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The paper presents a Fluid Structure Interaction (FSI) method for hydroelastic water
entry. The method assumes that the momentum exchange between the fluid and solid
body can be used for the calculation of pressure, deformation and stresses arising during
impact. The flexible fluid—structure interactions of flat plates entering water are solved
using a computational code that employs the finite volume method to discretise both fluid
and solid equations. This provides a better matching of momentum on the fluid—solid
interface. The momentum arising in the solid body that emerges after the impact is defined
as the momentum exchange, and is shown to increase linearly under the increase of
non-dimensional impact speed. The ratio of the maximum pressure arising in an elastic
body entering water to that of a rigid body is termed relative pressure and is shown
to decrease linearly as a function of momentum exchange. The latter verifies the main
hypothesis of this paper, namely that ‘the pressure acting on an elastic body can be
predicted using an unsophisticated equation that uses the momentum exchange.” The
deformation and stresses arising in elastic plates entering water are demonstrated to be
functions of momentum exchange and can be found using simple equations formulated via
parametrisation of data. It is concluded that subject to further validation, the method could
be extended for the prediction of hydroelastic response of other sections/bodies entering
water.
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1. Introduction

Ships and floating offshore installations are frequently exposed to extreme wave loads that
can compromise safety and structural integrity (Faltinsen, Landrini & Greco 2004; Abrate
2013; Hirdaris et al. 2014). Sea loads caused by the water impact process (e.g. slamming,
sloshing, underwater explosions) may cause shock and vibration. This is because during
impact, the dry area of the structure is abruptly impinged by a wall of water that gives rise
to relatively large hydrodynamic pressures (Greenhow 1988). The most extreme impact
loads occur when a horizontal flat surface is hit by the water (e.g. Baarholm & Faltinsen
2004). During water impact on a flat surface, the velocity field that governs the boundary
condition at the air—water interface is observed to behave nonlinearly (Faltinsen & Semnov
2008; Iafrati 2016) during water detachment from the plate edges, and an energetic splash
is formed. The latter may significantly reduce the force acting on the solid body (Duez
et al. 2007; Vincent et al. 2018). It is noted that as part of this process, air may also be
entrapped under the flat structure, affecting the velocity field (e.g. Mai et al. 2019a,b;
O’Connor, Mohajernasab & Abdussamie 2022).

The water entry problem, in particular the water entry of flat horizontal plates, has been
studied by a wide range of researchers over decades. Various models that aim to reconstruct
the water flow around bodies during impact have been proposed in literature. A prime
example is the work of Wagner (1932), who attempted to propose an analytical expression
for the idealization of the water entry of wedge-shaped sections by neglecting viscosity and
surface tension (Howison, Ockendon & Oliver 2004). Following this study, several models
that explore the influence of fluid dynamics around sections entering water have been
introduced (e.g. Logvinovich, National Aeronautics United States & Space Administration
1959; Semenov & Yoon 2009; Tassin et al. 2012; Korobkin 2013; Tassin, Korobkin &
Cooker 2014; Korobkin, Khabakhpasheva & Maki 2017; Del Buono et al. 2021). Most of
these models were developed for problems with linearised boundary condition (Howison,
Ockendon & Wilson 1991; Zhao & Faltinsen 1993; de Divitiis & de Socio 2002; Korobkin
& Scolan 2006). These models have a wide range of application, from calculating the fluid
actions on structures (e.g. Hirdaris et al. 2014; Temarel et al. 2016) to understanding the
way animals dive into water (e.g. Ropert-Coudert et al. 2004; Jung 2021).

There has been a great surge of papers dealing with water entry of deformable bodies
(e.g. Panciroli et al. 2012; Stenius et al. 2013; Wang & Guedes Soares 2014; Panciroli &
Porfiri 2015; Wang, Karmakar & Guedes Soares 2016; Hurd et al. 2017; Basic et al. 2020;
Hosseinzadeh & Tabri 2021). Through numerical and experimental studies (Carcaterra &
Ciappi 2004), it is shown that the elastic motions can affect the resulting impact loads
and the fluid field around them. The body flexes due to the great force generated by the
water, which in turn reduces the impact pressure (Faltinsen 1997). This has been shown
for structures falling freely into water or entering the water with constant speed (e.g. el
Moctar et al. 2018; Mai et al. 2020). These findings demonstrate that to model the problem
more realistically and to compute impact loads with a greater level of accuracy, the
solid dynamic problem should also be considered. Thus a coupled fluid—solid interaction
problem needs to be solved (Lee, Chang & Kim 2021).

Early models developed to reproduce the water entry of flexible bodies were constructed
in the 1990s. For example, Kvalsvold & Faltinsen (1995) developed a theoretical model for
the early stage of water entry of non-flat structures using asymptotic functions. This model
was applied for the water entry of a flat structure in Faltinsen, Kvalsvold & Aarsnes (1997).
It was found that the model predicts the hydroelastic response of the structure with a good
level of accuracy. It was also shown that the dimensionless stress is insensitive to external
conditions (e.g. wave steepness).
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Since 2000, many studies assuming irrotational flow have been carried out. The aim of
this research is to develop models for the water entry of flexible structures (e.g. Lu, He
& Wu 2000; Reinhard, Korobkin & Cooker 2013; Shams & Porfiri 2015; Shams, Zhao
& Porfiri 2017; Feng et al. 2021; Moradi et al. 2021). These authors mostly solved the
ideal fluid motion around an elastic body entering water or ditching. Theoretical and
semi-theoretical models provide the solution of the water entry problem for different
scenarios. Notwithstanding this, their application can be restricted, i.e. they do not
consider all the physical aspects of the fluid and solid fields. For example, in those cases
where the gravity force can affect the spray root and break it, they may not be able to
capture the breaking process, and the resulting energy dissipation, which may occur during
the high-speed water entry (e.g. see Wang & Duncan 2019). Also, the viscous effects
may arise in the splash region, which can affect the generated force (Eggers 2004). In
cases where the plate follows nonlinear mechanical laws, mathematical models cannot
reconstruct the hyperelastic motions of the structure or the damping of motion over time.
A mathematical model may not consider the fluid-based damping mechanism. In reality,
fluid viscous stresses, acoustic radiation and splash formation cause significant energy
dissipation that is omitted from these theoretical models (Wang et al. 2022a).

To provide a more general solution for the water entry of an elastic plate, computational
dynamic models can be utilised. This is because they may solve fluid and solid dynamic
problems by considering some physical aspects that are not considered in potential
flow-based models. When it comes to viscous flow, the fluid dynamic problem can be
solved by using the finite volume method (FVM) or smoothed particle hydrodynamics
(Nakata, Liu & Bomphrey 2015; Sun, Ming & Zhang 2015; Shen et al. 2016; Facci, Porfiri
& Ubertini 2016; Sun et al. 2018; Yan et al. 2021; Wang et al. 2021; Xiang, Wang &
Guedes Soares 2020; Magionesi, Dubbioso & Muscari 2022). The solid dynamic problem
can be solved by using finite element analysis or the FVM. Piro & Maki (2013) introduced
a computational model used for reproducing the water entry of elastic structures into water.
Their model used the FVM and the finite element method to idealise the fluid dynamics
and solid dynamic domains, respectively. The fluid and solid dynamics were solved via a
two-way coupling. Their work sparked a wide range of research, most of which studied the
water entry problem using the same approach. The main difference between these studies
lies in the physics involved. For example, Izadi et al. (2018) presented fluid motion around
an elastic body entering the water with an oblique speed, showing that elastic motions on
two sides of the body entering water are very different, and affect the impact pressure in
different ways.

In recent years, researchers have presented different computational models to provide a
better understanding of fluid—solid interaction (FSI) in the presence of air and water (i.e.
two-phase flows). In most of these studies, authors have investigated the way that the fluid
and structure problems can be coupled. A practical state of the art method and discussion
on the influence of flexibility on motions of solid bodies interacting with water waves
or steady water flow is presented by Lakshmynarayanana & Hirdaris (2020). Whereas
solid dynamic problems are treated traditionally by applying the finite element method,
more recently researchers introduced the use of the FVM for the idealisation of both
structural and fluid domain (e.g. Tukovic et al. 2018; Cardiff & Demirdzi¢ 2021). This
method attracted the attention of researchers in modelling FSI occurring in nature (e.g.
Huang et al. 2019). In this stream of research, the momentum exchange between fluid and
solid problems can be computed using the same method, and a perfect matching between
fluid and solid phases can be established. The approach can be applied via OpenFOAM
and utilises one- or two-way coupling methods (Huang et al. 2022).
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In the field of naval architecture, one of the aims of researchers has been to provide the
wave impact pressures acting on structures (e.g. Wagner 1932; Zhao & Faltinsen 1993;
Zhao, Faltinsen & Aarsnes 1996). Traditional methods are based on empirical equations
that neglect the hydroelastic response of the structure. The latter may be more probable for
high-speed ships (Judge et al. 2020; Tavakoli et al. 2020), or extreme wave events (Bennett
et al. 2009; Clauss & Klein 2011; Wang & Guedes Soares 2023). A critical review suggests
that steps should be taken to account for the influence of hydroelasticity in the analysis of
the water entry problem in a practical fashion that may be useful within the context of ship
design (Harding et al. 2006; Hirdaris & Temarel 2009).

In this paper, the exchange of the momentum between the water and an elastic structure
is used for the prediction of the hydroelastic response. At first, the paper presents an
investigation into whether the momentum exchange between the fluid and solid domains
can be formulated. Then it explores whether the rigid body loads can be used to calculate
the pressure acting on an elastic structure impacted by the water when the momentum
exchange emerging during flexible water entry is known. The paper explores whether
deformation and stresses acquired during the water entry of a flexible body can be found
using the momentum exchange between fluid and solid. Using momentum exchange
for the calculation of dependants is inspired by classical studies highlighting air—sea
momentum exchange when winds blow on the water surface, water surface deforms,
and progressive waves are generated. In those studies, authors mostly calculate the wave
properties using the air momentum transferred to the liquid (Miles 1957; Stewart 1974). As
such, simulations are performed using OpenFOAM code (the foam extended 4.0 version,
OpenFOAM-extend & foam extend 2016). The solver allows for an exact match of the
momentum on the fluid—solid interface.

The paper is structured as follows. The problem and equations governing fluid and solid
domains are presented in §2, then the numerical model used to simulate the problem
is introduced. Results are presented and discussed in § 3. Section 4 summarises the
results and presents concluding remarks. Appendices A, B and C summarise convergence
studies. Appendix D presents validation studies. Appendix E presents the analytical
solution of dynamic response of a beam of unit length that is subjected to an impact load
decayed exponentially in time. This clarifies the role of vibrations (structural flexibility)
on response.

2. Model description
2.1. Problem statement

To model the problem and to formulate the governing equations, the two-dimensional
fluid domain, shown in figure 1, is considered. A right-handed fixed coordinate system,
denoted as xy, is used. A plate, which can be either elastic or rigid, is idealised in this
domain. The centre of the plate lies on the origin of the coordinate system. The plate
has length L and thickness 4. The fluid domain has a rectangular shape with width 5L
and height 3.5L. Water flows upwards at a constant speed u, impacting the plate, which is
initially located 0.02L above the free surface. When the water reaches the structure, a large
hydrodynamic pressure emerges, and water is directed towards the side edges of the plate,
where it eventually is detached. If the plate is elastic, then momentum can be exchanged
between the fluid and the structure. Hence a dynamic motion emerges in the solid domain,
and as compared to a rigid condition, the pressure is reduced (Mai et al. 2020).

The following two different boundary conditions are considered for the elastic plate. At
first, it is assumed that the plate is clamped at both ends. Thus its middle point moves
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Figure 1. The water entry problem modelled in the present paper.

freely over time. Then two free ends are considered, and the middle point is set to be
fixed (i.e. the plate is clamped at its mid-point). In this condition, the motions of the plate
ends are greater than those of other points, and the deformed body is prone to follow the
fluid stream. When the plate is flexible, fluid and solid problems emerge. To reconstruct
the problem using any numerical code, two problems, including fluid and solid, need to
be solved simultaneously. Equations that can be used for each problem are presented in
§ 2.2. The study case presented in this paper is limited to a flat plate. This is because the
aim is to explore the potential of the method suggested by considering the simplest case
for which the loading period is not defined. (An example of the water entry problems for
which the loading period is relevant can be found in Faltinsen 1999.) The key focus is
on the hydroelastic response and its relationship with the momentum exchange. Physical
aspects of relevance to the water entry of spheres (Truscott, Epps & Techet 2012; Rabbi
et al. 2021), wedges (Panciroli, Shams & Porfiri 2015; Wang et al. 2022b), viscoelastic
droplets (Jalaal, Kemper & Lohse 2019) and other configurations are outside the scope of
this study.

2.2. Governing equations

2.2.1. Fluid domain

Consider a viscous air—water stream flowing around the structure impacted by water.
The motion of this two-phase flow is identified by its velocity vector (v(x, f)), pressure
(p(x, 1)) and volume fraction (¢ (x,)). The velocity field and pressure are perfectly
interconnected and satisfy the conservation of mass and momentum. During the impact
process, the velocities of air and water never exceed one-third of the speed of sound. It is
noted that the impact speed is assumed to be relatively low, ranging from 0.112ms~! to
0.95ms~!. During the post-processing stage, the horizontal velocity component under the
edge of the plate exposed to the highest impact velocity was studied. Sampling over time
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demonstrated that the horizontal velocity component never reached 30 % of sound speed
in air. (If the impact speed was assumed to be relatively high, then an incomprehensible
fluid assumption would not be suitable, and compressible fluid motion would have to be
considered; see e.g. Ma et al. 2014.) This ensures that an incompressible fluid can represent
the motion of the air—water flow around the structure (see an example of numerical
simulations of incompressible fluid flow around a flexible flat plate entering water in Xie
et al. 2018b). The fluid is assumed to be Newtonian. This enables modelling nonlinear fluid
motions. It also considers finite thickness for the solid body, which is not possible when
an inviscid fluid assumption stands (see the discussions on key questions related to the
inviscid fluid assumption presented in Mayer & Krechetnikov 2018). The fluid is assumed
to be laminar. It is assumed that the water entry problem is rapid, hence turbulence is
not developed over this very short period of time (Piro & Maki 2013), and this it is not
critical (see the insensitivity of the computational fluid dynamics simulations to turbulence
models in Liu et al. 2020; Bilandi er al. 2018). It is noted that turbulent flow has to be
considered if the body exits the water (e.g. Huang et al. 2021), or in the case that bores
emerge in the mass of detached water. The latter is observed mostly in projectile motions
of objects entering the water at a very high speed (e.g. Fan, Wang & Li 2022).
Conservation of mass and momentum are represented by

fn-vdﬂp=0, 2.1
2F
8t/ pEvdSZF+7§ n-(—vr,)pgvdlF

.QF Irr

=?§ n-(nEVv)dFF—/ VpdRp, in{x,y}e 2. 2.2)
I'r 2F

The above equations are formulated for a mixture of air and water flow, where pr and
ne respectively indicate the density and kinematic viscosity of the air—water mixture,
vr, represents the velocity of the surfaces of the fluid domain, $2 and I' r respectively
represent the fluid domain and its surfaces, and n is the normal vector. Effective values
of properties of the air—water mixture depend on the volume fraction field. This field
identifies the proportion of a computational cell in the fluid domain that is occupied by
the water. The value unity identifies the pure water condition. The volume fraction field is
a non-dissipative physical parameter. Thus the equation describing its temporal and spatial
variation over time is written as

) ¢dszp+?§ n-(—vr)¢dlp =0, in{x,y}eRp. 2.3)
2r Ir'r

In a computational cell, density and viscosity of the air—water mixture are calculated as

PEX; 1) = pw(@(x; D) + pa(1 — @ (x; 1)), 2.4)
ne@x; 1) = nw(@(x; D) + na(1 — P(x;1)). (2.5

In the above equations, parameters with subscripts w and a respectively refer to water and
air. An inlet boundary condition governs the lower surface (I'y). This can be presented
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u v p é

Two fixed ends  Two free ends

r; — — v = (0, u) Opp =0 ¢=1
ro — — v = (0,0) Onp =0 O =0
ry — — v = (0,0) dp =0 O = 0
Tk ut =u ut =u vh =0~ npsc0T =npg-0" O =0
Ty _ u=(0,0) _ _ _
r: u=(0,0) _ _ _ _

Table 1. Summary of the boundary conditions used to solve the present problem.

mathematically as

v(x;t) = (0,u), Jppx;t) =0, o¢x;1)=1, ony=-—-2L —25L <x < 2.5L.
(2.6a—c)

Here, u is the impact speed. The upper surface has an outlet condition (I"p) that can be
presented as

opv(x; 1) = (0,0), Opp(x; 1) =0, Opp(x;6) =0 ony=1.5L,—2.5L <x < 2.5L.
(2.7a—c)

On the side walls of the domain, a no-slip boundary condition is enforced (I"y ), namely

v(ix; 1) =(0,0), Ipp(x;2) =0, pp(x;t) =0, on—-2L<y<1.5L, x=—-2.5L,
(2.8a—c)

v(x; 1) =(0,0), Opp(x;1) =0, 0podp(x;1) =0, on—-2L<y<]1.5L, x=25L.
(2.9a—c)

To reproduce the water impact problem, the fluid velocity is initially set to be equal to the
water entry speed:

v(x; 0) = (0, u), inf{x,y} e {(—2.5L,2.5L), (2L, 1.5L)}/%2;. (2.10)

In this equation, $2; refers to the solid volume. Piezometric pressure is initially zero,
namely

p(x;0) =0, in{x,y} e {(—2.5L,2.5L), (=2L, 1.51)}/%2;. @2.11)

The volume fraction is 1.0 under the initial water level, and is zero above it. This can be
formulated as

¢(x;0) =1, in{x,y} e {(—2.5L,2.5L), (—2L, 3.2L — 0.02L)}, }

G(x:0) =0, infxy} € {(—2.5L 2.5L), 3.2L — 0.02L), 1.5L}/82.. 2.12)

A summary of the boundary conditions set for the fluid domain is presented in table 1.

2.2.2. Solid domain
The equation governing the structural motion of the plate can be represented using
continuum mechanics. The solid displacement is identified as u(x, ). The momentum
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conservation law in the solid body is formulated as

/ 84y dyu) A2 —f n- ( et @ (I <Vu>T)T) dr's
25 Is 14+ (I +v)(1—2v)

—/ psbdR2s =0, in{x,y} e 2;. (2.13)
25

In this equation, the first integral represents the temporal changes of the displacement rate.
The second integral indicates the convection of the displacement in the solid domain, and
the last term represents the body force which for the study case considered in this paper is
set to be zero as gravity effects are neglected (see the discussion in Hulin et al. 2022). Here,
€ indicates the Green—Lagrange strain tensor, E is the Young’s modulus of the material, v
is the Poisson’s ratio, py is the density of the solid body, b is the body force vector, I is the
identity matrix, tr is the trace operator, and I' g represents the surfaces of the solid domain.
Note that no damping mechanism is activated in the solid domain.
For a plate with two fixed ends (I'g), the following condition should be satisfied:

u(x;t) = (0,0), onx=—0.5Landx = 0.5L. (2.14)

For the condition with two free ends, the middle point (I'js) is forced to have zero
displacement over time:

u(x;t) =(0,0), onx=0. (2.15)
The initial deformation of the solid body is zero, which can be written mathematically as
u(x; 0) =(0,0), in{x,y}e 25. (2.16)

At the initial time increment, when no solid deformation has yet occurred, the solid domain
25 is represented by {x, y} € {(—0.5L,0.5L), (0, h)}. A detailed summary of boundary
conditions set for the plate is presented in table 1.

2.2.3. Fluid-solid interface

The condition governing the fluid—solid interface is shown in table 1. The fluid—solid
interface refers to the surface that the fluid and the solid sub-domains commonly
share. A kinetic boundary condition governs this surface, i.e. displacement and velocity
components should be equal on the fluid (indicated with +) and solid (indicated with —)
sides of the fluid—solid interface:

ux: )T =ux; 1)~ on{x, v} € I'Fg, 2.17)
vx: )T =v(x;)” on{x,y} € Igs. (2.18)

A dynamic boundary condition should also be satisfied on the surface, i.e.

ngs-o " (x; 1) =nps-0 (x;1) onf{x,y} € I, (2.19)
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where

ot 0) = —pO; ) I+ (ne/pe)(0(x; 1) + Volx; 1)), (2.20)

2.3. Computational model

The OpenFOAM code is used to solve the problem numerically (OpenFOAM-extend &
foam extend 2016). The gradient terms are decomposed using a Gauss method through a
cell-based linear interpolation scheme, namely a limited linear divergence scheme. The
transient terms are discretised using an implicit Euler method. The momentum equation
is then solved by using the algorithm PIMPLE, which is a combination of SIMPLE
(semi-implicit method for pressure-linked) and PISO (pressure implicit with splitting of
operator) algorithms.

To strongly couple the fluid and solid problems, the vertex displacements of the interface
on the fluid side are found. Those are then used to morph the mesh, and then the fluid
equations are solved. The latter is done by using the updated displacement of solid
sub-domain and by applying the Aitken relaxation factor Agr (Huang et al. 2019). Using
the computed values of velocity, pressure and volume fraction fields, the forces acting on
the fluid—solid interface are computed and the face-centre forces acting on the interface and
the solid motion equation are solved. Following computation of the vertex displacements
of the solid side of the fluid—solid interface, the residual value indicating the difference
between the displacement of the fluid—solid interface of the fluid side, and that of the
solid side, are calculated. If the residual value is not greater than a prescribed limit, then
the vertex displacements of the interface on the solid side is transferred to the fluid, and
the simulation is repeated until the residual becomes lower than the prescribed limit. The
algorithm is shown in figure 2(a). The details of code used for simulation of fluid solid
interaction are presented in Cardiff ez al. (2018). The simulations presented in this paper
are not run through a purely monolithic FSI approach (e.g. Gee, Kiittler & Wall 2011;
Schott, Ager & Wall 2019). Thus further iteration between results of the fluid and solid
domains is required to reach the solution at every time step.

Fluid and solid sub-domains are both meshed by using a structured approach. Near
the fluid—solid interface, cells have higher resolution. This helps to capture water surface
profiles and pressure variations with a higher level of accuracy. Cells located near the inlet
and the side patches are set to have a low resolution. Cells are set to be coarse near the side
patches. The fluid motion near the side patches is assumed not to be an area of interest, and
they can hardly affect the fluid motion around the body as the side patches are set to be far
enough to affect the impact pressure. Thus this can decrease the computational time. Mesh
generation has been performed by using a library of OpenFOAM, namely blockMesh. The
structure of the generated mesh is shown in figure 2(b). At every time step, the mesh of
fluid domain is morphed.

Note that mesh resolutions in the fluid and solid domains are different. This is because
fewer cells along the plate length are required to solve the problem, as compared to the
fluid domain. Thus nodes of the fluid and solid cells on both sides of the fluid and solid
domains do not align. A mesh convergence study is presented in Appendix A. It was also
observed that results converge for Courant number CO = 0.25 (see Appendix B). Here, it
is worth noting that as was mentioned before, the width of the fluid domain is set to be SL.
The width was chosen through performing a study on the effect of domain width on the
results, which is presented in Appendix C. A width narrower than 5L (e.g. 3L) may affect
the peak pressure, which is mostly caused by the blockage effects.
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Figure 2. (a) The algorithm and (b) the mesh structure used to simulate the problem using the code.

3. Results
3.1. Sample of results

Prior to discussing the momentum exchange and its relationship with pressure,
deformation and other parameters, samples of the computed data are presented. This helps
us to shape an early understanding of the evolution of pressure and other parameters over
time, and the way the flexible motion and boundary conditions can affect the load and
dynamic response of the structure. The validation study is presented in Appendix D.

Figure 3 presents the time history of pressures (p, see figures 3a—c), equivalent stresses
(o, see figures 3e—g) and vertical deformations (d, see figures 3i—k), at three different
points, including middle (x = 0, figures 3a.e,i), quarter (x = L/4, figures 3b, f,j) and the
end point of the plate (x = L™ /2, figures 3c¢,g.k). The equivalent stress (von Mises) is
calculated as

o =,/0} —20.0y+ ay2 + 3rxzy, (3.1)

where oy and oy are normal stresses, and T,y is the shear stress.
After water hits the lower surface of the plate, the pressure peaks. When the plate is
rigid, the pressure abruptly decreases and converges to ~1.0 (see the dash-dotted curves

in figures 3a—c). This trend conveys the typical physics emerging when a rigid body enters
water (e.g. Xie et al. 2018a; Yan et al. 2022b). In this condition, the pressure at the middle
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Figure 3. Time history plots showing the temporal evolution of (a—c) pressure, (e—g) dimensionless
equivalent stress, and (i—k) dimensionless deformation, at three different points (markers in d,h,[).

point reaches 1.0 as the water is detached from the edges of the plate. After detachment,
the fluid energy tends to move towards the edges of the plate, and pressure under the plate
decreases.

For plates with elastic behaviour (see the solid red and dashed blue curves in
figures 3a—c) following the peak, the pressure displays an unsteady cyclic behaviour,
i.e. decrease to negative values, which is then followed by an increase and regain of
positive values, until it is totally dampened. Notably, different points of elastic plates move
vertically, which explains the fluctuation of pressure.

For a rigid body (see the dash-dotted curves in figure 3a—c), the non-dimensional peak
pressure is higher at the middle point of the plate (*179) as compared to the quarter-length
points (*172) and edge points (=66). For the elastic plate with two fixed ends (see the
solid red curves in figures 3a—c), the non-dimensional peak pressures at the middle point
of the plate (*149) are greater than those at the quarter-lengths (*144) and the edge points
(~74). Similar behaviour can be observed for the elastic plate with two free ends (dashed
blue curves in figures 3a—c). Interestingly, the peak pressure of the middle point of the
plate with two free ends (*168) is relatively close to that of the rigid plate (*~179). The
middle point of the plate is fixed, which can result in a local behaviour more similar to that
of arigid plate.
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The vertical deformations of different points of the elastic plates are seen to vary
cyclically over time, though they decay temporally (figures 3i—k). This signifies that the
dynamic motion of the elastic plate is composed of an exponential response and a natural
oscillatory harmonic tail. This reflects the dynamic response of a beam exposed to an
impact force, which is formulated in Appendix E. Note that the exponential term arises
due to the impact load, and the oscillatory tail corresponds to the lowest natural mode of
plate vibration. At the middle point of the plate with two free ends, displacement is set
to be zero, thus the resulting displacement is constantly zero. On the quarter-edge points,
displacements of both plates are seen to be very close to each other. Deformations are
followed by stresses. For a plate with two fixed ends (see the red curve in figure 3f), the
dimensionless equivalent stresses emerging near the edge of the plate are greater. For a
plate with two free ends, equivalent stresses emerging at the middle point are greater (see
the dashed blue curve in figure 3¢). That may be related to the boundary conditions set.

The patterns displayed in the normalised pressure values (figures 4d—f), equivalent
stress values (figures 4g—i), vertical deformations (d, see figures 4j—[), vertical speeds (d,
see figures 4m—o) and accelerations (d, see figures 4p—r) along the plate are sampled.
Solid, dotted and dash-dotted curves respectively demonstrate the results corresponding to
the early stage of the impact (fu/L = 0.017), the period of emergence of negative pressure
(trough at tu/L = 0.027), and re-emergence of positive pressure (crest at fu/L = 0.048).
For a rigid plate (figure 4d), the emergence of negative pressure and the re-emergence of
positive pressure do not occur, as was discussed and shown before (figure 3a).

For arigid plate (figure 4a), during the early stages of the impact, the pressure is larger at
the middle point. It then decreases and reaches A1 at the plate edges. The pressure acting
on the rigid body significantly decreases over time, converging to & 1. For elastic plates
(figures 4e, f), the pressure is positive at the early stage of the impact and may turn negative
when the plate flexes outwards (concave-up). The vertical speed and vertical acceleration
along the plate can be positive or negative (figures 4n,m,q,r). When an elastic plate is
flexing inwards (i.e. concave-down, figures 4k,[), the acceleration is mostly negative along
the plate (see figures 4¢,r), though vertical speed can be either positive or negative (see
figures 4n,0). When the plate is flexing outwards (i.e. concave-up as shown in figures 4k,/),
vertical acceleration is positive. Overall, when the plate flexes inwards (concave-down) and
the acceleration is negative, the pressure is positive. Otherwise, pressure is negative. Also,
the maximum peak pressure of elastic plates arises when the deflection is maximum and
velocity is zero. Note that near the edge of the elastic plate with free ends, acceleration
may suddenly change from a positive value to negative, or vice versa. This is because the
end can move freely.

The dimensionless equivalent stresses acquired during the water entry of elastic plates
are attenuated over time (see figures 44,i). This is because of temporal decrease of the
absolute value of pressure and the temporal decrease of the amplitude of the motion of the
elastic plates (which are interconnected). The same was observed in figure 3. For each of
the plates, the maximum stresses emerge near the points where the fixed displacement was
prescribed (see figures 3e—g). For a plate with two free ends, the maximum stress emerges
near the mid-point. However, for the plate with two fixed ends, maximum stresses arise
near the edge of the plate. This could be attributed to the boundary conditions set. Finally,
it should be noted that the plate with two free ends exhibits a fluttering motion during

impact (figure 41).

Time traces of the vertical velocity component of the fluid at three different points are
shown in figure 5. All these points are located on a horizontal line at distance z = —0.005L
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Figure 4. Curves showing the distributions of (d—f) pressure, (g—i) dimensionless equivalent stress, (j—I)
dimensionless deformation, (m—o) dimensionless vertical speed, and (p—r) dimensionless vertical acceleration,
along plates entering water (a—c).
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Figure 5. Time history curves of vertical velocity components at the different points locating on a line with
z = —0.005L. Plots (a—c) illustrate the results recorded at x = 0, x = L/4 and x = 3L/8. A close-up view of
the time history of each vertical velocity component over 0.012 < fu/L < 0.019 is shown in the insets.

from the lower surface of the plate. Close-up views of the curves over 0.012 < /L <
0.019 are illustrated in insets. Initially, the vertical velocity increases as the water surface
moves towards the lower surface of the plate. Then it peaks at ru/L ~ 0.012. The peak
values corresponding to all three cases are nearly equal. In the next stage, the vertical
velocity of fluid flowing towards the rigid plate converges to zero. Vertical velocity
components of the fluid under elastic plates vary harmonically over time, signifying
that the fluid and solid motions are strongly coupled. Over 0.012 < fu/L < 0.02, vertical
velocity components decrease while remaining positive. This means that elastic plates
are still moving upwards (recall that the peak pressure of elastic cases emerges when the
plate reaches its maximum deflection; see figures 3a,b,i,d). Over the same period, vertical
velocity components under the elastic plates become greater than those of the rigid plate
(see insets of figures Sa—c). This demonstrates that, as compared to a rigid case, the fluid
moving towards the elastic plates had lost momentum over fu/L < 0.012. Thus before the
peak velocity (fu/L < 0.012), fluid momentum was transferred to the solid body.

Patterns of the vertical (figures 6a—c) and horizontal (figures 6d—f) velocity components
of the fluid along z = —0.005L are shown in figure 6. At the edge of all three plates
(x = 0.5L), the vertical velocity component is maximised after the impact (fu/L > 0.02).
This can be explained by the water detachment occurring at the edge of the plate. At
tu/L = 0.017, the vertical velocity component shows some oscillations along z = —0.005L
at x &~ 0.492L. This is perhaps a local artificial effect. The vertical velocity gradient is
seen to change from a positive value to a very large negative value from one finite cell
to another. This does not seem to be realistic, and is mostly a singularity that is likely to
occur due to aspect ratios of the cells under the plate that are greater than 1.0. Note that
this behaviour is observed over only a limited length (as compared to the length of the
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Figure 6. Curves showing distribution of (a—c) vertical and (d—f) horizontal velocity components along
a horizontal line located at z = —0.005L. (a,d) Results corresponding to the rigid plate; (b,e) results
corresponding to the elastic plate with fixed ends; (c,f) results corresponding to the elastic plate with free
ends.

body) and emerges over a very short period of time. Thus it may not have significant effect
on the peak pressure, peak deflection and stresses arising in the solid body.

For the rigid plate case (figure 6a), vertical velocity converges to zero over 0 < x <
0.45 (see dash-dotted curves in figure 6a). When elasticity effects are considered, a local
minimum is seen to emerge at x &~ 0.04L after the water impinges upon the elastic plate
(dashed and dash-dotted curves in figure 6¢). This is due mainly to the elastic motions of
the plate affecting the fluid motion near the plate edges.

Along the z = —0.005L line, the horizontal velocity component is nearly zero under
the mid-point and increases along the plate length. This pattern matches with our physical
understanding, i.e. the fluid particles tend to move towards the plate edges where water
detachment happens. At the very early stage of the impact (fu/L = 0.017), the maximum
value of v, corresponding to a rigid plate and an elastic plate with fixed ends (which
emerges at x &~ 0.5L) is observed to be much greater than values at other instants.

The vy values under the rigid and elastic plates with fixed ends decrease over time. For
the plate with free ends, v, along 0 < x < 0.35L is seen to decrease over time. However,
over 0.35L < x < 0.5L, this velocity component may either increase or decrease over time.
This is because the ends of the plate are free and may exhibit large motions depending on
the temporal displacement rate near the plate edges.

Snapshots of fluid motion around an elastic plate entering water are illustrated in
figure 7. At tu/L = 0.0175 (i.e. the time instant that corresponds to an instant before
pressure peaks), the pressure under the edges of the elastic plate is larger as compared
to tu/L = 0.021 (i.e. the time instant that corresponds to an instant after pressure peaks).
This signifies that the pressure under the plate edges significantly decreases after impact.
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Figure 7. Snapshots showing the fluid motion around an elastic plate entering water. The plate thickness is
not to scale.

Attu/L = 0.0175, the velocity magnitude under the plate edges is lower than that observed
at tu/L = 0.021. This confirms that a larger amount of the energy is transferred towards
the edge of the plate just after the pressure peaks.

3.2. Momentum exchange

In this subsection, the exchange of momentum between fluid and solid is studied.
Assuming that the solid momentum is caused by the vertical velocity, the sectional
momentum (denoted by m(x, f)) along the solid body is calculated as

h
m(x, t) = / Ps vy(x, 1) dy. 3.2)
0
The momentum of the whole solid body is
L/2
M (1) = / m(x, t) dx. (3.3)
~L/2

Solid momentum is normalised using the fluid (water) momentum of a control volume
displacing an area equivalent to that of the solid body as

M, = pwLhu. (3.4)

Figures 8(c,d) display the pattern of the sectional momentum distribution along the solid
body at three different instants: right after the impact, when the plate flexes upwards,
and when it flexes downwards. The sectional momentum varies locally, and the patterns
of momentum distribution along the plate related to plates with different boundary
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Figure 8. (c,d) Sectional momentum along the elastic plates, and (e,f) time history of the momentum of these
plates (a,b).

conditions are different, though they are very similar to those of the deflection rates, which
were presented in figures 4(n,0). Wherever the displacement is set to be zero, sectional
momentum is zero (points with d(¢) = 0 in figures 8a,b).

The time history of the momentum of the solid body is plotted in figure 8(e) (plate
with two fixed ends) and figure 8(f) (plate with two free ends). A maximum value of the
momentum emerges right after the impact (i.e. when water reaches the solid body). The
wet condition of the plate is marked with a red background. The first crest of momentum
is generated by the fluid force (the impact force). This value of the crest is denoted with
M. This crest emerges when the vertical speed at all points is maximised. Afterwards,
the momentum varies harmonically. This again confirms that the deflection of the solid
body impacted by the water is composed of an exponential and a harmonic response. Note
that momentum is found using the deflection rate, i.e. time derivative of the deflection.
The solid momentum decays over time. This is because the motions decay over time and
thus the resulting momentum harmonically varying over time is gradually given back to
the fluid. Note also that whenever the solid momentum is zero, the displacement at all
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Figure 9. Time history curves of (a) the time rate of work and (b) work done by fluid and elastic plates.

points has reached a crest. If we assume that no fluid and solid damping is activated before
solid momentum reaches the first crest, then solid momentum can be formulated as

2
M, ~ M sin (7” (t— tw)) , te<t<ty+T/4, (3.5)

where T is the natural period of the plate corresponding to the lowest natural frequency,
and ¢, is the wetting time. The momentum in the solid body fluctuates before wetting
begins. This happens because the plate tends to find its equilibrium before the impact
occurs. The problem was run for different initial water levels, which lead to different
wetting times. It has been observed that different initial water levels do not affect the
momentum arising in the solid body and the resulting peak pressure. In addition, the first
crest of the momentum in the solid body is lower as compared to the absolute value of
first recorded trough. This happens as the plate has not reached its maximum deflection,
and strain energy has not been fully developed in the solid body, though the kinetic energy
has already reached its first crest. When the plate moves downwards, reaching its initial
location, momentum reaches its first trough. In this condition, the strain energy is turned
into kinetic energy. Thus the absolute value of first trough of momentum is larger than the
first crest. )

Figure 9 displays the time history of the power of the elastic body. Power (denoted W,
where W represents work) is found as

_ L2
W= / pvydI',  on {x,y} € I'fs. (3.6)
~L)2
This can be normalised by using the energy flux passing through a surface with length L,
given by
P =0.5p,Li. (3.7)

Work is found by integrating power over time:

t
W(t) = / Wdr. (3.8)
0
We normalise W using kinematic energy of fluid (KE) displacing for a volume equal to
that of the solid body, given by
KE = 0.5p,hLu’. 3.9)
965 A19-18


https://doi.org/10.1017/jfm.2023.386

https://doi.org/10.1017/jfm.2023.386 Published online by Cambridge University Press

A fluid—solid momentum exchange method for water entry

Plate boundary conditions

Case h/L E (GPa) Fixedends Freeends  Marker
1 0.050 2.0 v

2 0.075 2.0 v ¥
3 0.100 2.0 v

4 0.050 2.0 v

5 0.075 2.0 v ¥
6 0.100 0.6 v

7 0.100 1.0 v

8 0.100 2.0 v

9 0.100 4.5 v

10 0.100 7.0 v

Table 2. Cases run in the present research, and markers used to plot the data.

Power reaches a positive peak, followed by a negative peak (figure 9a). The positive peak
emerges when the momentum has reached its first crest, and the negative peak emerges
when the first trough of the momentum emerges. The peak positive and peak negative
of the first cycle are seen to be relatively close, though the first half-cycle lasts for a
relatively longer time. This leads to a peak in the time history of work, which abruptly
decreases, converging to a non-zero value. The power related to the plate with fixed ends is
relatively greater than that of the plate with elastic ends. This reflects that a larger amount
of work is required to bend a plate with fixed ends, as compared to a plate with free ends.
Interestingly, the first crests of power and work are much larger than the following crests.
This again demonstrates that the dynamic response of the solid body is composed of an
exponential term corresponding to the impact load and harmonic response corresponding
to natural frequency, as is shown in Appendix E.

3.3. Effects of momentum exchange on hydroelastic response
The problem has been solved for different values of Young’s modulus and thickness,
as summarised in table 2. Five different impact velocities, 0.112m s71 0.235ms™!,
0.47ms~ 1, 0.70ms ! and 0.95 ms™!, are considered. The momentum exchange, denoted
Mz/ M, was evaluated, and data were plotted as a function of non-dimensional impact

speed, normalised as
U = u\/ps/E, (3.10)

where U/ incorporates Young’s modulus of the elastic body and its density, which helps us
to study the effects of elasticity and impact velocity on any acquired parameter. Since U
is the square root of the Cauchy number, it quantifies the importance of consideration of
elastic forces. Note that the density of the body is set to be 2.6p,, in all simulations.

In some previous studies (e.g. Stenius, Rosén & Kuttenkeuler 2007; Datta & Siddiqui
2016; Feng et al. 2021), different parameters are normalised using the values found for
static tests (e.g. deflection), and impact speed is normalised using the loading period,
which can be done only for a wedge section, not a flat plate. Such an approach for
normalisation, while interesting, cannot be applied here. This is because we do not aim
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Figure 10. The first crest of momentum, arising in plates with (@) fixed and (b) free ends, just after impact, as
a function of the dimensionless impact speed.

to study the dynamic effects (the ratio of results of a dynamic case to a static case) or a
wedge water entry.
We plot M}/ M,, as a function of ¢/ with an aim to identifying the link between the

momentum exchange and the impact speed (see figure 10). Here, M} /M, is seen to
increase linearly as a function of /. This matches with our expectations. Imagine that a
hydrodynamic force (F'(f) u?) causes the rise of momentum in a solid medium. This can
be formulated as

ty+T /4
My~ / F(1) dr. (3.11)
1,

Thus M, would be proportional to u?. Tt was also observed that pressure acting on a plate
shows harmonic behaviour (see figures 3a—c). This means that before the fluid momentum
reaches its peak value (i.e. t < 7//4), the force will be proportional to 7. Hence M, is
expected to be proportional to 7, which in turn is proportional to E~%3 (Stenius er al.
2007). Thus M./ M, is expected to be proportional to I (i.e. uE~93), and M/ My is
formulated as

My My =~ AU,

where A is a constant value that depends on the thickness of the plate and its boundary
conditions (see table 3). For a thinner plate, M7,/ M, increases at a greater rate, and A is
slightly larger. A thinner plate is less rigid, thus it flexes more easily. Its solid momentum
is larger as compared to a body with a greater rigidity. The results corresponding to the
plate with two free ends are seen to be relatively smaller as compared to those of plates
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Plate with fixed ends Plate with free ends

Coefficients h/L = 0.05 h/L = 0.075 h/L =0.1 h/L = 0.05 h/L = 0.075 h/L=0.1
A 1070 640 320 890 580 320

B 0.15 0.30 0.24 0.29 0.43 0.35

C — 0.566 — — 0.490 —

D 0.0098 0.0118 0.0144 0.0222 0.0223 0.034
£ 12870 4820 4050 10840 6130 3900
F 0.19 0.24 0.24 0.19 0.24 0.24

g 8253 3638 3427 12411 7308 6061

Table 3. Constant coefficients found using curve fitting.

with two fixed ends (compare figures 10a,b). From a physical point of view, the free—free
boundary conditions may explain such behaviour. The value of M} /M, depends on the
first bending of the plate. For a plate with two fixed ends, the plate bends in the middle,
and at both ends, the plate points downwards (figure 4k). As such, the fluid motion tends
towards the vertical direction and downwards (figure 4n). This increases the exchange of
the momentum between the fluid and solid. On the other hand, for a plate with two free
ends, the ends bend upwards (figures 4j,m). Consequently, the exchange of momentum
between fluid and solid is reduced.

Assuming that M./ M, decreases exponentially (which can be seen in figures 8(e.f),
see the dashed grey curves), the temporal decay of crests M7,/ M;, can be represented as

Ut +nT) =~ ype 0D e N—{1}. (3.13)

Here, « is the temporal decay rate, and y is every recorded crest. The value of « is
normalised using

a* = ah/u. (3.14)

This o*, the decay rate of the momentum in the solid body, is plotted versus M7/ M,,
in figure 11; o decreases as M7,/ M, increases. Note that o corresponding to different
thicknesses is seen to be relatively constant over the range of different M7/ M;, > 0.15.
This means that damping is likely to be caused by the free surface deformation near the
plate (which depends on the geometry) and depends mostly on the dimensions of the
plate and its boundary conditions, not viscosity. For lower values of M7,/ M,,, the impact
process may not be fully developed, thus the damping mechanism may also be caused by
some other mechanisms (break of free surface). To match it with our expectation, o*, is
formulated as

o ~ BME/ M)~ (3.15)

Here, B values are sensitive to 4/L and boundary conditions, which are presented in
table 3. The fitted curves are plotted in figures 11(a,b). Parametrisation is carried out by
excluding the data related to low values of M./ M,,.

The peak pressures acting on elastic plates are normalised on the basis of the rigid
case. This ratio is called the relative pressure, and is plotted versus M}/ M, in figure 12.
Relative pressure reduces linearly as a function of M7,/ M;,. This suggests that exchange
of momentum is linked to pressure reduction. The values of ps/p, related to different
thicknesses and Young’s modulus are seen to follow a linear line when they are plotted as
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a function of M7} /M, (figures 12a,b). For both boundary conditions, the relative values
of maximum pressure decrease linearly with the increase of M7,/ M.

To relate the impact pressure acting on the elastic body to that of the rigid body, we
assume that the proportion of momentum that is transferred to the solid body reduces the
peak pressure. We start with the rigid body. We assume that a mass of water with initial
momentum My = CoM;, flows towards the plate, and its vertical momentum becomes
zero in a very short time At. Using the von Kdrman water entry theory (von Karmén
1929), the average pressure can be estimated using the momentum variation as

- CoM,y,

prN = (3.16)
The average pressure acting on an elastic plate is caused by a reduced momentum
(CoMin — M), which can be written as

L At '

rf (3.17)
Using (3.16) and (3.17), the relative average pressure acting on an elastic plate can be
formulated as

pr/p, = 1 — (Mg/CoMin). (3.18)

Equation (3.18) can be viewed as an extension of von Kdrmdan water entry theory for
an elastic plate, and is derived by assuming that At values related to both rigid and
flexible cases are equal, and some physical aspect may have been overlooked. Note that
von Kdarmén (1929) formulated the initial momentum using the added mass of the object
entering the water. Equation (3.18) is derived to predict the average pressure. It is rewritten
to predict peak pressure by introducing a new non-dimensional coefficient (C) as

pr/pr =1 —=C(ME/My). (3.19)

The best fitted values of C are shown in table 3. However, the data related to the most
flexible case are not considered as they may lead to nonlinear effects, which cannot be
estimated using a linear function.

Interestingly, C values found for both plates — either the one with two fixed ends or the
one with two free ends — are very close. To sum up, the relative impact pressure can be
a function of momentum exchange, regardless of the boundary conditions set for a plate
or the thickness of the structure. This matches well with the general hypothesis of the
present research namely ‘the transfer of momentum from the fluid to solid, caused by
the flexible motions, is the main mechanism that reduces the impact pressure’. From a
practical perspective, this means that the hydroelastic response of a structure impacted by
water can be predicted using the data found through the rigid simulations (see figure 12).
The peak pressure is a local effect, and the momentum exchange is a global term. The paper
attempts to simply suggest the concept of a method and not propose a conclusive unified
solution. Therefore the relationship between a global term and a local term is formalised
on the basis of peak pressure.

Through tracking the time history of the deflection of the plate, the maximum
deformation during each water entry process is found. Dimensionless maximum
deformation values versus the values of M7,/ M, are plotted in figures 13(a,b). Maximum
deformation grows with the increase in (M} /M;,). The data corresponding to the
plates with different Young’s modulus values and thicknesses (figures 13a,b) fit well.
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Figure 13. Maximum values of non-dimensional deformation of plates with (a) fixed and (b) free ends.

This supports the hypotheses that the hydroelastic responses of a body entering water
can be formulated using simple equations as a function of momentum exchange.

Maximum deflection of an Euler—Bernoulli beam is proportional to force, and inversely
proportional to Young’s modulus. Thus

F
dpax X —.

3 (3.20)

Since F is proportional to >, maximum deformation is expected to be proportional to
u?JE (i.e. U?). Accordingly, the dimensionless maximum deformations can be fitted on
the basis of the equation

dmax/L ~ DM/ Min)?, (3.21)

where D is a constant value that depends on the boundary conditions and plate thickness
(see table 3). For the plate with two free ends, D values corresponding to 4/L = 0.05 and
h/L = 0.1 are nearly equal.

The relationship between the maximum value of dimensionless equivalent stress and
M% /My, is analysed. Peaks of the recorded equivalent stress at every point are found,
and the maximum peak is set to be the maximum dimensionless equivalent stress. Data
are plotted in figure 14. The maximum dimensionless equivalent stress is constant up to
a specific value of M7,/ M;,, then it decreases under the increase of M7} /M,,. This
constant value is called the maximum potential stress emerging in an elastic body impacted
by the water. The M7,/ M, value that marks the limit at which the divergence of the stress
from the maximum potential stress occurs is termed the critical momentum exchange. In
general, the data plotted in figure 14 signify that the maximum potential stress on a plate
impacted by the water may not be acquired when the momentum exchange gets larger than
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Figure 14. Maximum dimensionless equivalent stress of plates with («) fixed and (b) free ends.

the critical limit. This happens when the impact speed gets higher and the water entry
problem occurs in a shorter time, i.e. when stresses may not be fully developed.

The relationship between the maximum dimensionless stress and the fluid—solid
momentum exchange is

MZ‘/MM = -7:7

E—GMy/Min—F), My/My>F. O

Omax/ (0.5 psu*) ~

Here, £ is a constant value referring to the maximum potential stress that can be developed
in the solid body, F is the critical value of fluid—solid momentum exchange, and G is
a constant value that reflects the slope of the deviation of maximum stress from the
maximum potential stress. Values of these coefficients are given in table 3. At present,
no theoretical background for (3.22) can be established. Yet the linear decrease of the
stress as a function of M}/ M, explains the linear decrease of the peak pressure versus
M./ My, plots (see figure 12).

The maximum stresses () arising in a thin plate are greater as this solid body has a
lower second moment of area. Boundary conditions may also influence the results; i.e. for
plates with two free ends, the maximum stresses are slightly smaller as compared to those
of plates with fixed ends. Only the displacement is set to be zero at the middle point, thus
the maximum equivalent stresses are lower.

It should be noted that OpenFOAM code used for simulation of the present problem
does not use model analysis. Instead, the solid dynamic response is found through solving
the conservation of momentum in a solid medium. For an elastic flat plate entering
water, the pressure reaches its peak value in a very short period of time. The maximum
deflection occurs during the free vibration phase, and the lowest eigenvector dominates the
response (Faltinsen 2000). In addition, the first crest of momentum in the solid happens
before the peak pressure and deflection emerge. This means that the response of the plate
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incorporates an exponential term and a harmonic one. The latter corresponds to the lowest
natural frequency. Hence the role of higher-order structural deformations is not considered
that important (Pochyly, Malenovsky & Pohanka 2013; Yan et al. 2022a). Contrary to this,
for wedge sections entering water, the loading period is longer as compared to the case of
a flat plate (Wang & Guedes Soares 2018; Yan et al. 2022a). Therefore, future research
could focus more on such investigations.

4. Conclusions

The pressures and forces arising during the water entry of an object can be reduced
when the body is flexible as stresses and deformations emerge. From an engineering point
view, it is very important to provide closed-form equations that calculate the pressure and
hydroelastic responses of a flexible body impinging. With the latter in mind, this paper
aimed to present a new methodology for the analysis of hydroelastic responses of a flat
plate entering water using the momentum that is transferred to the solid body just after
impact. The research study assumes that the pressure arising at the water entry can be
extracted from rigid body simulations using the potential momentum exchange facilitated
by fluid and solid interactions. Another hypothesis is that the potential momentum
exchange can be used to calculate the deformations and stresses during water entry.

The problem was solved for a plate with fixed and free ends. This assisted with validating
the main hypothesis of the present study for the simplest case. The plate with free ends
was found to show a fluttering motion, leading to larger displacement. However, the
maximum equivalent stress acquired during the water entry was observed to be lower.
The time history of the momentum of the solid body undergoes a harmonic idealisation,
though it was found to decay exponentially over time. Although no solid-based dissipative
mechanism was set to constrain the simulation, the decay rate of the momentum was seen
to be a function of the peak value of the momentum arising in the solid body.

The relative pressure — namely, the ratio of maximum pressure of elastic plate to that of
the rigid plate — was calculated, and was demonstrated to be a function of the amount of the
momentum transferred to the solid body, regardless of the thickness and elastic modulus
of the body. The latter supports the main hypothesis that maximum pressure acting on
an elastic structure can be formulated as a function of momentum exchange using the
maximum value of a rigid plate.

It was shown that the maximum dimensionless deformation of flat plates entering water
can be formulated as a function of the momentum exchange. The same approach was
used to investigate the relationship between the maximum dimensionless equivalent stress
acquired during the impact process. This stress was seen to be constant over a range
of momentum. The momentum at which the change in the dimensionless equivalent
stress emerges was called the critical momentum. It was shown that as the momentum
exchange becomes greater than the critical value of the dimensionless equivalent, stress
decreases linearly. This helped us to formulate maximum equivalent stress as a function of
momentum exchange. The formulation presented for dimensionless deformation and stress
provided evidence that the hypothesis of the present research is valid for our simulations,
and these two dependencies can be formulated as a function of momentum exchange.

Overall, the momentum that is transferred from water to an elastic solid body entering
water can be estimated using a simple linear equation, the value of which can then be used
for the evaluation of relative pressure, the maximum deformation and equivalent stress.
Thus a rigid body simulation of the problem would be enough to reach the data of an
elastic water entry. This may be significant as economic yet accurate engineering solutions
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may lead to much needed practical solution of FSI problems for use in the design of ships
and offshore structures. The results presented are limited to the case of an elastic flat plate.
Further investigations regarding the influence of momentum exchange mechanisms and
their relationships with responses of wedge and ship bow sections will be a significant
part of future research efforts. Such an approach may help us to improve understanding of
physics and explore the usefulness of the method in relation to traditional hydroelasticity
approaches (Hirdaris & Temarel 2009; Yan et al. 2022a), and validate the solution.

The study presented in this paper can be extended further to other marine structures and
or bodies found naturally in the ocean (e.g. marine vegetation). The fluid motion can be
assumed to have steady or cyclic motions, the latter of which represents a wave-induced
motions scenario. Justification of the latter requires running further numerical simulations.
Also, modified versions of formulations should be presented for other bodies as their
loading period during the water entry process is much longer compared to that of
horizontal flat plates. In future, equations presented for momentum can be changed to
consider local momentum, which may help us to formulate equations with less restriction.
Finally, it should be noted that the present model neglects compressible fluid motion,
which can be incorporated in the future.
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Appendix A. Mesh convergence study

A mesh sensitivity study is performed as explained in the main text of the paper. The aim
is to find the optimised mesh that can be used to simulate the problem.

Four different meshes with different resolutions are generated, and runs using
OpenFOAM are performed to reproduce the air—water flow around a plate impacted by
the water. Meshes are named coarse, medium, fine and finest. In the fluid domain, the
cell size of the coarse mesh under the wall of the plate is 0.016L x 0.005L, though that of
finest mesh is 0.008L x 0.0016L. The cell sizes of the medium and fine fluid meshes under
the plate are respectively 0.01L x 0.003L and 0.005L x 0.0018L. In the solid domain,
the cell size of the coarse mesh is 0.02L x 0.005L, while that of the finest mesh is
0.01L x 0.0018L. The cell sizes of the medium and fine solid meshes are respectively
0.015L x 0.003L and 0.008L x 0.0024L. The plate is set to have thickness 0.1L, and the

impact speed is prescribed to be 0.7 ms~!. Both ends of the plate are set to be fixed.

The hydroelastic response of the structure is sampled over time, and the related results
are presented in figure 15. Figures 15(a,b) display the equivalent stress emerging in the
solid body. Figures 15(c,d) show the time history of the vertical motions at two different
points. Figures 15(e, f) illustrate the time history of the pressure at two different points.
The general behaviour of the time history curves has been explained in the main text of
the paper. Time history curves of stresses, deformations and pressure converge with the
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Figure 15. Mesh study: convergence of the time history curves of (a,b) equivalent stress, (c,d) vertical
deformation and (e,f) dimensionless pressure by increasing the mesh resolution. Data are found through

performing runs for an impact process with speed 0.7ms~!. The plate was set to have thickness to length
ratio 0.1.

increase in mesh resolution. The results computed by using fine and finest resolutions
practically match.

Appendix B. Courant number convergence

Simulations are run for different Courant numbers (CO) to find the suitable one that can
be used to run the simulation. A hydroelastic water entry with speed 0.49 ms~! is run. The
plate is clamped at both ends and is 0.1L thick. Peak values of the pressure and deflection
at two different locations, x = 0 and x = L/4, are found. Peak values were plotted against
CQO, as shown in figure 16. Maximum pressure rising at x = L/4 is more sensitive to CO, as
compared to middle point of the plate. In addition, a larger peak deflection may be captured
atx = 0 and x = L/4 when CQO increases. Peak values of pressure and deflections are seen
to converge by decreasing CO from 1 to 0.25. Hence the simulations of the present research
are run by setting CO to be 0.25, though they could also be run using greater values (such
as 0.4) as the effect of Courant numbers on peak values is not very significant.
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Figure 16. Sensitivity of the results to the Courant number. (a,b) Maximum values of pressure recorded at the
middle and quarter points, respectively. (c,d) Maximum deflections recorded at the middle and quarter points,
respectively.

Appendix C. Domain size study

The size of the domain is set by running the problem for different widths, varying from
3L to 7L. The plate thickness was set to be 0.1L, and the impact speed was enforced to be
0.47ms™ !,

Time traces of pressure and displacement of the middle point found for each domain
size are presented in figure 17. As seen, a domain size with width of >5L ensures
convergence of simulations and cancels out blockage effects. For a domain with a smaller
size, dimensionless pressure and displacement of the middle point may be over-predicted.
This can be seen in the close-up views of the time histories shown in the insets. It could
be attributed to the blockage effect, which can potentially increase the hydrodynamic
pressure and resulting solid dynamic response. A fluid domain with a narrower width
can slightly increase the natural period of the plate. This is demonstrated in the close-up
views, illustrating the hydroelastic response of the plate over 0.054 < fu/L < 0.06.

Appendix D. Validation
D.1. Pressure acting on a rigid plate entering water

Results of the present model are compared against those of available experimental data
documented in Ma et al. (2016). Experiments were performed at two different impact
speeds, 5.5 m s~ (block 1) and 7ms~! (block 2), for three dimensional plates with total
weights 32 kg and 52 kg. Pressures were measured at the middle point of the plate and at
four symmetric points with similar distance ~0.44L from the mid-point of the plate.

965 A19-29


https://doi.org/10.1017/jfm.2023.386

https://doi.org/10.1017/jfm.2023.386 Published online by Cambridge University Press

S. Tavakoli, T. Mikkola and S. Hirdaris

—— Domain size = 3L —— Domain size = 5L =-=-= Domain size = 7L ‘
(x107%)
(a) 200 o (b) 6 — 1
160 4
150+ 140 4+ (<1074
120 2 10
% o0l 0.015 0.020 ;8 | 0015 0020
Q% 10 < 0
0 = 2+
\n =
=} ~10 5
2 50+ 0.055  0.060
], 0.055  0.060
0
0
-50 : ; ; ; ; -2 : : : : :
0 0.02 0.04 0.06 008 0.10 0 0.02 0.04 006 0.08 0.10
tu/L tu/L

Figure 17. Sensitivity of the results to the domain width. Time traces of (a) dimensionless pressure, and
(b) displacement of the middle point.

Peak pressures measured in experiments and those found through simulations are
illustrated in figure 18. The rigid body simulations were insensitive to the weight of block,
though those of experiments may depend on the weight of block.

Numerical values (dashed line) of peak pressure at the middle point are seen to agree
with experimental ones (circle markers) recorded through the water entry tests of block
1 (figures 18a,b). For block 2, numerical values of the peak pressures were found to be
relatively larger or lower than the experimental values corresponding to pure water entry
tests (figures 18a,b). This can be due to the larger inertia forces, and resulting compressible
fluid motions, that are not incorporated in the present model. It is recommended that
compressible motion of fluid should be considered in future studies.

Ma et al. (2016) observed that peak pressure values at four symmetric points are not
equal. They hypothesised that strains arising at the water entry would explain such a
difference. To visualise their experimental data, boxplots are presented in figures 18(c,d).
Central marks denote the median values of peak pressures at those four symmetric points,
and whiskers represent the recorded extreme peak pressures observed at four symmetric
points. As seen, for the lower impact speed, numerical peak pressures at x ~ 0.44L (see the
dashed lines in figures 18c¢,d) are either in the range of experimentally recorded pressures
or slightly larger than extreme values (figures 18c¢,d). Greater values may appear because
of the difference between the nature of the present model and the real physics. The present
model is built to reconstruct the water entry process of a two-dimensional body, though
experiments feature a three-dimensional water entry process. The reason for comparing the
results of two-dimensional against three-dimensional cases was the lack of experimental
data. Overall, the present model is seen to fairly compute the peak pressure of a rigid body
entering water.

D.2. Stain arising in steel plate entering water
The present computational model has been employed to reproduce numerically the
water entry of a steel plate with density ~7800kgm~ and Young’s modulus ~210 x
10° Pa. Experiments involving free-fall tests are presented by Kvalsvold, Faltinsen &
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Figure 18. Comparisons between experimental peak pressures of a rigid plate entering water and those of the
present model. (a,b) Peak pressures recorded at the middle point of the plate. (c,d) Peak pressures recorded at
a point distance ~0.44L from the middle point. Experimental data are taken from Ma et al. (2016).

Aarsnes (1995). The elastic solid body was set to fall from different heights to reach various

desired impact speeds. The total weight of the rig was ~500 kg. This potentially cancels

out the water exit, leading to a water entry process with a constant rigid impact speed.
The strain emerging in the body is calculated as

3
€0 = o -d. (D1)

The temporal strain at the middle point has been monitored, and its peak value was
found. This was then compared against experimental measurements found in Kvalsvold
et al. (1995) (figure 19). The model slightly over-predicts the maximum strain at U =
0.11 x 107%. The model reconstructs the water entry process with a constant heave speed.
However, in experiments, the heave speed is seen to decrease slightly just after the impact.
The final impact speed of experiments may be slightly different from the desired one. This
is a potential source of uncertainty.
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Figure 19. Maximum stain at the middle point of a steel plate entering water at different impact speeds. Circle

and triangle markers respectively display experimental and numerical data. Experimental data are taken from
Kvalsvold & Faltinsen (1995).

Appendix E. Dynamic response of a beam exposed to an impact load
Let w represent the vertical displacement. Assuming linearity, the dynamic motion of a
two-dimensional body over a unit length can be formulated based on the Euler—Bernoulli
theory as

w22 (E1)

m—- — = ,

or ax*
where m is mass per unit length of the beam, i.e. m = psh. In addition, £ = Eh3/12 is the
sectional rigidity of the beam, and F(¢) is the impact load acting on the structure, which
can be formulated as

F(t) = Foe 7, (E2)

where y is the decay rate of the impact force, and Fy is the peak force. The dynamic
response can be reformulated as

82

84
St o =foe, (E3)

where k = /L/m is the natural frequency, and fy = Fp/m. Performing a Laplace
transform, the equation governing the beam dynamic can be written as

4~
w+#aw—ﬂ@ (E4)

where w and f‘ are Laplace transforms of w and the right-hand side of (E3), which are
respectively given by

w(s) :/ we ' dt (E5)
0
and
2o Jo
fs) = Vot (E6)
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Thus the solution of the problem can be established as
1 2 1 1 1 1
w:%(wy yz—)ijkz+y+iks—ik+y—iks+ik)' E7)
Using an inverse Laplace transform, w(¢) can be written as
fo 2y —yt , 2y coskt —2k sin kt
¢ e )
As seen in (E8), the dynamic response of the beam impacted by water is composed of an

exponential response and a harmonic one, which are also observed in time history curves
of the momentum and the work found through the numerical simulations.

w(t) = (E8)
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