. By Lemma $1 D$ must be zero since I is nonzero. (b) Let x be in I and a, b be in R. Then $x a b=T(x a b)=T(x a) T(b)=x a T(b)$. Thus $x a(b-T(b))=0$ and either $x=0$ or $b-T(b)=0$. But I is nonzero and so contains an $x \neq 0$. This forces $T(b)=b$ for all b in R.

Lemma 3. If the prime ring R contains a commutative nonzero right ideal I, then R is commutative.

Proof. If x is in I, then $I_{x}(I)=[x, I]=0$ since I is commutative. By Lemma 2 $I_{x}=0$ on R and x is in the center. Thus $[x, R]=0$ for every x in I. Hence $I_{a}(I)=0$ for all a in R and again by Lemma 2, $I_{a}=0$ and a is the center for all a in R. Therefore R is commutative.

Lemma 4. Let b and $a b$ be in the center of a prime ring R. If b is not zero, then a is in Z, the center of R.

Proof. $0=[a b, r]=a[b, r]+[a, r] b=[a, r] b$ for all r in R. By Lemma $1 b=0$ or a is in Z. Hence a must be in Z.

Now if L is a linear mapping on R and S is a subset of R closed under addition such that L is centralizing on S, then by linearization

$$
\begin{equation*}
[x, L(y)]+[y, L(x)] \quad \text { is in } Z \text { for all } x \text { and } y \text { in } S \tag{1}
\end{equation*}
$$

In particular, $[x,[x, L(y)]+[y, L(x)]]=0$. Using the Jacobi identity on this last equation gives

$$
\begin{equation*}
[x,[L(y), x]]+[L(x),[x, y]]=0 \quad \text { for all } x \text { and } y \text { in } S . \tag{2}
\end{equation*}
$$

If the characteristic of a prime ring is not equal to two and L is either an automorphism or derivation such that $[x, L(x)]$ is in Z for all x in some ideal I, then it can easily be shown that $[x, L(x)]=0$ for all x in I. In fact, this holds under somewhat weaker hypotheses.

Lemma 5. Let R be a prime ring of characteristic not equal to two and U be a Jordan subring of R. If L is a Jordan homorphism or Jordan derivation of U such that $[x, L(x)]$ is in the center of R for all x in U, then $[x, L(x)]=0$ for all x in U.

Proof. Let T be a Jordan homomorphism of U and replace y by x^{2} in (1). Then $\left[x, T\left(x^{2}\right)\right]+\left[x^{2}, T(x)\right]$ is in Z for all x in U. Thus $T(x)[x, T(x)]+$ $[x, T(x)] T(x)+x[x, T(x)]+[x, T(x)] x=2(x+T(x)[x, T(x)]$ is in Z. By Lemma 4, either $[x, T(x)]=0$ or $x+T(x)$ is in Z. But if $x+T(x)$ is in Z, then $[x, x+T(x)]=[x, T(x)]=0$. So $[x, T(x)]=0$ for all x in U.

If D is a Jordan derivation on U, again replace y by x^{2} in (1) to obtain $\left[x, D\left(x^{2}\right)\right]+\left[x^{2}, D(x)\right]=4 x[x, D(x)]$ is in Z. By Lemma $4,[x, D(x)]=0$ for all x in U.

It would be nice to have $[x, L(x)]=0$ for arbitrary characteristic.
Lemma 6. Let I be a right ideal in a prime ring R. If L is a derivation or homomorphism of R such that $[x, L(x)]$ is in Z for all x in I, then $[x, L(x)]=0$ for all x in I.

Proof. If the characteristic of R is not two, Lemma 5 implies that $[x, L(x)]=$ 0 on I. So suppose R has characteristic equal to two. Let x and y be in I and L be a linear mapping, then $[[x, y], L(x)]+\left[x^{2}, L(y)\right]=$ $x([y, L(x)]+[x, L(y)])+([y, L(x)]+[x, L(y)]) x=2 x([y, L(x)]+[x, L(y)])=0$ by (1) and the fact that R has characteristic two. Letting $z=L(x)$, we obtain

$$
\begin{equation*}
[[x, y], z]+\left[x^{2}, L(y)\right]=0 \quad \text { for } x \text { and } y \text { in } I, z=L(x) \tag{3}
\end{equation*}
$$

As a special case of (3) when $x=y$,

$$
\begin{equation*}
\left[x^{2}, z\right]=0 \text { for all } x \text { in } I, z=L(x) \tag{4}
\end{equation*}
$$

Since I is a right ideal, let $y=x z$ in (3) to obtain $0=$ $[[x, x z], z]+\left[x^{2}, L(x z)\right]=[x[x, z], z]+\left[x^{2}, L(x z)\right]=[x, z]^{2}+\left[x^{2}, L(x z)\right]$. So we have

$$
\begin{equation*}
[x, z]^{2}=\left[x^{2}, L(x z)\right] \text { for all } x \text { in } I, z=L(x) \tag{5}
\end{equation*}
$$

If $L=D$ is a derivation, then $\left[x^{2}, D(x z)\right]=\left[x^{2}, z^{2}+x D(z)\right]=x\left[x^{2}, D(z)\right]=$ $x\left(D\left(\left[x^{2}, z\right]\right)-\left[D\left(x^{2}\right), z\right]\right)=0$ by (4) and the fact that $D\left(x^{2}\right)=[x, D(x)]$ is central. So by (5), $[x, z]^{2}=0$ and hence $[x, z]=[x, D(x)]=0$ since R is prime. If $L=T$ is a homomorphism, then using (4) in (5) gives $[x, z]^{2}=\left[x^{2}, z T(z)\right]=$ $z\left[x^{2}, T(z)\right]$. Let $y=x z x$ in (3) so that $0=[x, z]\left[x^{2}, z\right]+\left[x^{2}, z T(z) z\right]=$ $z\left[x^{2}, T(z)\right] z$ by (4). Hence $[x, z]^{2} z=0$ and thus $[x, z]=[x, T(x)]=0$ since R is prime.

Now if a linear mapping L is such that $[x, L(x)]=0$ for all x in some subset S closed under addition in R, this can be linearized to

$$
\begin{equation*}
[x, L(y)]+[y, L(x)]=0 \quad \text { for all } x \text { and } y \text { in } S . \tag{6}
\end{equation*}
$$

We now have enough information to prove the main theorem of this paper.
Theorem 1. Let R be a prime ring and I be a nonzero ideal in R. If L is a nontrivial automorphism or derivation of R such that $x L(x)-L(x) x$ is in the center of R for every x in I, then the ring R is commutative.

Proof. Let T be an automorphism of R satisfying the hypotheses of the theorem. By Lemma $6,[x, T(x)]=0$ for all x in I. Replacing y by $x y$ in (6) results in $0=[x, T(x) T(y)]+[x y, T(x)]=T(x)[x, T(y)]+x[y, T(x)]$. Using (6)
on the commutator in the last term gives $(T(x)-x)[x, T(y)]=0$ for all x and y in I. Since I is an ideal, we may replace y in this last equation by $y a$ where a is any element in R. Then $0=(T(x)-x)[x, T(y) T(a)]=(T(x)-x)([x, T(y)]$ $T(a)+T(y)[x, T(a)])=(T(x)-x) T(y)[x, T(a)] \quad$ and \quad so $\quad(T(x)-x) T(I) \times$ $[x, T(a)]=0$ for all x in I and a in R. Now T is an automorphism and I is a nonzero ideal so $T(I)$ is also a nonzero ideal. Since R is prime, either $T(x)-x=0$ or $[x, T(a)]=0$ for all a in R. Hence for any element x in I, T fixes x or x is in the center of R.
T is not the identity on R and so by Lemma $2, T$ is not the identity on I. Thus there is an element $x \neq 0$ in I such that $T(x) \neq x$ and x is in Z. Let y be any other element in I. If y is not in the center, then neither is $x+y$ and T fixes both y and $x+y$. But then, $T(x+y)=T(x)+T(y)=T(x)+y=x+y$ and so $T(x)=x$, a contradiction. Hence y is in Z for every y in I. This means that I is commutative and by Lemma $3, R$ is also commutative.

Now let D be a nonzero derivation of R which centralizes I. By Lemma 6, $[x, D(x)]=0$ for all x in I. As in the automorphism case, replace y by $x y$ in (6) to obtain $0=[x, D(x y)]+[x y, D(x)]=[x, D(x) y]+[x, x D(y)]+[x y, D(x)]$. Thus $0=D(x)[x, y]+x([x, D(y)]+[y, D(x)])$ and by (6) this last term is zero. Therefore $D(x)[x, y]=0$ for all x in y in I. I is an ideal so y may be replaced by ya where a is any element in R. Then $0=D(x)[x, y a]=$ $D(x) y[x, a]+D(x)[x, y] a=D(x) y[x, a]$. Thus $D(x) I[x, a]=0$ for all x in I and a in R. R prime implies that $D(x)=0$ or $[x, a]=0$ for all a in R. So for any element x in $I, D(x)=0$ or x is in Z.
D is not zero on R so by Lemma $2, D$ is not zero on I. Hence there exists an element $x \neq 0$ in I such that $D(x) \neq 0$ and x is in Z. Let y by any other element in I. Then the same kind of argument used in the automorphism case shows that y is in Z and thus I is commutative. Again by Lemma 3, R is commutative.

It is easy to extend this theorem to the case where the centralized ideal is quadratic Jordan. This generalizes Awtar's theorem for centralizing derivations.

Theorem 2. Let R be a prime ring and U be a nonzero quadratic Jordan ideal of R. If L is a nontrivial automorphism or derivation of R which is centralizing on U, then R is commutative.

Proof. McCrimmon [4] has shown that every nonzero quadratic Jordan ideal contains a nonzero associative ideal I. Apply Theorem 1 to the ideal I to conclude that R is commutative.

The following example due to McCrimmon shows that in the automorphism case the results cannot be extended to semi-prime rings. Let R be the direct sum of two copies of a simple ring S which is not commutative. R is then
semi-prime. Let T be the exchange automorphism defined on R by $T\left(x_{1}, x_{2}\right)=$ $\left(x_{2}, x_{1}\right)$. The ideal $S \oplus 0$ satisfies the hypotheses of both theorems but R is not commutative.
Thanks are due to the referee for suggestions which improved the proofs in this paper.

References

1. R. Awtar, Lie and Jordan structures in prime rings with derivations, Proc. Amer. Math. Soc., 41 (1973), 67-74.
2. J. Mayne, Centralizing automorphisms of prime rings, Canad, Math. Bull., 19(1) (1976), 113-115.
3. J. Mayne, Ideals and centralizing mappings in prime rings, Proc. Amer. Math. Soc., 86 (1982), 211-212. Erratum 89 (1983), 187.
4. K. McCrimmon, On Herstein's theorems relating Jordan and associative algebras, J. Algebra, 13 (1969), 382-392.
5. E. Posner, Derivations in prime rings, Proc. Amer. Math. Soc., 8 (1957), 1093-1100.

Department of Mathematical Sciences
Loyola University of Chicago
Chicago, Illinois 60626

